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ANTINOMICITY AND THE AXIOM OF CHOICE:

A CHAPTER IN ANTINOMIC MATHEMATICS

To the memory of Stanislaw Jaskowski
F.G. ASENIO
Department of Mathematics
University of Pittsburgh
Pittsburgh, PA 15260

I. Introduction and Motivation
' §1. A positive view of antinomies.

Russell's discovery in 1902 of the antinomy'of ‘the set of all sets which' are not
- members of t.h_cmSclves prémptgd-a'pfofound‘ and widespread examinatien of the foundations
of mathematics for many "yeérs to come." No othér discovery has shaken mathematics and
logic more deeply than Russell's antinomy, which came just when set theory was beginning
to be widely accepted after years of rejection. From that ime on antinomies have been treated
seriously — to be avoided, to be sure, but nevertheless constitﬁtjng a stimulating logical

phenomenon at the very heart of mathematical reasoning.

The next natural step was the acceptance of antinomies in their own right. For this to
occur, the basic logical assumptions had to be changed; this was accomplished in various
ingenious ways, setting aside in the process the many acrobatic pirouettes that logic had been

required to perform in order to jump over antinomies without tripping.

Underlying this acceptance is the belief that there is something intrinsically valuable
in antinomies. Evolving from being merely a strong motivating force for deep analysis of the
foundations of mathematics, antinomies now became a significant éenter of attention in
themselves, a positive part of reason with their own legitimacy. This legitimacy arises from
the fact that, although not always so, our thought processes are often antinomic, which in turn
reflects the parallel fact that reality -itself is often antinomic — hence why not logic and

mathematics?

What began as a few timid investigations today has proliferated into a vast variety of

logical approaches, different in point of view and method but all sharing in common the
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objective of using antinomies positively as valuable, intelligible, and rational parts of the

logical discourse.?

The many antinomic logics now in existence prove beyond question the feasibility of
the formal incorporation of antinomicity as an extension of rationality. What is still missing,
though, are the strictly mathematical applications of this logical approach. In order to obtain
acceptance of antinomic logic as more than a curiosity, new and effective mathematical
structures must be developed — as happened with nonstandard models, in the limbo of curiosa
before A. Robinson put them to good use. The present work is an attempt to break ground
in mathematics proper, armed with the accepting view just described. Specifically, we shall
examine various versions of antinomic set theory, in particular the axiom of choice, keeping
the presentation as intuitive as possible, more in the manner of a nineteenth century paper than
as a thoroughly formalized system. The reason for such a presentation is the conviction that
at this point it should be the mathematics that eventually determines the logic, rather than the

other way around. |
§2. Some antecedents of this view.

Kant was the first modern thinker to make the point that antinomies are not to be
"solved" but accepted as constructive rational elements. In his Critiqgue of Pure Reason he
presents them not only as a reflection of the nature of the mind but also as a force to awake

reason from its consuetudinal state of slumber.

Cantor was the first mathematician to acknowledge the presence of inconsistencies in
set theory but he left them alone, only mentioning them casually in a letter published for the
tirst time in 1932. He said: "For a multiplicity can be such that the assumption that all of its
elements ‘are together' leads to a contradiction, so that it is imp\ossible to conceive of the
multiplicity as a unity, as ‘one finished thing." Such multiplicities I call absolutely infinite or

n3

inconsistent multiplicities."> Also, "Two equivalent multiplicities either are both 'sets' or are

n3

both inconsistent."” Further, Cantor was not particularly upset by Russell's discovery (as Frege

was), having himself discovered in 1895 the "paradox of the largest cardinal number."

Although a Platonist and therefore a believer in the reality of correct mathematical
propositions, Godel admitted "the amazing fact that our logical intuitions (i.e., intuitions
concerning such notions as truth, concept, being, class, etc.) are self-contradictory."* He added

that it is "not self-contradictory that a proper part should be identical (not merely equ;a.l) to the




whole, ... and it is easily seen that there exist also structures containing infinitely many

n3

different parts, each containing the whole structure as a part."> "Furthermore, there exist

"6

sentences referring to a totality of sentences to which they themselves belong.

I1. Logic for Antinomies

§3. Prelogical antinomies.

