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RESUMEN. Mirian trabajaba en un tema que, en el tercer milenio, podria pa-
recer agotado: el teorema de Eilenberg-Zilber. Sin embargo, mas de sesenta
anos después de su descubrimiento se han realizado varios experimentos en
ordenador que muestran que todavia estamos lejos de entender la naturaleza
profunda de este resultado. Por ejemplo los informes sobre la ejecucion del
programa Kenzo nos indican que la mayor parte de su tiempo de ejecucion se
dedica a la utilizacién del teorema de Eilenberg-Zilber, mas concretamente, la
versién fuerte que describe una reduccidn Cyx(X X Y) =% Cy(X) @ Cy(Y): es
simplemente el inevitable puente entre Topologia y Algebra. La implementa-
cién actual, que combina varios trucos de codificacién de una forma bastante
complicada, aunque es mejor que las primeras, no puede ser la més adecuada.
Teniendo en cuenta el objetivo inicial de una versién certificada del progra-
ma Kenzo, cualquier trabajo que reconsidere varios aspectos del teorema de
Eilenberg-Zilber serd bienvenido; y obligarse a obtener una prueba certifica-
da de ese teorema es el mejor modo de descubrir las preciosas propiedades
ocultas de esta reduccién. Esperamos que otros colegas del equipo de Mirian
en Logrofio contintien su espléndido trabajo, detenido tan tragicamente.

ABSTRACT. Mirian worked on a subject which, in the third millenium, could
seem exhausted, namely the Eilenberg-Zilber theorem. More than sixty years
after its discovery, various computer experiments show on the contrary we are
far from having understood the deep nature of this result. For example the
profiler accounts of the Kenzo program instruct us most of its runtime is
devoted to using the Eilenberg-Zilber theorem, more precisely, the strong
form describing a reduction Cx(X X Y) =% Cx(X) ® C«(Y) : this is nothing
but the initial inevitable bridge between Topology and Algebra. The current
implementation, combining several dirty tricks in a rather weird way, though
better than the first ones, cannot be the right one. Bearing in mind the
ideal goal of a proved version of the Kenzo program, any work reconsidering
the various aspects of the Eilenberg-Zilber theorem is welcome; and forcing
oneself to obtain a certified proof of such a fundamental theorem is one of the
best ways to discover precious hidden properties in this reduction. We hope
other people of Mirian’s team at Logrono will continue her beautiful work, so
tragically stopped.

Key words and phrases. Simplicial sets, Complex projective spaces, Triangulations, Effective
Homology.
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1. INTRODUCTION

The simple Eilenberg-Zilber theorem is nothing but a preferred description of
a triangulation of the product of two simplices AP x A?. In Combinatorial Topol-
ogy, simplicial sets are more flexible than simplicial complexes, with this amusing
terminological paradox: the definition of a simplicial set is more complex than the
definition of a simplicial... complex.

The nice paper [5] obtains and describes the unique minimal triangulation of
P2?(C) as a simplicial compler with (9,36, 84,90, 36) simplices, that is, 9 vertices,
36 edges, 84 triangles, 90 tetrahedrons and 36 4-simplices. The Kenzo program
obtains here a triangulation of P%(C) with only (1,0,2,3,3) simplices; this does
not contradict the previous claim, for the last model is a simplicial set, not a
simplicial complex: for example it is legal in a simplicial set to attach the boundary
of a triangle to a point to obtain a (1,0,1) “triangulation” of the 2-sphere S? as a
simplicial set, while, as a simplicial complez, the minimal triangulation of S? needs
(4,6,4) simplices. The main interest of the Kiihnel triangulation of P?(C) is not
really in the triangulation itself but in the remarkable symmetry properties that
are used and described in it, a subject not at all considered in our triangulation
as a simplicial set.

Another work around this subject must be quoted. In [1, Exemple 1.19],
Clemens Berger obtains as a consequence of his effective version of the Hurewicz
theorem a triangulation of the Hopf map S2 — S2. The mapping cone of this map
again is our P?(C), which produces with this method a (1,0, 5,9, 6)-triangulation.

