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THE MATRIX MOMENT PROBLEM

ANTONIO J. DURÁN AND PEDRO LÓPEZ-RODRÍGUEZ

A la memoria de nuestro amigo Chicho

Abstract. We expose the recent extensions to the matrix case of classical

results in the theory of the moment problem: the theorem of Riesz, the parame-
trization of Nevanlinna and properties of the N -extremal matrices of measures.

1. The classical theory

The purpose of this survey is to show the recent extensions to the matrix case
of classical results in the theory of the moment problem. The interest that Chicho
always showed for these questions makes it interesting for a publication devoted to
his memory.
For a positive Borel measure ν on R with finite moments of any order sn =∫

R
tn dν(t) we denote by V the set of positive Borel measures µ on R satisfying∫

R
tn dµ(t) = sn, n ≥ 0, that is, the set of solutions to the Hamburger moment

problem defined by ν . By Vn we denote the set of positive Borel measures on R

such that
∫

R
tk dµ(t) = sk, 0 ≤ k ≤ n, that is, the set of solutions to the truncated

moment problem defined by ν .
Given a sequence of numbers s0, s1, s2, . . . , Hamburger’s theorem from 1920 states

that a necessary and sufficient condition for the existence of a positive measure with
infinite support having moments s0, s1, s2, . . . is that the sequence s0, s1, s2, . . . is
positive definite, or equivalently that all the Hankel matrices

Hn = (si+j)0≤i,j≤n =




s0 s1 s2 . . . sn

s1 s2 s3 . . . sn+1

s2 s3 s4 . . . sn+2

...
...

...
. . .

...
sn sn+1 sn+2 . . . s2n




are positive definite, which is equivalent to detHn > 0, for n ≥ 0. In 1894 Stieltjes
had already established the corresponding result for measures supported in [0,∞).
We say that the measure ν is determinate if there is no other positive measure

having the same moments as those of ν , that is, if V = {ν}, otherwise we say that ν

2000 Mathematics Subject Classification. 42C05, 44A60.
Key words and phrases. Orthogonal matrix polynomials, matrix moment problem, Pick matrix

functions, N -extremal matrices of measures.

This work has been partially supported by DGI, project BFM2000-0206-04-C02.

333
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is indeterminate. This alternative is related to the index of deficiency of the operator
defined on 
2 by the infinite Jacobi matrix

J =



b0 a1
a1 b1 a2

a2 b2 a3
. . . . . . . . .


 ,

where the coefficients ai (�= 0) and bi are the coefficients which appear in the three
term recurrence relation satisfied by the orthogonal polynomials (pn)n associated
to ν ,

tpn(t) = an+1pn+1(t) + bnpn(t) + anpn−1(t), n ≥ 0.
The index of deficiency of J is 0 if the moment problem is determinate and 1 if the
moment problem is indeterminate.
The polynomials of the second kind (qn)n are given by

qn(x) =
∫

R

pn(x) − pn(t)
x− t

dν(t).

They also satisfy the three term recurrence relation, taking initial conditions q0 = 0

and q1 =
1
a1
. These polynomials play an important role in the theory.

The main results in the truncated moment problem are exposed in the following
theorem. In the sequel P denotes de space of polynomials and Pn denotes de space
of polynomials up to degree n. In the matrix case we will use the same notation.

Theorem 1.1 (The truncated case). Given a positive measure ν in R with finite
moments of any order, for µ in V2n−2, the following statements are equivalent:

(1) The measure µ is an extremal point (in the sense of convexity) of the
set Vn−1.

(2) The polynomials up to degree n− 1 are dense in the space L2(µ).
(3) There exists a real number a such that the Stieltjes transform of µ is given

by

(1.1) ω(λ) =
∫

R

dµ(x)
x− λ

= − qn(λ) − aqn−1(λ)
pn(λ) − apn−1(λ)

.

(4) For any given non real λ, the value of the Stieltjes transform I(µ) in the
point λ is extremal in the set

I(V2n−2)(λ) =
{∫

R

dµ(t)
t− λ

: µ ∈ V2n−2

}
.