Before the antinomies of simultaneous truth and falsity, we have the antinomies of
sense and nonsense — Zeno's paradox being one such prelogical antinomy. And, before the
latter, we still have concrete apophantic antinomies, i.e., factual antinomies in which two
opposite qualities are displayed simultaneously in the same given entity or event; for example,
when something is both plural and unitary, or when a movement both helps and hinders
reaching an objective, etc. However, even though an antinomic logic can be based on an
antinomic semantics of sense and nonsense, so too can such semantics be based on the
phenomenological apophantic description of a contradictory reality. We shall put aside these
last two important prelogical areas, for they must be treated at length elsewhere. Here, we
shall deal only with the true-and-false kind of antinomy, treating it as the absolute beginning.
We must always keep in mind, however, that any talk of difference in identity — say, of
something being simultaneously the same and different, which occurs naturally and correctly
in ordinary language — already involves antinomic thinking and points implicitly to the

coexistence of truth and falsity.
§ 4. Truth-and-falsity not a third logical value.

Sometimes truth is simple and so is falsity, but at other times we hit upon the true by
way of the false in a way that makes the false a necessary component of the true. To see the
true in the true-and-false as different from the true in truth alone is not an accurate conception
of antinomicity. To fit the facts, the logic of antinomicity should not be conceived as a
three-valued logic but as a complex two-valued one in which truth valuations are not functions
but rather one-to-one or one-to-two correspondences between sentences and the unordered pair
{T,F}. Thatis, some valuations assign to a sentence A the value T, to a sentence B the value

F, and to a sentence C both values T and F.




§ 5. Assertion and negation independent of truth and falsity.

As mentioned, there are already many antinomic logics in the literature, with more to
come. The logic outlined here is clearly not the only possible one. In accordance with the
comment at the end of §1 to the effect that we do not want to reflect prejudice towards any
of the new directions that will arise from mathematical applications, we shall set here only a
minimum list of conditions that are indispensable for our own objectives, leaving the rest
indefinite. It should be obvious, for example, that reduction to the absurd as a method of
proof cannot be allowed if one is to avoid the derivability of every well-formed formula from

a single contradiction, i.e., a fall into absolute inconsistency.

It is indeed extraordinary that even the most sophisticated definitions of truth and
falsity, as well as those of assertion and negation, rely on one another in a blatant vicious
circle. Thus, for example, the truth of an atomic predicate formula is defined in accordance
with the interpreted terms of the formula belonging or not belonging to the set-theoretic
relation that interprets the predicate, a metalinguistic definition that leans on negation and set
theory as much as it does on the law of excluded middle — the n-tuple of terms <t,,...,t,> in
P(t,,....t;) is a member of the relation R that interprets the n-ary predicate P, or it is not, one
or the other, with no third alternative possible. In turn, the semantic definition of negation
is given in terms of truth values as follows: If a sentence A is true, its negation A is false,
and if A is false, then ]A is true. This definition is taken to be the last word on the matter,
and is uncritically used whenever negation is used (except that within many-valued logics —
which lie beyond our scope — a different approach to negation is considered). In the classical
propositional calculus, then, given a sentence A and a structure  that interprets the language
in which the sentence is formed, the sentence is either simply true or simply false; in symbols,
=A or not-~A, but not both. Further, syntactically only A or ]A are provable; again, no third

alternative is allowed.

Here, however, negation will be looked at differently, accepting the principle that
negation is not a logical operation definable in terms of truth and falsity, but that its meaning,
in effect, stands prior and beyond whatever any truth table rule can provide. Russell has
already observed that there is something primitive and peculiarly irreducible in the notion of
negation that escapes the truth-table approach: he believed in the necessity of some "negative
basic propositions" side by side with the positive ones’ — fundamental propositions, atomic

in their own way. This belief, followed systematically, sets negation apart from the other




connectives — which is precisely the objective of this section. Our reasoning, however, arises
trom the antinomic approach, that is, by the acceptance of the fact that there are cases in
which one can see contradictions in a negation — that JA is true-and-false — and hence, that
truth is not necessarily simply the negation of a falsity. Or even more strikingly, we come
to the same reasoning by recognizing the existence of cases in which a negation is neither true
nor false. Antinomies, which themselves do not necessarily depend on negation, force upon
us the inevitable conclusion that truth and falsity must be divorced from assertion and

negation, that JA may be simply true, simply false, true and false, or neither true nor false.