We do not know any use of our triangulation. The matter is just to high-
light how Effective Homology [7] is a tool which can be used in some unexpected
situations. The common advertisement about effective homology underlines it is
so possible to process objects not of finite type such as huge chain complexes or
simplicial sets, and to compute the corresponding homology or homotopy groups,
when they are guaranteed being of finite type by Jean-Pierre Serre [10]. This short
paper is devoted to an amusing side effect: effective homology can also be used
to obtain finite geometrical objects by a process going through infinite geometri-
cal objects. It seems this method can be used for arbitrary complex projective
sets. For example the Kenzo program obtains in a few seconds a triangulation of
P5(C) with (1,0,5,40,271,1197, 3381, 5985, 6405, 3780, 945) simplices. More pre-
cisely, the object so obtained has the homotopy type of P°(C) and it is an open
— and interesting — question to determine whether it is homeomorphic to P°(C).

This could recall Thomas Chapman’s result about simple homotopy types,
see [3, 11]: Chapman proved Whitehead’s conjecture about the simple homo-
topy type of homeomorphisms between finite CW-complexes through an essential
use of Hilbert cube manifolds, some exotic manifolds of infinite dimension. The
similarity is clear but there is also a difference: Chapman’s result has a very gen-
eral scope, valid for every finite CW-complex while which is explained here on the
contrary is rather limited: only the first complex projective spaces are currently
covered.

The main ingredients of our construction:
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= A triangulation of P™C defines also a (2n)-cycle, the homology class of

which is the canonical generator of Hy, (P"C,Z).
= The inclusion P"C «— P*°C induces an isomorphism between the respective

Hs,, groups.
= The infinite projective space P>°C and the Eilenberg-MacLane space K (Z, 2),
in particular its canonical minimal Kan model, have the same homotopy

type.
= The Kenzo program can compute the effective homology of K(Z,2), in

particular a generator of Hy, K(Z,2) as a simplicial cycle.
Combining these facts gives easily the desired triangulations.

2. THE EILENBERG-MACLANE SPACE K(Z,2)

The projective spaces P"C can be organized as an inductive system
x=P'Co PIC— ... P"C— P""C— ... = P>®C

In particular, the limit of this system P°°C is the most common model for the
Eilenberg-MacLane space K(Z,2). The Kan simplicial model for this space is ob-
tained in the Kenzo program by a process totally independent from the projective
spaces, and appropriately using this simplicial model, we obtain triangulations for
the projective spaces by a rather strange and lucky process.

We recommend the small book [6] as an ideal reference for the simplicial tech-
niques which are used below, and also for the notions of principal fibration and
classifying space. The introductory text [9] could also be useful.

2.1. Complex projective spaces. The complex n-vector spaces can be con-
sidered as defining an inductive system:

CoC?s. ...l o

where the last space is made of the infinite sequence of complex numbers, all null
except a finite number of them. The inclusion C" < C"*! adds a null component
at the end of a vector.
This gives an inductive system of unit spheres:
Sl (_>53(_>.”(_>52n71 (_)SZnJrl ;)(_>Soo
The diagonal action S* x §2"=1 — §2n=1: (5 (21,...,2,)) = (s21,...,82,) of
the unit circle over these spheres is compatible with the inductive structure, so that

the corresponding homogeneous spaces S2"~1/S1 =: P"~1C are also organized as
an inductive system:

x> PICoPCo .o PPIC— PPC s - s PC
2.2. P°C as a classifying space. The action of the topological multiplicative
group S' over the infinite sphere S is free, that is, sz = z implies s = 1, and
defines a principal fibration:
St 8% — P>C
The infinite sphere S is contractible. Let us define a contracting homotopy
h:Ix 8% — S§°. The shift operator o : S — S is defined as o(zg, 21,...) =
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(0, 20, 21, - . .). If two points z and 2z’ of S*° are not opposite, a geodesic v, , : I —
S5 is defined connecting both points; it is the radial projection of the segment
joining z and z’. Furthermore the value 7, ./ (t) depends continuously on z, 2/
and t. Finally let P = (1,0,0,...) be the “north pole” of 5.

In particular a point z is never opposite to its shift o(z), and a shift o(z), being
on the “equator” zy = 0, cannot be opposite to the north pole P.

Then we can define h(t, z) as follows:

h(t,z) = 7ao(x)(2t) if0<t<1/2
= Yo(z),P(2t = 1) if1/2<t<1

It so happens the shift o is a homeomorphism between the whole sphere S and
the equator zy = 0, a strange world.