The set I(V2n−2)(λ) is the circle defined by the image of the real line
through the Möbius linear transformation

(1.2) ωn(λ, a) = − qn(λ) − aqn−1(λ)
pn(λ) − apn−1(λ)

defined by (1.1), except for the single point −qn−1(λ)/pn−1(λ), which is just
on its border.
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(5) At some point x0 of its support (and then at every), the measure µ supports
the highest possible weight at the point x0 for a measure in V2n−2, which is
given by

µ({x0}) =
(

n−1∑
k=0

p2k(x0)

)−1

.

As we have exposed, when a moves through the real line, the Möbius linear
transformation (1.2) describes a circumference except for one point. The circles
defined by these circumferences are the so called Hellinger-Nevanlinna circles, we
denote them by Bn(λ). A single calculation gives that the centers αn(λ) of these
circles are given by

αn(λ) =
qn−1(λ)pn(λ)− qn(λ)pn−1(λ)
pn−1(λ)pn(λ)− pn(λ)pn−1(λ)

and that their radius rn(λ) are given by

rn(λ) =

(
|λ− λ|

n−1∑
k=0

|pk(λ)|2
)−1

.

Observe that Bn+1(λ) ⊆ Bn(λ) and that their borders have the common point

ωn(λ, 0) = ωn+1(λ,∞) = −qn(λ)/pn(λ).

Algebraic calculations with the polynomials pn and qn give another expression
for the set Bn(λ). It is the set of complex ω satisfying

n−1∑
k=0

|ωpk(λ) + qk(λ)|2 ≤
ω − ω

λ− λ
.

We put B∞(λ) for the intersection of all these nested circles Bn(λ). The set B∞(λ)
is a closed disc that can degenerate into a single point, and its radius r∞(λ) is the
limit of the radius of Bn(λ):

r∞(λ) =

(
|λ− λ|

∞∑
k=0

|pk(λ)|2
)−1

.

It is clear that B∞(λ) is a circle when the sequence (pk(λ))k belongs to 
2. This
occurrence does not depend on the chosen non real λ:

Theorem 1.2 (R. Nevanlinna, 1922). If B∞(λ0) is a non degenerate circle for some
non real λ0, then B∞(λ) is always a non degenerate circle (see [N]). Furthermore, in
such case the series

∑ |pn(λ)|2 and
∑ |qn(λ)|2 converge uniformly on any compact

subset of C.

An essential result in the theory is the following
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Theorem 1.3 (R. Nevanlinna, 1922). Given a positive definite sequence (sn)n or
equivalently a positive measure ν and a number λ ∈ C \ R, we have

B∞(λ) =
{∫

R

dµ(t)
t − λ

: µ ∈ V

}
.

The measures µ for which I(µ)(λ) lies in the circumference of this circle I(V )(λ)
are called N -extremal (Nevanlinna-extremal). They play an important role in the
theory and have interesting properties that we will expose later.
The Theorem of Riesz gives valuable information about these N -extremal mea-

sures:

Theorem 1.4 (M. Riesz). Let µ be a positive measure corresponding to an indeter-
minate moment problem. Then the following conditions are equivalent:

(1) There exists λ0 ∈ C\R such that I(µ)(λ0) is an extremal point (in the sense
of convexity) of the set B∞(λ0).

(2) For any λ ∈ C \ R, I(µ)(λ) is an extremal point (in the sense of convexity)
of the set B∞(λ).

(3) P is dense in L2(µ), equivalently (pn(t))∞n=0 is an orthonormal basis for the
Hilbert space L2(µ).

For a proof see [A] or [R].

In the indeterminate case the series
∑ |pn(λ)|2,

∑ |qn(λ)|2 converge uniformly
on compact subsets of C, which makes it possible to define four important entire
functions on C by

a(λ) = λ

∞∑
k=0

qk(0)qk(λ),

c(λ) = 1 + λ

∞∑
k=0

pk(0)qk(λ),

b(λ) = −1 + λ

∞∑
k=0

qk(0)pk(λ),

d(λ) = λ

∞∑
k=0

pk(0)pk(λ).

These functions depend only on the moment sequence (sn)n≥0 of ν , or equivalently
on V .
The set V of all solutions µ to the indeterminate moment problem was parametriz-

ed by Nevanlinna in 1922 using these functions. The parameter space is the one-
point compactification of the set P of Pick functions, which are holomorphic func-
tions in the upper half-plane H with non-negative imaginary part. Pick functions
are also called Herglotz or Nevanlinna functions.