To make all this intuitive let us say informally that the negation of a sentence A refers
to all assertions A, that are in opposition or disagreement with A. Negation, therefore, is a
form of indirect assertion; as such, it can be characterized as a mapping on the class S of all
well-formed sentences of a given language &into the power set of S as follows: JA={A;: i}
where the indexed A;'s (a finite or infinite family) are all the assertions in & which stand in
opposition to A. If, for example, we consider A to be the sentence "four is even," there is of
course only one sentence in opposition to A: "four is odd," hence, the semantic meaning of
the expression A is in this case the singleton {"four is odd"}. In fuzzy set theory on the
other hand, if A stands for a b (a is a member of b with probability zero), then A is the
uncountable set of sentences {ae b: where r is a real number such that O<r<1}. It has been
suggested that ]A means to assert the disjunction A;VA,v..vA, of a finite sequence of
sentences in opposition to A. Apart from the A,’s possibly being infinite in number as in the
last example, this interpretation of negation would subject it to the truth-table definition of
disjunction. Since we want to have negation fully independent of all other connectives, we
shall adhere to the "neutral" set-theoretic characterization given above — not a definition
proper but an informal intuitive one similar to Cantor's characterization of a set as "a

multiplicity taken as a unit," (which, incidentally, was Kant's characterization of a totality).

As for the truth of a sentence A, we can simply say — also informally — that A is the
case in a given context. Now, A can be fully the case — simply true — or only partly the
case — true-and-false. Further, A is simply false if the context fully opposes A, and neither
true nor false if the context is fully irrelevant to A. This is all we shall say here to make
understandable our having four possible truth valuations (7, F, T&F, neither T nor F) for a
given sentence, plus four truth valuations for its negation. Note, again, that negation does not

determine truth and falsity but is given either a single value, two values, or none, regardless




of the truth values for the corresponding assertion. In other words, each of the four cases for
A branches out into four additional cases for ]A: negation extends assertion, does not exclude
it. Needless to say, we shall make room for the preservation of the standard two-value
situation of ordinary sentences, i.e., "two is even" is to remain true and "two is not even"
false, etc. Whether the expression above, "to be the case," is an assumption or is to be
determined by an effective rule whenever possible depends on mathematical considerations

that cannot be established in advance.

Now, a theory can be considered complete in two metalinguistic senses: (i) every
sentence A is tautologically true or logically valid if and only if it is provable from the
theory's axioms; in symbols, =A iff +A (completeness theorem) and (ii) given a sentence A in
a theory 7, either A is a theorem or JA is: +A or +]A (definition of complete theory).
Classically, the metatheorem "(i) implies (ii)" is proved by metalinguistic contraposition and
the law of excluded middle. That is, if (ii) fails there is a sentence A which is neither
provable nor refutable, but A must be true or false according to the law of excluded middle~
that tells us =A or =]A, which contradicts (i). The metatheorem "(ii) implies ()" is proved
in a similar way by contraposition and contradiction. In contrast, an antinomic logic sets aside
proofs by contradiction and the laws of contraposition and excluded middle (although the latter
will be acceptable for metalinguistic staterrients, as will be made clear below). Hence, (i) and
(ii) are to be considered simply hypotheses independent of one another. All this means that
while +A and +]A are both possible simultaneously, if =A is the case, not-=A cannot also be
the case; although A can be true and false, not-=A (A is not true) is not synonymous with
false. The metalinguistic contradiction =A and not-=A is not allowed: contradictions belong
to the object language. Furthermore, (i) applies to true formulas but says nothing about false
ones: a false formula may be provable or not, even if (i) is assumed. Also, the law of
excluded middle does not extend to the metalinguistic statement "=A or =A," for neither =A
nor =JA may be the case if both A and A are simply false, say; on the other hand, =A and
=|A may also be compatible. Finally, not-=A and not-=]JA may both be the case

simultaneously (again, keep in mind that not-=A is not the same as A is false).

Metalinguistically, then, negation preserves some of the characteristics of its classical
use; for example, as already indicated, no metalinguistic assertion or negation is both true and
not true, and it must be either one or the other. The metalinguistic "not," then, abides by

no-contradiction and excluded middle, in contrast to the object-language negation "' which
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will not satisfy either. However, the laws of contraposition and double negation (in both
directions) and the proofs by contradiction will not be valid in either the metalanguage or the
object-language of our antinomic logic. These proof-theoretic limitations have been adopted
to broaden negation's meaning and are not more restrictive than those of intuitionism, which
rejects the laws and proof method just mentioned, except for A=] JA and (A=B)=(|B=A).
In addition, antinomic logics are for the most part nonconstructive and are therefore in a
stronger proof-theoretic position than intuitionism to find deductive replacements for the laws
and proof method in question. For example, we shall assume completeness in the sense of
(i), i.e., =A iff +A; thus, the proof of the semantic truth of A will automatically entail A's
syntactic provability. In addition, the systems to be proposed can be extended to complete
extensions in the sense that for every sentence A either rA, or +|A, or both, extensions in
which because of (i), either =A, or =4, or both must be the case respectively. (Once more,

note that "+A and +]A" does not imply "=A and not-=A" but merely "=A and =]A" as stated.)