The total space of our principal fibration is contractible, so that this fibration
is universal and the base space P>*°C can be qualified as the classifying space of
the group S'. Most often, this is denoted by P>*C = BS'.

The topological group S is not discrete, but it is also a classifying space, namely
the classifying space of the discrete group Z. This comes from the canonical action
of ZXR = R: (n,z) — n+x. It is again a free action, the total space R is again
contractible and the quotient R/Z is nothing but the circle S*. So that S' = BZ
and P>*C = B*Z.

2.3. P*C as an Eilenberg-MacLane space. Iterating the classifying space
construction is possible for commutative groups. In particular, if G is a discrete
commutative group, the Eilenberg-MacLane space K(G,n) is defined as the iter-
ated classifying space K(G,n) := B"G.

If G is a topological group, the homotopy groups of BG are the same as those
of G, shifted: m,G = m,11BG; furthermore, 7o BG = 0, that is, the classifying
space BG is connected.

For a discrete group G, all the homotopy groups are null except m1¢G = G,
using here the standard convention that moX is the set of the (arc-) connected
components of X, which is also a group when G is a topological group. So that, if G
is a discrete group, all the homotopy groups of B"G are null except 7, B"G = G.
In fact this defines unambiguously the homotopy type of B"G, then often denoted
by K(G,n).

In particular Z is a commutative discrete group, so that Z = K(Z,0), S =
K(Z,1) and P>~C = K(Z,?2).

2.4. K(Z,2) in the Kenzo environment. The Kenzo program has a pred-
ifined function k-z constructing the Kan minimal model of K(Z,n) for n > 0.

The Lisp prompt is the greater character ‘>’ and the user then enters a Lisp
statement to be evaluated, here the statement (setf kz2 (k-z 2)). On this display,
the end of the Lisp statement is marked by the maltese character *X’, in fact not
visible on the user’s screen; the end of the Lisp statement is automatically detected
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by the Lisp interpreter, which then evaluates the given statement and returns the
result of the evaluation, here the Kenzo object #13, which happens to be an abelian
simplicial group. Only a simple external reference to this object is displayed, the
internal object, a package of rather sophisticated algorithms, cannot be properly
displayed.

The evaluated statement here also assigns the returned object to the symbol
kz2, arbitrarily chosen by the user; this symbol can be used later to refer to our
model of K(Z,2).

What about the origin of kz27

> (orgn kz2) "X
(CLASSIFYING SPACE [K1 Abelian-Simplicial-Group])

It is the classifying-space of the Kenzo object #1, which is also an abelian
simplicial group, but what about the origin of the latter?

3 A('{;‘rAgAﬁA (k 1)) B A
(K-2-1)

2.4.1. K(Z,1). As explained in the previous section, K(Z,2) can be obtained
from a general constructor, the classifying-space constructor G — BG, valid in the
Kenzo environment if G is a connected simplicial group, not necessarily abelian;
but if G is abelian, BG is also an abelian simplicial group, so that the construction
can be iterated. This recursive process must therefore start from a connected sim-
plicial group. The starting point is K (Z, 1) constructed by Kenzo “from scratch”,
because of the specific well known properties of the minimal Kan model of K(Z, 1).

For convenient further references, let us assign K (Z, 1), that is, the Kenzo object
#1, to the sympol kz1.

> (setf kzl (k 1)) 'K
[K1 Abelian-Simplicial-Group]

> (efhm kz1) M
[K34 Homotopy-Equivalence K1 <= K1 => K28]

> (k 28) MM

[K28 Chain-Complex]
> (orgn (k 28)) M
(CIRCLE)

It is the chain complex deduced from the ordinary model of the circle, one
vertex and one (loop) edge starting from and ending at the unique vertex. Let us
compare the basis for example in dimension 1 of kz1 and the circle k28.

> (basis kzl 1) "X

Error: The object [K1 Abelian-Simplicial-Group] is locally-effective.
> (basis (k 28) 1) M

(s1)
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In the Kenzo environment, the notion of basis has different meanings depending
on the context. For a simplicial set, the basis in dimension 1 is the set of the non-
degenerate 1-simplices. It happens the 1-basis of kz1 is Z. = Z,, the non-null
integers, it is an infinite object which cannot be displayed on a finite (!) machine;
such an object in the Kenzo environment is called locally effective, which explains
the error which is obtained and its descriptor; see [7, 8] for the meaning and the
reason of the qualifiers effective and locally effective. While the (algebraic) basis of
the chain group of dimension 1 of the chain complex k28 is made of a unique object,
the symbol 81, corresponding to the unique 1-simplex of the ordinary simplicial
model of a circle.