Theorem 1.5 (R. Nevanlinna, 1922). There exists a homeomorphism ϕ → νϕ of
P ∪ {∞} onto V given by

(1.3)
∫

R

dνϕ(t)
t− λ

= −a(λ)ϕ(λ) − c(λ)
b(λ)ϕ(λ) − d(λ)

, for λ ∈ C \ R.

This means that the Stieltjes transform of any solution ν ∈ V is given by (1.3)
for a unique Pick function ϕ or by the point ∞ (see [A] or [N]).
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Strictly speaking it is not the set V which is parametrized but the set of its
Stieltjes transforms

I(µ)(λ) =
∫

R

dµ(t)
t− λ

, λ ∈ C \ R,

which are holomorphic functions in C \R. This is just as good, since µ→ I(µ) is a
one-to-one mapping from the set M(R) of finite complex measures on R to the set
H(C \ R) of holomorphic functions in C \ R. The inverse mapping is given by the
Perron-Stieltjes inversion formula

µ = lim
ε→0+

1
2πi

{I(µ)(x + iε)− I(µ)(x − iε)} ,

where the convergence is in the weak topology on the space M(R) of positive mea-
sures on the real line as dual space of C0(R) (continuous functions on R vanishing
at infinity).
As we have just exposed, N -extremal measures in V are those for which the set

P of polynomials is dense in its corresponding space L2(µ). In the parametrization
(1.3) of Nevanlinna, they are the ones whose corresponding Pick functions ϕ(λ) are
real constants or ∞. These constant real functions are extremal in P in an obvious
sense.
If we define V to be the set of holomorphic functions v(λ) in the upper half-plane

H such that |v(λ)|2 = v(λ)v(λ) ≤ 1, then the mapping
v(λ) = −[ϕ(λ) + i]−1[ϕ(λ)− i]

transforms the set P ∪ {∞} onto V bijectively, if we accept that the limit function
ϕ(λ) =∞ is transformed into v(λ) = −1. Its inverse is given by
(1.4) ϕ(λ) = i[1− v(λ)][1 + v(λ)]−1.

If we make this change in (1.3) we obtain the expression∫
R

dν(t)
t− λ

= −a(λ)i[1 − v(λ)] − c(λ)[1 + v(λ)]
b(λ)i[1 − v(λ)] − d(λ)[1 + v(λ)]

, for λ ∈ H,

and the N -extremal measures are obtained when v(λ) is a constant complex number
a with |a| = 1. This expression is more suitable to be generalized to the matrix case.
The reason is that, whereas in the scalar case there is only one limit Pick function
ϕ(λ) =∞, in the matrix case a Pick matrix function can be “big” in many different
ways.
The N -extremal measures have some interesting properties that we state in the

following theorem.

Theorem 1.6.

(1) An N -extremal measure is discrete with mass in countably many points,
which are the zeros of a certain entire function of minimal exponential type
(see [A, Th. 2.4.3]).

(2) For every real number t there is one and only one N -extremal measure µt

having a mass point at t (see [A, Th. 3.4.1]).
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(3) If µ is the N -extremal measure having a mass point at t then for any positive
real number a the measure µ + aδt is N -extremal, and the measure µ −
µ({t})δt is determinate (see [A, Th. 3.4]).

(4) The N -extremal measure µ having a mass point at t reaches the maximum
mass which can be concentrated in t for any solution of the indeterminate
moment problem, i.e.:

µt({t}) = sup{ν({t}) : ν ∈ Vµ}.
Moreover, this maximum is uniquely attained by µt and

µt({t}) =
1

∞∑
n=0

|pn(t)|2

(see [A, Th. 3.4.1]).

2. The matrix extension

A matrix of measures µ of size N in the real line is a matrix of size N ×N whose
entries are complex Borel measures:

µ =



µ11 . . . µ1N

...
. . .

...
µN1 . . . µNN


 .

The matrix of measures µ is said to be positive definite if for any Borel set A in the
real line the numerical matrix µ(A) is positive semidefinite. This implies that µii

are positive measures and that µij = µji.
A matrix polynomial P (t) of size N and degree n is a square matrix of size N×N

whose entries are polynomials:

P (t) =



p11(t) · · · p1N(t)
...