For A false let us use the symbol EA, given that falsity, just as negation, will have a
positive meaning here, not a negative one: A false may mean A holds in a different context,
or in the same context relative to a different rule than the one that makes A hold, if the latter
is indeed the case. This is patently clear in model theory, where 'thc truth of a sentence is a
function of the domain of interpretation (the universe of discourse or context of the moment)
and the specific rules attached to that interpretation. This relativity of truth and falsity will
be expanded: not only will there be no absolute truth and no absolute falsity but also truth and

falsity will not be truth values rigidly connected to one another.

Metamathematically, then, although simultaneously we can have =A and EA, we cannot
have EA and not-EA, and at most we can have one or the other; nor can we have EJA and
not-EJA, but at most only one or the other. The metalinguistic rule of excluded middle which
applies to "not" does not, however, extend to the following: =A or EA, EA or E]JA (A and A
may both be not false), not-~A or not£A (A may be true and false). The following are
possible though: (i) EA and EJA, (ii) not-=A and EJA, and (iii) =A and not-EJA. Similarly, we
cannot have rA and not-+A, or +]A and not-+]A. Nor is it the case that if +A then not-+]A,
or that if A, then not-+A. (Incidentally, were we to have several truth values t,, t,, ..., t,,
and several false values fi, f;, ..., f, using them to distinguish =yA,..., =;A, EjA, ..., EgA, the
metalinguistic law of excluded middle would extend in the sense that =,A or not-=A but not

both, and either E;A or not-E;A but not both).
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We shall emphasize that, although a sentence in a given language is designated as true
or false. or both, or neither, in accordance with context and interpretation, these designations
need not be understood in set-theoretic terms. An explicit assumption, or a constructive or
nonconstructive rule is indispensable of course, but assumptions and rules can be presented
in many forms that are decidedly independent of set theory. Also, whereas in the classical
propositional calculus the class of all the negations of tautologies is a disjoint mirror image
of the class of tautologies, here — with the broader meaning of negation — the two classes

intersect and in the class of tautologies we shall find both propositions and their negations.

Finally, antinomic logic makes room for an included middle, which intuitionism will
abhor. In antinomic logic if A and A are both simply false, and AVA is also simply false,
the latter may not exclude a terfium datur, say | ]A, which is a consequence of the fact that
true and not-true, false and not-false, are metalinguistic assessments — and compatible ones
at that. In other words, AVA is neither a tautology nor a contradictory statement (always
talse). It is a contingent statement, true or false as the case may be. Metamathematically;

even both not-=AV]A and not-=|(AV]A) are contingent.
§6. Truth tables for the positive fragment of logic, and other assumptions.

Having made the point that antinomicity is better off with a revised negation that
makes it a nonexclusive operation independent of any truth table, we must now turn to the
remaining connectives of the propositional calculus — the positive fragment — as well as to
the definitions of truth, of an antinomic model for the predicate calculus, and of first-order

theories. We shall adopt the following tables for the four positive connectives.

AAB AVvB A=B ASB
B [F R S DEE NBERT F° T&F B P U Azt o F T&F
A\ A\ A\ A\
31 TR T S E T Uy K T T T B D& B T T FAT&E
2 R B S an F T&F E AL A 12 F T T&E
T&F [T&F F T&F T&F| T T&F T&F T&F | T T&F T&F T&F | T&F T&F T&F

The following example shows how these tables were generated for the antinomic cases.
If classically A is either true or false and B is true, then the compound statement A=>B is true
for both cases; hence, if A is antinomic (7&F) and B true, A=B is true. If A is aminqmic and

B is false, A=B is antinomic since it is false if A is true, and true if A is false. If A is false,
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the truth value of B is irrelevant, A=B is therefore true; hence, if A is false and B antinomic,

A=B is true. These tables are the same as those proposed in a previous paper.®

As for the syntax, we shall keep the two positive propositional axiom schemes given
in Mendelson’: (i) A=(B=A) and (ii) (A:(B;>C’))=>((A:>B):>(A:>C‘)). dropping the axiom
scheme (iii) (JB=14)=((]JB=A)=B), the last being the only propositional axiom scheme
involving negation. We shall also keep A,A=B+B (modus ponens), applicable exclusively to

positive statements, that is, statements in which "' does not occur at all.