The simplicial model of K(Z, 1) here located through the symbol kz1 is a sim-
plicial set where the n-basis K(Z,1),, is Z?, the sequences of length n made of
non-null integers. The associated chain complex is not of finite type, so that its
homology groups cannot be elementarily computed. But the homotopy type is well
defined by the characteristic property: all the homotopy groups are null except
m = Z, a property satisfied as well by the circle, so that the homology groups of
our K(Z, 1) are certainly isomorphic to those of the circle, namely (Z,Z,0,0,...).

Now the effective homology of K(Z,1), obtained before through the operator
efhm, is a reduction connecting C,(kz1), the chain complex associated to the sim-
plicial group K(Z, 1), and the chain complex k28.

As already explained, the homology groups of C,(kz1) cannot be directly com-
puted: this chain complex s not of finite type. But the Kenzo program has
recorded the reduction over k28, so that if we ask for example for the first homol-
ogy group of K(Z,1):

> (homology kzl 1) "X
Homology in dimension 1 :
Component Z

in fact Kenzo uses the chain complex k28 to obtain the requested homology group,
here H1K(Z,1) = Z.

2.4.2. K(Z,2). The next Eilenberg-MacLane space K(Z,2) is the classifying
space of K(Z,1).

> (classifying-space kzl) M
[K13 Abelian-Simplicial-Group]

In this case, Kenzo remembers this space has already been constructed, and
returns it. It is also an object with effective homology.

> (efhm kz2)
[K153 Homotopy-Equivalence K13 <= K143 => K139]

The situation is more complex. The effective homology is the chain equivalence
k153 connecting the chain complex of K (Z,2), denoted also® by k13 to the effective

LSuch a situation is possible because of the rich class system of Common Lisp; here the class
abelian-simplicial-group is a subclass of the class chain-complex.
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chain complex k139 through an intermediate chain complex k143 not of finite type
either.

Error: The object [K13 Abelian-Simplicial-Group] is locally-effective.
> (basis (k 143) 4) *H

Error: The object [K143 Chain-Complex] is locally-effective.

> (basis (k 139) 4) X

You see only the 4-basis of k139 is returned, made of a unique element, the
bar generator which would be traditionally denoted by [Si|s1]. It happens the
chain complex k139 is the bar construction of k1, see [2] for this notion which
allowed Henri Cartan to completely solve the problem of computing the (ordinary)
homology of K(G,n) for G an abelian group of finite type.

This algebraic chain equivalence k153 will be the main ingredient allowing us to
geometrically triangulate the complex projective spaces.

3. USING THE EFFECTIVE HOMOLOGY OF K(Z,2)
At this time of our Kenzo environment, no projective space is “visible”.

3.1. H.,P*C=H,K(Z,2). Let us examine a little the nature of H,K(Z,2). It
depends only on the homotopy type, so that the structure of this homology can
be also studied by an examination of the cellular presentation:

x=P'C— PlC— ... & P"C < P"H(C <« ... s pC

In fact P"C is obtained from P"~'C by attaching a disk D?” by the projection
map S?"~1 — P"~IC. For example D* = {(z0,21) € C? st |2]®> + |21]*> < 1}
and a surjective map D?* — P2C is defined sending (29,21) to the projective
class of (29, 21,/1 — |20|> = |21|?). The restriction of this map to the open disk
|z0|2+|21|? < 1is a homeomorphism (D*—$3) — (P2C— P'C) while the restriction
to the boundary S2 is the projective projection S — P1C; so that P2C is obtained
by attaching a D* to P'C through this projection.

The cellular complex allowing one to compute the homology groups of P>*C
is therefore very simple: only one generator in the even positive degrees, and
the Z-homology is also made of one copy of Z for every even positive degree. The
projective space P™C is also an oriented 2n-manifold, and the canonical orientation
defines also the fundamental 2n-homology class as canonically associated to any
triangulation.