. . .
...

pN1(t) · · · pNN (t)


 ,

or equivalently, a polynomial of the form

P (t) = Ant
n + An−1t

n−1 + · · ·+ A0,

where A0, . . . , An are numerical matrices of size N ×N .
A number a is a zero of the polynomial P (t) if it is a zero of the scalar polynomial

detP (t), that is, if the matrix P (a) is singular, or equivalently, if 0 is an eigenvalue
of P (a). The multiplicity of a as a zero of P (t) is the multiplicity of a as a zero of
detP (t).
By (Pn)∞n=0 we denote the sequence of orthonormal matrix polynomials with

respect to ν , Pn of degree n and with non-singular leading coefficient.
These polynomials (Pn)n satisfy a three term recurrence relation of the form

(2.1) tPn(t) = An+1Pn+1(t) + BnPn(t) + A∗
nPn−1(t), n ≥ 0,
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(An and Bn being N × N matrices such that det(An) �= 0 and B∗
n = Bn), with

initial condition P−1(t) = θ. (Here and in the rest of this paper, we write θ for
the null matrix, the dimension of which can be determined from the context. For
instance, here θ is the N ×N null matrix.)
We denote by Qn(t) the corresponding sequence of polynomials of the second

kind, given by

Qn(t) =
∫

R

Pn(t) − Pn(x)
t− x

dν(x), n ≥ 0,

which also satisfy the recurrence relation (2.1), with initial conditions Q0(t) = θ
and Q1(t) = A−1

1 .
In the matrix case the determinacy or indeterminacy of the matrix moment prob-

lem is also related to the indices of deficiency of the operator J defined by the
(2N + 1)-banded infinite N -Jacobi matrix

J =



B0 A1

A∗
1 B1 A2

A∗
2 B2 A3

. . . . . . . . .




on the space 
2, where An and Bn are the coefficients which appear in the three
term recurrence relation (2.1). In this case the indices of deficiency can be any
natural number from 0 to N , being both equal to 0 in the determinate case and
both equal to N in the completely indeterminate case. When the matrix of measures
is indeterminate but not completely indeterminate we call it just indeterminate.
For µ a positive definite matrix of measures, the space L2(µ) is defined as the set

of N×N matrix functions f : R → MN×N (C) such that τ (f(t)M(t)f(t)∗ ) ∈ L1(τµ),
where M(t) is the Radon-Nikodym derivative of µ with respect to its trace (τµ) (for
a matrix A = (ai,j)1≤i,j≤N , we denote τA for its trace, i.e. τA =

∑N
i=1 ai,i):

M = (mi,j)Ni,j=1 =
(
dµi,j

dτµ

)
1≤i,j≤N

.

The space L2(µ) is endowed with the norm

‖f‖2,µ = ‖τ (f(t)M(t)f(t)∗) 1
2 ‖2,τµ =

(∫
R

τ (f(t)M(t)f(t)∗) dτµ(t)
) 1

2

and is a Hilbert space. The duality works as for the scalar case. (See [R] or [DL2]
for more details. For the definition of the Lp spaces associated to µ, 1 ≤ p < ∞,
see [DL2].)
Observe that since we only impose the matrices of measures in V2n to have finite

moments up to degree 2n, for µ ∈ V2n we can guarantee only that the polynomials up
to degree n belong to the corresponding space L2(µ). In any case, the polynomials
(Pk)k=0,...,n are orthonormal with respect to any measure in V2n.
The sequence of moments Sn associated to the matrix of measures µ is given by

Sn =
∫

R

tn dµ.
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As in the scalar case, for a given positive definite matrix of measures ν we denote
by V the set of positive definite matrices of measures µ on R having the same
moments as µ, that is, the set of solutions to the Hamburger moment problem
defined by µ. By Vn we denote the set of positive definite matrices of measures on R

such that
∫

R
tk dµ(t) = Sk, 0 ≤ k ≤ n, that is, the set of solutions to the truncated

moment problem defined by µ.
We first give two examples showing that the determinacy or indeterminacy of

matrices of measures is essentially different to the scalar case. Both examples have
the form

(2.2) Wµ =
(

µ µ({x})δx − µ({y})δy
µ({x})δx − µ({y})δy µ

)
,

where x, y ∈ suppµ and µ is an indeterminate measure, but in one case the matrix
of measures Wµ is determinate and in the other it is completely indeterminate.
(1) If µ is an N -extremal measure then Wµ given by (2.2) is determinate. This

is indeed equivalent to show that
1
2

(
1 −1
1 1

)
Wµ

(
1 1
−1 1

)
is determinate, but we have
1
2

(
1 −1
1 1

)
Wµ

(
1 1
−1 1

)
=
(
µ− µ({x})δx + µ({y})δy 0

0 µ + µ({x})δx − µ({y})δy

)
and from Theorem 1.6 (3) the measures

(µ + µ({y})δy) − µ({x})δx and (µ+ µ({x})δx)− µ({y})δy
are both determinate and then it is not difficult to see that the matrix of measures(