Let us call positive tautology any positive propositional statement that is either true or
antinomic by construction as determined by the above truth tables. In turn, let us call negative
tautology any propositional statement that involves at least one occurrence of negation and that
is either true or antinomic by specific designation, whatever the truth values of all the positive
statements involved. Schemes (i) and (ii) and modus ponens generate positive tautologies

only, i.e., rA implies =A, understanding =A to mean A is true or true-and-false.

We shall assume the completeness theorem as a meta-axiom for the propositional
calculus, ie., we now add +A if and only if =A for all well-formed statements, positive or
negative. As a consequence, a negative statement automatically becomes a syntactic axiom
whenever it is declared true or antinomic by specific designation, i.e., by an ad hoc
assumption or rule, since no truth table or general axiom scheme regulates negation. In this
manner, we are able to move freely not only from syntax to semantics but also from semantics

to syntax.

For the predicate calculus, the usual notion of interpretation is to be expanded as
follows. Given a domain of interpretation or universe D (a set-theoretic particularization of
the broader concept of context), each predicate P of a formal language &is associated not only
with one but with four relations R, R,, R,, R, such that if P is an n-ary predicate, the relations
R, (i=1,2,3.4) are all n-ary, and each is a subset of the Cartesian product D". In addition,
formal terms 7, t,,... are interpreted in the domain D by specific individuals of D in the usual
way. The interpreted terms will be denoted by t,.t,,..., etc. Now to the definitions of truth,

falsity, and negation in a given interpretation .# with domain D:
Definition 1. P(t,,....t;) is true in £ iff <t,...., t, > R,; in symbols: =2L(t,,....t,).

Definition 2. P(,....t;) is false in Jiff <t,,..., t, >€ R,; in symbols E; P(t,.....t,).
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Definition 3. P(t,,....t,) 18 true in S iff <t,..... {;>€ R5: in symbols =;|P(t;,....L,).
Definition 4. P(t,,....t,) is false in Jiff <t,..... t, > R,; in symbols E;|P(L;.....L,)-

The set-theoretic relations R, are not fixed beforehand: they can be pairwise disjoint,
intersect. be included one in another, etc. Thus we can have the following cases for a given

predicate P.

e

. R\UR,=D"; P(t,.....t;) is either true or false.

(8]

. R{\UR,cD"; for some n-tuples <i,. .... t,>. P(t;.....t,) is neither true nor false.
3. R\UR:=D" P(t,,....t,) is true or P(t;.....t;) is true.
4. R\UR,=D*AR \NR,#J; P(t,.....t,) is true, false, or antinomic.

5. R,cR,: if P(ty,...t,) is false, |P(t,....t;) is true, the converse is not necessarily
the case.

6. RiCR,: if (P(t,,....t,) is true, P(t,....t;) is false, the converse is not necessarily
the case.

7. R,NR.#J; for some n-tuples <, ....t;>, P(t;.....t;) is true and so is [P(t;.....L,)-
8. R,NR#J; for some n-tuples <i,....t;>, P(t;.....t;) is false and so is [P(t;,....L,)-
9. R=R,; P(t,.....t,) is false iff |P(t,,....t,) is true.
10. R,UR,cD"; for some n-tuples <t,....t;;>, |P(L;,....t;) is neither true nor false.

As these examples show, there is no truth and falsity in the abstract but only in
reference to a specific interpretation: R, to R, and their set-theoretic relationships can be

assigned to P very differently in different domains.

Having considered the atomic predicate formulas, we can now use Definitions 1 and

2 to extend the notion of satisfiability to all positive well-formed formulas.

Definition 5. A(x,...., X,) is a well-formed positive predicate formula iff it is formed in
accordance with the usual rules of formation and neither "]" nor the existential quantifier "Jx;"

occur in the formula.




Definition 6. A well-formed positive predicate formula A(x,.....x,) is satisfiable in a
given interpretation . iff for some n-tuple <t,,....t;>, A(x,.....x,) meets the usual definition of
satisfiability. Then, A(x,,...,x,) is true in Ziff it is satisfied by all n-tuples in .%, and logically

valid iff it is true in all interpretations.

As with the truth of negation in the propositional calculus, expressions involving
negation and the existential quantifier are to be considered satisfiable, true, or logically valid
in an ad hoc manner. Although much of the meaning of classical existential quantification
is meant to be retained, the usual definition "3xA(x) stands for ]Vx JA(x)" does not hold in
this work, that is, 3x is to be taken as a primitive operator. The usual relation between
universal and existential quantification "VxA(x) = JxA(x)," which is intuitionistically
acceptable, will be the case here occasionally but not always. It is possible to have =VxA(x)
and =[3xA(x). Since intuitionistically VxA(x) must be constructively determined, it stands to
reason that IxA(x) follows, i.e., that what is true for all must be true for some. But if
nonconstructive methods are accepted (excluded middle, axiom of choice, and the like),
VxA(x) may be deducible without our having any method to find an x such that A(x), thus

opening the possibility that no such x exists.