3.2. Issome converse possible? In other words, would it be possible to obtain
a triangulated projective space P"C from some homology class produced by a
different process? The answer is positive and rather amazing.

The simplicial model kz2 produced by the Kenzo program, the (essentially
unique) minimal Kan simplicial model of K(Z,2), has the same homotopy type
as P>°C. The Kenzo program also knows the homology groups of this space, cer-
tainly isomorphic to those described in the previous section: exactly one copy of
Z for every even degree. But because the Kenzo program computes the effective
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homology of this space, it can also produce explicit cycles za, € Z2, K(Z,2) whose
corresponding homology classes are the generators of the homology.

Now we can try the following game: the cycle 25, so obtained should have some
“similarity” with P™"C, the fundamental homology class of which also represents
the canonical generator of Hsy, P*°C. This cycle 29, is a Z-linear combination
of 2n-simplices, and these simplices must fit to each other along their boundaries
rather nicely, for this combination of simplices is a cycle. We can then consider the
smallest simplicial subset Zs,, C K(Z,2) containing the cycle zq,, and, who knows,
with some luck, maybe Zs,, is the triangulation of an object which could be P"C?
Yes it is, in fact it is the triangulation of a simplicial set having the homotopy
type of P"C, and Kenzo proves it. Of course we would prefer the simplicial set so
obtained is homeomorphic to P"C, but this is an open problem.

3.3. Triangulating the homotopy type of P2C. The fundamental homology
class of P2C is a generator of Hy;P>°C, and it is therefore interesting to consider
the fourth homology group H4(K(Z,2),Z).

> (homology kz2 4) MK
Homology in dimension 4 :
Component A

As expected, we obtain Hy(K(Z,2),Z) = Z. Let us recall the effective homology
of kz2 and assign it to the symbol efhm-kz2:

> (setf efhm-kz2 (efhm kz2)) K
[K153 Homotopy-Equivalence K13 <= K143 => K139]

where the chain complex #139 is of finite type; then a variant of homology can
compute the same homology and a list of generators for the homology group:

> (chcm-homology-gen (k 139) 4) K

Homology in dimension 4 :

Component Z

(

{CMBN 4}

<1 * <<Abar[2 S1][2 S1]>>>

Only one generator, already mentioned Section 2.4.2, in fact also the generator
of the chain group k139,. We extract it from this generator [list in fact made of
this unique generator, and assign it to the symbol g:

> (setf g (first %)) M

<1 * <<Abar[2 S1][2 S1]>>>

Now we can use the equivalence efhm-kz2:
C.K(Z,2) = C.(kz2) <= k143 =3 k139

to obtain the corresponding cyle in C.K(Z,2):
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<-1 * <<GBar<1-0 (1)><1-0 NIL><- (1)><- NIL>>>>
<1 * <<GBar<2-0 (1)><1 (1)><0 NIL><- NIL>>>>
<-1 * <<GBar<2-1 (1)><0 (1)><0 NIL><- NIL>>>>

We obtain a Z-linear combination of three 4-simplices of K(Z,2). The partial
statement (rg efhm-kz2 g) computes the image of g in the central chain complex
k143 and (1f efhm-kz2 ...) computes the image of the previous result in the left-
hand chain complex C,(K(Z,2)). The obtained cycle should have some similarity
with P2C. Let us verify it is really a cycle!

A statement (? kz2 xxx) computes the boundary of xxx in the chain complex
associated to kz2.

The components of the cycle z4 can be used to construct a simplicial set Zy,
more precisely a simplicial subset of kz2. The last simplicial set is not of finite
type, it is only locally effective, but nevertheless this allows a user to undertake
any “local” work, for example to compute all the faces, faces of faces, and so on,
of some simplices, to construct a finite simplicial set from the initial 4-simplices.
The Kenzo function gmsms-subsmst (= geometrical-simplices-to-subsimplicial-set)
does this work and returns two results, a high level Lisp technicality. Only the
first one is displayed. But the technical Lisp function multiple-value-setq assigns
both values respectively to two symbols, here ssz4 and incl.