µ− µ({x})δx + µ({y})δy 0
0 µ+ µ({x})δx − µ({y})δy

)
is also determinate.
(2) If we put µ = χ[0,1](t)dt + ν , with ν being N -extremal, then Wµ given by

(2.2) is completely indeterminate. Again, this is equivalent to see that

1
2

(
1 −1
1 1

)
Wµ

(
1 1
−1 1

)
is completely indeterminate, but

1
2

(
1 −1
1 1

)
Wµ

(
1 1
−1 1

)

=
(
χ[0,1](t)dt+ ν − ν({x})δx + ν({y})δy 0

0 χ[0,1](t)dt+ ν + ν({x})δx − ν({y})δy

)
,

and it is not difficult to see that

χ[0,1](t)dt+ ν − ν({x})δx + ν({y})δy and χ[0,1](t)dt+ ν + ν({x})δx − ν({y})δy
are both indeterminate.
We begin with the generalization of some of the points in Theorem 1.1:
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Theorem 2.1. For a positive definite matrix of measures µ in V2n−2 the following
statements are equivalent:

(1) µ is an extremal measure of the set Vn−1 (in the sense of convexity).
(2) Pn−1 is dense in the space L2(µ).
(3) There exists an N ×N numerical matrix A such that AnA = A∗A∗

n and for
which µ =

∑q
i=1Giδxi , where xi, i = 1, . . . , q are the different zeros of the

polynomial det(Pn(λ)−APn−1(λ)) and Gi are the matrices which appear in
the simple fraction decomposition

(Pn(λ)− APn−1(λ))−1(Qn(λ) − AQn−1(λ)) =
q∑

i=1

Gi

λ− xi
.

The numbers xi are real and the matrices Gi are positive semidefinite, i =
1, . . . , q.

See [DL3] for the proof.
Property (5) of Theorem 1.1 is not true in the matrix case. Indeed, the matrices in

V2n−2 extremal in Vn−1 may not support the maximummass in V2n−2. This happens
exactly when the mass is a non-singular matrix, in which case the polynomialPn(λ)−
APn−1(λ) has a zero of maximum multiplicity:

Theorem 2.2. If µ is a matrix of measures extremal in Vn−1, put

µ =
q∑

i=1

Giδxi ,

where xi are the zeros of Pn(λ) − APn−1(λ) for certain A such that AnA = A∗A∗
n.

Then the following conditions are equivalent:
(1) µ reaches in xi0 the maximum mass permitted in xi0 for a matrix of measures

in V2n−2, more concretely,

Gi0 =

(
n−1∑
k=0

P ∗
k (xi0)Pk(xi0)

)−1

.

(2) Gi0 is non-singular.
(3) Pn(λ) − APn−1(λ) has a zero of maximum multiplicity (N) in xi0 .
(4) Pn−1(xi0) is non-singular and A = Pn(xi0)P

−1
n−1(xi0).

See [DL3] for the proof.
Property (4) of Theorem 1.1 is still an open problem in the matrix case, we will

give more details later.
The generalization of the Theorem of Riesz to the matrix case also presents impor-

tant difficulties. We have proved this theorem in the matrix case in the completely
indeterminate case, or equivalently, when the indices of deficiency of the operator J
are both N . In this case the two series

∞∑
k=0

Q∗
k(λ)Pk(η) and

∞∑
k=0

P ∗
k (λ)Pk(η)
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converge uniformly in the variables λ and η on every bounded set of the complex
plane (see [K]).
This convergence permits to define the following four analytic matrix functions,

A(λ) = λ

∞∑
k=0

Q∗
k(0)Qk(λ),

C(λ) = I + λ

∞∑
k=0

P ∗
k (0)Qk(λ),

B(λ) = −I + λ

∞∑
k=0

Q∗
k(0)Pk(λ),

D(λ) = λ

∞∑
k=0

P ∗
k (0)Pk(λ),

which together with their partial sums

An(λ) = λ

n−1∑
k=0

Q∗
k(0)Qk(λ),

Cn(λ) = I + λ

n−1∑
k=0

P ∗
k (0)Qk(λ),

Bn(λ) = −I + λ

n−1∑
k=0

Q∗
k(0)Pk(λ),

Dn(λ) = λ

n−1∑
k=0

P ∗
k (0)Pk(λ),

play an important role in the theory.
We also put

(2.3) Rn(λ) =

(
n∑

k=0

P ∗
k (λ)Pk(λ)

)−1

.