Here, then, asserted formulas involving existential quantification will each have the
status of a proper axiom. Only the positive fragment of the antinomic predicate calculus will
retain its classical deductive generality, it being understood that "true" in Definition 6 above

includes the case in which a positive well-formed formula is both true and false.

Further, since we do not have the classical satisfiability rules for existential
quantification, it is possible to have =3xA(x) and =] 3xA(x): an x that satisfies A(x) may exist
and not exist. For example, to say that a function f mapping the set A onto the set B in a
one-to-one manner exists means: for every ae A there is a unique be B such that (a.b)ef. Yet,
if there is an ae A such that not only (a,b)ef but also |(a,b)ef, then we must conclude that
f simultaneously exists and does not exist, and that the image f(a) of a exists and does not
exist at the same time. The existence or not of f means, precisely, the membership or not of
the appropriate ordered pairs (a.b) to f. In general, VxA(x) may be true in an abstract sense
without having any concrete individual x satisfying A(x); in these cases, | 3xA(x) is asserted
— a possibility that is not counterintuitive but rather is the natural result of the acceptance of

nonconstructive methods.
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Definition 7. The model for a well-formed predicate formula A is any interpretation
.#in which A is true or antinomic according to the following. (i) If A is positive, A is true in
an interpretation ¢ iff A fulfills.in .# the usual definition of truth restricted to such positive
formulas; note that A may also be false , i.e., antinomic. (ii) If A is negative then A is
asserted as true, antinomic, or logically valid by specific designation.’® Note that for both the
positive and negative formulas we can have A (i) antinomic for some valuations in the given
interpretation . ; (ii) antinomic for all valuations in # ; in other words, true and false in . or
fully antinomic in . ; (iii) false for some valuations in # ; (iv) false for all valuations in .%
(v) logically false, i.e., false in all interpretations, a notion that is independent of negation
since, again, false is not necessarily "not true"; and (vi) logically antinomic, i.e., fully

antinomic (true and false) in all interpretations.

As for syntax, the axioms for the positive fragment of the predicate calculus are the

same classical positive axiom schemes:
(1) VxA(x)=A(r), with r a term free for x in A(x).
(11)Vx(A=B)=(A=VxB), with A having no free occurrence of x.

No axiom scheme for negative formulas will be added: negative formulas will be
asserted as needed, not inferred, much as one chooses proper axioms for a given first-order

theory.

In addition, let us postulate the rule of inference of generalization, from A, VxA
tollows; in symbols, A+rVxA, where A is a positive well-formed formula (only positive

formulas can be inferred).

An alternative way to define a positive predicate logic would be to retain A, v, =, &,
but substitute the universal quantifier with the existential one. Whereas the positive logic with
Vx exclusively is a logic of generalities, the positive logic with Jx exclusively is a logic of
particular cases. In the latter, the axiom schemes would be different, including, for example,
A(x)=3xA(x); also, the rule of generalization would be replaced by the introduction of the
existential quantifier as follows: if B does not contain x free, then A(x)=B+3xA(x)=>B. The
positive predicate logic thus obtained would be different from the previous one, of course, and
the negative formulas would be those in which "]" or "Vx" occur. Once more, the negative

fragment of this predicate calculus would share some of the characteristics of a first-order




theory, with any asserted negative formula having the status of an ad-hoc axiom. These
axioms would be all the negative theorems since, again, we would have no rule of inference
for negative formulas, a situation that is similar to the way in which one defines a complete

theory by postulating as axioms all the well-formed formulas true in a given model.

Whether one selects Vx or 3x as the positive quantifier, neither one can be defined in
terms of the other and negation in the usual way. We have already made the point that, with
Vx as the positive quantifier, we cannot automatically transfer the validity of a property for
a whole class of individuals to the validity of that property for a single specific individual.
In the second case, with 3x as the positive quantifier, it is possible to have = JxA(x) and
= Vx JA(x), that is, local validity does not necessarily have any of the usual consequences for
global validity. Here, we shall stay with the first case, i.e., with Vx as positive, and add the
completeness theorem of the predicate calculus as a meta-axiom for all well-formed formulas,
positive and negative. Thus A is logically valid if and only if it is a theorem, =A iff +rA. As
a result, a negative formula that is true or antinomic in all interpretations is automatically an
axiom of the predicate calculus. For the negative fragment of the predicate calculus, then,
semantics fully determines the syntax; the positive fragment remains close to the classical
two-way form of completeness (allowing, of course, for the possibility of true formulas that

are also false).