The first value is simply the simplicial set constructed from the cycle, assigned
to the symbol ssz4 and displayed. This simplicial set Z4 is a simplicial subset of
K(Z,2) and we will see later the canonical inclusion Z, — K(Z,2) will play an
essential role in our study; this inclusion is also computed by the gmsms-subsmst
function, returned as a second value, here assigned to the symbol incl. We can
display the value of the symbol incl and verify it is really a simplicial morphism

3.4. Studying the obtained Z,. It was explained above we “hope” the sim-

plicial set Z; maybe is strongly connected to the standard P2C. We will prove

here, using the Kenzo program, that it really has the homotopy type of P2C.
We can firstly examine the homology groups.
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> (homology ssz4 0 5) *H
Homology in dimension O :
Component Z

Homology in dimension 1 :

Homology in dimension 2 :
Component Z
Homology in dimension 3 :

Homology in dimension 4 :
Component Z

Zy4 is a finite simplicial set of dimension 4, so that it is enough to examine the
homology groups H; Z, for 0 < i < 5. Good! we find the homology groups of P2C,
namely (Z,0,7,0,7).

But it is well known this does not guarantee the right homotopy type. For
example the wedge S? V S* has the same homology groups and does not have the
homotopy type of P2C.

[K164 Simplicial-Set]

> (homology s2vs4 0 5) "M
Homology in dimension O :
Component Z

Homology in dimension 1 :

Homology in dimension 2 :
Component Z
Homology in dimension 3 :

Homology in dimension 4 :

3.5. Using the Hurewicz-Whitehead theorem. The Hurewicz-Whitehead
theorem states that if a continuous map f : X — Y between two simply connected
CW-complexes X and Y induces an isomorphism between the respective homology
groups H,X and H,Y, then the map f is a homotopy equivalence.

We know there exists a homotopy equivalence between P*°C and our Kan
minimal model K(Z,2); let f : K(Z,2) — P>C such a homotopy equivalence.
Because of the cellular approximation theorem, we can assume the map f sends
the (2n)- and (2n+1)-simplices of K(Z, 2) in P"C, this point will be essential. Note
in these descriptions the objects P°°C and f are only “abstract”, not available in
our Kenzo environment: no possibility to install a “general” CW-complex X on a
computer, because of the arbitrary continuous attaching maps between the added
n-dimensional cells D™’s and the previous (n — 1)-skeleton X,,_;.

Let us call o : Zy — K(Z,2) the canonical inclusion, which was assigned to the
symbol incl in our Kenzo environment. Now the composition again denoted by
a:= fo: Zy — P>¥C in fact has its image in P2C, which allows us to denote again
as o : Z, — P2C essentially the same map with a smaller target P2C instead of
PC.
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Theorem 1. — The map « : Z, — P?C is a homotopy equivalence.

& The simplicial set Z4 is a simplicial subset of K(Z,2), the simplicial model of
which has only one vertex and no non-degenerate 1-simplex. The same properties
are satisfied by Z; which therefore is simply connected. The Appendix gives the
detailed organisation of the simplices of Z, and their faces.

The spaces Z4 and P2C are simply connected CW-complexes and proving « :
Z4 — P2C is a homotopy equivalence is equivalent to proving the maps induced
between homology groups are isomorphisms.

The inclusion P?2C — P>°C induces isomorphisms between the homology groups
for the degrees ¢ < 6, so that, taking account of the homotopy equivalence f, it
is enough to prove the inclusion « : Z; — K(Z,2) induces isomorphisms between
homology groups for the degrees < 4.

If 5 : C, — CY is a chain complex morphism, the coneof 3, denoted by Cone”, is
a chain complex defined as follows: Cone'i@ = C/®(C;_; and the boundary operator
d: Cone'f — Conef_1 is the matrix:

der B
0 —dc,
The homology groups of C,, C. and Cone? are then connected by a long exact
sequence:

c = Z‘+1COH€’6 — H,-C'* L HZCL — HiConeﬁ — Hi_1C* — e
which allows one to connect isomorphisms induced by 3 between homology groups
to null homology groups of Cone”.
In the case of our simplicial map « : Z4y — K(Z,2), because H5K(Z,2) =
0, proving « induces isomorphisms between homology groups for degrees < 4 is
equivalent to proving H;Cone® = 0 for 0 < ¢ < 5. And the Kenzo program knows

how to compute these homology groups.
First we construct the cone of o = incl.

It is a chain complex not at all of finite type, for C.K(Z,2) is not, but the
methods of effective homology, see [7, 8|, easily compute these homology groups.