For any non real λ, we define the set Bn(λ) to be the set of N × N complex
matrices ω such that

(2.4) [ω + αn(λ)]Rn−1(λ)−1[ω + αn(λ)]∗ ≤ |λ− λ|−2Rn−1(λ),

where

αn(λ) =

(
I

2i Im λ
+

n−1∑
k=0

Q∗
k(λ)Pk(λ)

)(
n−1∑
k=0

P ∗
k (λ)Pk(λ)

)−1

.

The sets Bn(λ) are the matrix equivalents to the Hellinger-Nevanlinna circles.
Some algebraic calculations with the polynomials Pn and Qn show that Bn(λ) is
also the set of N ×N complex matrices ω satisfying the matrix inequality

(2.5)
n−1∑
k=0

(Q∗
k(λ) + ωP ∗

k (λ))(Qk(λ) + Pk(λ)ω∗) ≤ ω − ω∗

λ − λ
.

We put B∞(λ) for the intersection of all the sets Bn(λ).
B∞(λ) is clearly the set of N ×N complex matrices ω such that

(2.6) [ω +C(λ)]R(λ)−1[ω +C(λ)]∗ ≤ |λ− λ|−2R(λ),

where

C(λ) =

(
I

2i Imλ
+

∞∑
k=0

Q∗
k(λ)Pk(λ)

)( ∞∑
k=0

P ∗
k (λ)Pk(λ)

)−1

.
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Similarly, B∞(λ) is also the set of N ×N complex matrices ω such that

(2.7)
∞∑

k=0

(Q∗
k(λ) + ωP ∗

k (λ))(Qk(λ) + Pk(λ)ω∗) ≤ ω − ω∗

λ− λ
.

Looking at (2.4) and (2.6) it is immediate that upon a linear matrix transforma-
tion, any of the sets Bn(λ) or B∞(λ) is in a one to one correspondence with the
set of N ×N complex matrices T satisfying TT ∗ ≤ I, which is a convex set whose
extremal points are the matrices verifying TT ∗ = I, that is, the unitary matrices
(this is a well-known result in operator theory which can be proved for example
with the aid of the singular value decomposition of matrices). This implies that
these sets Bn(λ) and B∞(λ) are convex sets whose extremal points (ExtBn(λ) and
ExtB∞(λ)) are those for which equality is attained in (2.4) and (2.5) or (2.6) and
(2.7) respectively.
Other calculations with algebraic formulas involving Pn and Qn show that an

equivalent condition for ω to be an extremal point of Bn(λ) is that the matrix

(2.8) (ωP ∗
n(λ) +Q∗

n(λ))A
∗
n(Pn−1(λ)ω∗ +Qn−1(λ))

is hermitian.
It is clear that for all n ≥ 1 we have B∞(λ) ⊆ Bn+1(λ) ⊆ Bn(λ). It is also

clear that ω belongs to the set of interior points of Bn(λ) or B∞(λ) (IntBn(λ) and
IntB∞(λ)) if a strict inequality is attained in (2.4) and (2.5) or (2.6) and (2.7)
respectively.
The Theorem of Nevanlinna has the same formulation in the matrix case:

Theorem 2.3. Let V denote the set of solutions to a completely indeterminate
matrix moment problem defined by a matrix of measures ν and let λ ∈ C \R. Then
we have

B∞(λ) = I(V )(λ).

See [L1] for the proof.

The statement is exactly the same as in the scalar case, however the proof given
in the scalar case fails completely in the matrix case, because in the scalar case a
complete description of the Stieltjes transforms of the solutions of the truncated
problem is known in terms of the circles of Hellinger-Nevanlinna. However in the
matrix case this description is far more complicated. The key to prove this theorem
in the matrix case is the inclusions

(2.9) IntBn(λ) ⊆ I(V2n−2)(λ) ⊆ Bn(λ).