Let us pause now to elaborate on the meaning of the existential quantifier in the
context of thiS antinomic logic. Informally, we shall characterize the existential quantification
IxP(x) not as the disjunction P(x,)VP(x,)V ... VP(x,) (extendable to an infinite number of
disjuncts), nor as the class {x;:P(x;)} of all individuals x; for which P(x;) holds, but as one
single individual choice from the collection of all individuals satisfying P(x): in symbols,
wP(x), extending the meaning of the iota symbol (introduced by Russell for the description

of individuals) from referring only to the unique x such that P(x)"

to referring to a
nonspecified individual chosen from {x;:P(x)}. Having put aside the usual definition "3P(x)
stands for |Vx]P(x)" allows us to map the well-formed formula 3xP(x) into one single
individual as the formula's meaning (if no x satisfies P(x) in a given interpretation, wxP(x) is
the empty set). All this is similar to the above mentioned informal characterization of set
given by Cantor; i.e., it is intended to provide an intuitive justification for the cleavage we
have drawn between Vx and dx. Note that since =VxP(x) and not-=3xP(x) are simultaneously

possible, a property can be generally true without being true specifically: =VxP(x) is
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compatible with not being able to find an individual value a for x such that =P(a). Let us

look at an example of this situation, still informally.

Let C(x) be a function that determines the cardinality of a set x, that is, a set |x| that
can be defined with or without the axiom of choice. Let x=y indicate that x can be mapped
in a one-to-one manner onto y. We shall assume that there may be several such cardinality
functions, but that if C and C’ are any two of such functions, then C(x)=C’(x). Assume that
universal and existential quantification is restricted to these cardinality functions. Then
=VC(C(x)=C(y) & C(x)=C(y)) obtains, but not-=3C((C(x)=C(y) & C(x)=C(y)) can be the case
at the same time, since there are models of Zermelo-Fraenkel's set theory with a proper class
of atoms in which no function C can be defined for all x with the property
C)=Ck) & Cx)=C(y)."

It is advisable now to point out explicitly some classical theorems and metatheorems
which will hold in some cases but definitely not in all. For example, classically, if in any
theory T it is the case that ~rAvB implies +A or +B, then and only then T is syntactically
complete, ie., +A or ~JA for any well-formed formula A. The proof of this equivalence
requires excluded middle, contraposition, and the tautology JA = ((AvB) = B), all of which
are not valid here, both in the object language and in the metalanguage. In addition, the
following negative formulas can be true, or false, or both, or neither: (AAA=B),
1(A=B)=(A=1B)=14)), [AVIA). 1(] A=4), [4=]T4), [(A=1B)=([B=A)). There
will be cases in which AV]A is a good choice for some A's and |(BVB) is a good choice for
some B's. The same applies to the other formulas just listed. In particular, the law of
excluded middle, a negative metatheorem not itself responsible for contradictions and not
assumed here in general, as we mentioned, could be assumed in particular to make room for
the conclusion that every real number has a decimal expansion, even though Brouwer actually
exhibited a definite number for which it is not known if there is a first digit in its decimal
expansion.”® The prime ideal theorem, used in the proof of Godel's completeness theorem, is
also a negative metatheorem which will not be assumed here, although the completeness

theorem will be assumed in general as a meta-axiom for every first-order theory.

Finally, as already stated, both 3x4(x) and | 3xA(x) may be true, and hence axioms.
But it is also possible that not-=3xA(x) and not-=]3xA(x) are the case, together with
not-E3xA(x) and not-E] 3xA(x); that is, IxA(x) and its negation are neither true nor false.

Thus, instead of saying that the sentence "there is a white unicorn” is false because unicorns
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do not exist in reality, here, precisely because unicorns cannot be found in reality and
therefore a white one cannot be selected, the sentence is neither true nor false. If A.
Robinson's definition of the complete diagram of a given model is extended to include not
only those sentences which are true in that model but also those which are antinomic in the
model, then we must also exclude from the diagram not only the simply false sentences but
also those which are neither true nor false in the model. Note that whereas the positive
fragment of this complete diagram can be considered deductively predetermined, the negative
tragment is always open to enlargement when negative formulas are axiomatically added as
needed (again. the interpretation of negative atomic formulas does not predetermine the truth

or falsity of the compound ones).
§7. Equality as an antinomic predicate.