> (homology cone-alpha 0 6) *H
Homology in dimension O :

Homology in dimension 1 :
Homology in dimension 2 :
Homology in dimension 3 :
Homology in dimension 4 :

Homology in dimension 5 :
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The absence of indication “Component xxx” means in fact these homology groups
are null. &

3.6. Higher dimensions. So far, only the case of P?C has been considered in
this article, just to be simpler. Analogous computations give analogous results for
P"C for n < 6, needing a few hours of runtime in the case n = 6, and it is sensible
to conjecture in fact our method works for every n. But we do not have any hint
for a proof!

So that our Kenzo program obtains simplicial models for the homotopy types
of P"C for n < 6. The numbers of simplices in dimensions < 2n are as follows:

ol1]2] 3 4 5 6 7 8 9 10 11 12
PC |1

Plcl1]|o]|1

PiCl1lo]2] 3 3

P3c|1|o|3]10] 25 30 15

Picl1|of4]22] 97] 255 390 315 105

P°Cl1]o0]5]40 271 | 1197 ] 3381 | 5985 6405 3780 945
PSCl1]0]6]65]627]| 4162 | 18496 | 54789 | 107933 | 139230 | 112770 | 51975 | 10395

Some “regularity” is observed, for example #P"Cqy = n, #P"Csy, = 1.3.5...(2n
1), #P"Coy—1 = (n— 1)#P"Cy,, and Peter Paule, using the On-Line Encyclope-
dia of Integer Sequences [4], discovered that #P"C3 = (n — 1)n(n + 7)/6, thanks
Peter! So far no other closed formula is known for the number of simplices, but it
is clear some formulas must exist!
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Appendix

We give in this appendix the complete description of the triangulation of P2C
used as example in the paper. Analogous descriptions can be obtained for P"C
for n < 6, but they are of course a little more lengthy. The Kenzo program can
produce the following listing.

Dimension = 0
S00
Dimension = 1
Dimension = 2
520
Face 0 = <AbSm 0 S00>
Face 1 = <AbSm 0 S00>
Face 2 = <AbSm 0 S00>

s21
Face 0 = <AbSm 0 S00> Dimension = 4
Face 1 = <AbSm 0 S00> S40
Face 2 = <AbSm 0 S00> Face 0 = <AbSm 0 S21>
Dimension = 3 Face 1 = <AbSm 0 S21>
S30 Face 2 = <AbSm - S32>
Face 0 = <AbSm - S21> Face 3 = <AbSm 2 S21>
Face 1 = <AbSm - 520> Face 4 = <AbSm 2 S21>
Face 2 = <AbSm - S21> S41
Face 3 = <AbSm 1-0 S00> Face 0 = <AbSm 1 S21>
s31 Face 1 = <AbSm - S31>
Face 0 = <AbSm 1-0 S00> Face 2 = <AbSm - S32>
Face 1 = <AbSm - S21> Face 3 = <AbSm - S30>
Face 2 = <AbSm - S20> Face 4 = <AbSm 1 S21>
Face 3 = <AbSm - 521> S42
532 Face 0 = <AbSm 2 S21>
Face 0 = <AbSm - S21> Face 1 = <AbSm - S31>
Face 1 = <AbSm - S21> Face 2 = <AbSm 1 S21>
Face 2 = <AbSm - S21> Face 3 = <AbSm - S30>
Face 3 = <AbSm - S21> Face 4 = <AbSm 0 S21>

Every simplex is named 8ij, the character i being its dimension and the char-
acter j just an identification number. Every face is an “abstract” simplex, an
important data type in the Kenzo program, representing some possible degeneracy
of a non-degenerate simplex.

A notation as <AbSm - S30> means a non-degenerate simplex, namely in this
case the simplex $30. So you can read in the listing that the face #3 of the
simplex $42 is the (non-degenerate) simplex $30. In the same way, the face #0
of 542 is the 2-degeneracy 12521 if n; denotes an elementary degeneracy operator.
You see also 93830 = JyS31 = 117900, that is, the only possible degeneracy of the
base point in dimension 2.

The author is very interested by a direct proof that this relatively simple (7)
finite simplicial set is a triangulation of the homotopy type of P2C. Or even maybe
a triangulation of P2C itself?
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