The proofs of these inclusions present much more difficulties than in the scalar
case. Indeed, in the scalar case the set I(V2n−2)(λ) is given by

I(V2n−2)(λ) = Bn(λ) \
{
− qn−1(λ)
pn−1(λ)

}
.
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The point −qn−1(λ)/pn−1(λ) lies on the border of the circle Bn(λ). When a moves
along the real axis, the quotient

− qn(λ) − aqn−1(λ)
pn(λ) − apn−1(λ)

describes all the points of the circumference of the closed disk Bn(λ) except for
the limit point −qn−1(λ)/pn−1(λ). The well known quadrature formula (see [A,
p. 20]) gives that every point defined by the former quotient for a ∈ R belongs to
I(V2n−2)(λ). It is easy to see that −qn−1(λ)/pn−1(λ) /∈ I(V2n−2)(λ), but this is of
no importance because taking into account that I(V2n−2)(λ) is a convex set and the
simple geometry of the circles Bn(λ) it is immediate to deduce that IntBn(λ) ⊆
I(V2n−2)(λ). This inclusion is not at all so immediate in the matrix case, and it is
done in several steps:

Step 1.
co(Γn(λ)) ⊆ I(V2n−2)(λ),

where

Γn(λ) = {−(Pn(λ)− APn−1(λ))−1(Qn(λ)− AQn−1(λ)) : AnA = A∗A∗
n}

and co(Γn(λ)) stands for the convex hull of Γn(λ).

Step 2.
Γn(λ) ⊆ ExtBn(λ),

where ExtBn(λ) stands for the set of extremal points of Bn(λ).

Step 3.
I(V2n−2)(λ) ∩ ExtBn(λ) = Γn(λ).

Step 4. If ω ∈ ExtBn(λ), the following two conditions are equivalent:
(1) ω ∈ Γn(λ)
(2) det(Q∗

n−1(λ) + ωP ∗
n−1(λ)) �= 0.

Step 5. The set Γn(λ) is dense in ExtBn(λ).

Step 6. The following inclusion holds:

IntBn(λ) ⊆ co(Γn(λ)).

We also have the generalization to the matrix case of the Theorem of Riesz:

Theorem 2.4 (Riesz’s theorem for orthogonal matrix polynomials). Let µ be a
positive definite matrix of measures corresponding to a completely indeterminate
matrix moment problem. Then the following conditions are equivalent:

(1) There exists λ0 ∈ C\R such that I(µ)(λ0) is an extremal point (in the sense
of convexity) of the set B∞(λ0).

(2) For any λ ∈ C \ R, I(µ)(λ) is an extremal point (in the sense of convexity)
of the set B∞(λ)

(3) P is dense in L2(µ), equivalently (Pn(t))∞n=0 is an orthonormal basis for the
Hilbert space L2(µ).
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See [L1] for the proof.
For the Nevanlinna parametrization, in the matrix case the parameter space is

the space V of holomorphic matrix functions V (λ) in the upper half-plane H such
that V (λ)∗V (λ) ≤ I. The theorem reads as follows:

Theorem 2.5. There exists a homeomorphism between the set V and the set V
given by

(2.10)
∫

R

dν(t)
t − λ

= −{C∗(λ)[I + V (λ)]− iA∗(λ)[I − V (λ)]}

× {D∗(λ)[I + V (λ)] − iB∗(λ)[I − V (λ)]}−1
.

The N -extremal matrices of measures in V correspond to the constant unitary ma-
trices in V.
See [L2] for the proof.
In most cases this expression can be given in terms of a Pick matrix function. A

Pick matrix function is a holomorphic matrix function Φ(λ) in the upper half-plane
H such that for any z in H the matrix

ImΦ(λ) =
Φ(λ)− Φ(λ)∗

2i
is positive semidefinite.
If we suppose the matrix function [I + V (λ)] to be invertible for every λ in H,

then we can define

(2.11) Φ(λ) = i[I − V (λ)][I + V (λ)]−1,

which is a Pick matrix function:

(2.12)
Φ(λ) − Φ(λ)∗

2i
=
1
2i
{
i[I − V (λ)][I + V (λ)]−1 + i[I + V (λ)∗]−1[I − V (λ)∗]

}
=
1
2
[I + V (λ)∗]−1 {[I + V (λ)∗][I − V (λ)] + [I − V (λ)∗][I + V (λ)]} [I + V (λ)]−1

= [I + V (λ)∗]−1 {I − V (λ)∗V (λ)} [I + V (λ)]−1 ≥ 0
because V (λ) belongs to V. In this case (2.10) becomes∫

R

dν(t)
t− λ

= −{C∗(λ) −A∗(λ)Φ(λ)} {D∗(λ) − B∗(λ)Φ(λ)}−1
,

which is the matrix version of (1.3).
If ν is N -extremal, then its Stieltjes transform is

(2.13)∫
R

dν(t)
t− λ

= −{C∗(λ)[I + U ]− iA∗(λ)[I − U ]} {D∗(λ)[I + U ]− iB∗(λ)[I − U ]}−1

for a certain unitary matrix U . If I + U is invertible, then

H = i[I − U ][I + U ]−1
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is hermitian, and (2.13) reduces to

(2.14)
∫

R

dν(t)
t − λ

= −{C∗(λ) − A∗(λ)H} {D∗(λ) − B∗(λ)H}−1
,

but observe that not every N -extremal matrix of measures can be represented in
this way for a hermitian matrix.
The N -extremal matrices of measures also satisfy a number of interesting prop-

erties although the matrix structure creates important divergences; for instance: for
every real number t, and for any natural number m, 0 ≤ m < N , there are infinitely
many N -extremal measures having a mass point at t of rank m, but only one having
a mass point at t of rank N .
To present the results in full, we need some definitions and previous results. For

t0 a real number, the matrix D∗(t0) + iB∗(t0) is non-singular and the matrix

(2.15) Ut0 = −(D∗(t0) + iB∗(t0))−1(D∗(t0)− iB∗(t0))

is unitary. For any unitary matrix U we write

AU = {u ∈ C
N : Uu∗ = Ut0u

∗}.
We have the following theorem which characterizes the N -extremal matrices of mea-
sures having a mass point at t0:

Theorem 2.6. The Nevanlinna parametrization (2.13) establishes a bijective map-
ping between the sets{

U : U is a unitary matrix, dim
(
AU

)
= m

}
and {

ν : ν is an N -extremal matrix of measures with rank
(
ν({t0})

)
= m

}
.

Moreover:
(1) If ν is N -extremal, the matrix ν({t0}) is the inverse of the positive definite

matrix
∞∑

k=0

P ∗
k (t0)Pk(t0) on the orthogonal subspace of Ker

(
ν({t0})

)
, that

is, if u, v ∈ Ker⊥
(
ν({t0})

)
then

(2.16)

u
(
ν({t0})

)( ∞∑
k=0

P ∗
k (t0)Pk(t0)

)
v∗

= u

( ∞∑
k=0

P ∗
k (t0)Pk(t0)

)(
ν({t0})

)
v∗

= uv∗.

(2) If ν is N -extremal, the matrix ν({t0}) attains, on the orthogonal subspace
of Ker

(
ν({t0})

)
, the maximum mass which can be concentrated at t0 for
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any solution of the indeterminate matrix moment problem, that is, if u ∈
Ker⊥

(
ν({t0})

)
and µ has the same matrix moments as those of ν then:

uν({t0})u∗ ≥ uµ({t0})u∗.
As a consequence, there is only one N -extremal matrix of measures with a non-
singular mass at the point t0: the N -extremal matrix of measures associated to the
unitary matrix Ut0 defined by (2.15). In this case the mass at t0 is( ∞∑

k=0

P ∗
k (t0)Pk(t0)

)−1

.

See [DL4] for the proof.
We stress the important differences between our Theorem 2.6 and the property (2)

of N -extremal measures pointed out above. The property (3) also has a more
complicated interpretation in the matrix case which depends on the rank of the
mass that the N -extremal solution supports on t:

Theorem 2.7. If ν is an N -extremal matrix of measures then the deficiency index
of the matrix of measures ν − ν({t})δt is less than or equal to N − rank

(
ν({t})

)
.

See [DL4] for the proof.
Finally, the property (4) in Theorem 1.6 has an analogous in the matrix case:

Corollary 2.8. The N -extremal matrix of measures associated to the unitary ma-
trix Ut0 is the only solution of the indeterminate matrix moment problem having
maximum mass at the point t0.

See [DL4] for the proof.
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