The motivation behind antinomic logic lies in the conviction that, irreducibly, there is
identity in difference in many realms, including nature. As a consequence, =x=y and Ex=y
together must be considered possible for some values of x and y. Since here equality is to be
defined in terms of membership, we shall not add equality as a primitive antinomic predicate

because it will turn out to be antinomic as a derived one.'
§8. Other kinds of antinomicity.

It is a mistake to think that antinomicity is exclusively caused by negation: negationless
systems can harbor their own forms of antinomicity. Nor must antinomic statements be
defined in terms of truth and falsity. Any kind of opposition can produce its own form of
antinomicity — whole and part, one and many, and a host of other contrasting concepts which
do not necessarily involve negation and which can be considered independently of truth and
falsity. Here we shall restrict ourselves solely to antinomic sentences and formulas in the

sense in which they have been introduced above.

III. Antinomic Set Theories

§9. Antinomic membership.

Some sets will be antinomic in the sense that they belong and do not belong to another

set, that is, =xe yaxe y and Exe y, regardless of whether Exg y or not-Exg y, abbreviated xe ¢y,

19




which will be read "x is an antinomic member of y," or "y contains x as an antinomic
member." The set y need not be an antinomic member of another set. In what follows, some
sets will be antinomic members ‘of other sets and nonantinomic members of still others; some
sets will not be antinomic members of any other set; and other sets will be antinomic members
of any set to which they belong. Symmetrically, some sets may have some antinomic
members and some nonantinomic ones; others may not have a single antinomic member; and

still others may have only antinomic members.

The language of set theory will include variables x, y, z, u, v, W, X, X,, X3, ..., tO range
in given domains, and also constants a, b, ¢, a,, a,. a,, ..., to represent single fixed sets. We
shall postulate set-theoretic completeness below; as a consequence, if a€ b is true (=a€ b), then
aeb is an axiom or a theorem (+a€b), and vice versa. Also, if =ag b, then ragb, and vice

versa.

In addition to the notation ac ¢ b already introduced, we shall represent by a€ b the
case in which =aeb but not-=ae¢ b and not-Eac b, regardless of whether Eag b or not-Fagb.
The metamathematical negation "not-=A" stands for "A is not true,” and is equivalent
metamathematically to not-+A, "A is not provable,” given completeness; not-EA means A is
not false. Therefore, a€ b implies that the sentence a¢b is neither true nor a theorem.
Finally, let us use a€ b to represent the case in which =ag b but not-=a€ b and not-Fag b,
regardless of whether Fae b or not-Eacb (acb is neither true nor is it therefore a theorem).
As determined in Part IT, the metamathematical negation "not" must be distinguished from the
formal negation "]" in that the metamathematics of antinomic set theory is not antinomic in
the following sense: although A may be true and false, it is not the case that A is and is not

true (=A and not-=A); or, correspondingly, that A is both provable and unprovable (+A and
not-+A).

Given an arbitrary set b and a member a both in a given universe w such that ae w and
bew or b is included in w (see Definition 10 below), we shall assume that it is always
determined which of these three mutually exclusive cases is in order: (i) a€ b, (ii) a& b, or
(iii) ae ¢ b. These cases are relative to the given universe wj that is, a€ b in w, is compatible
with a€ b in w,, and with ae € b in ws: although the antinomicity of membership is a matter
between a set a and the set b to which a belongs, it is dependent on the universe w in which
both “are being considered. Further, within the same universe w, ¢ may be an antinomic

member of b and a nonantinomic member of a proper subset or a proper superset of b. In a
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relative universe w, antinomicity is strictly an internal relation between a and b, a complex
kind of membership and not a property that is intrinsic to the member a or the set b. Thus,
we can say that a is a "circumstantially” antinomic member of & which can be
"de-antinomized" by changing the universe w, or simply by considering a as a nonantinomic
member of another set ¢ in the same universe. Antinomicity is a variable, not an absolute

condition.
§10. Axioms for an antinomic set theory AS, based on membership.

The presence of antinomic sets in a given universe w forces us to review the usual

axioms to make room for the new cases. Let us begin by considering equality.

Definition 8. y=z stands for Vx(xe yoxez). If y and z are included in w (see
Definition 10 below), this definition thoroughly defines equality in w. If yewazew, the

following becomes necessary.

Axiom 1. y=z=Vu(yeuszeu). This extensionality in terms of € obtains in the
relative universe w within which x, y, z, and u are considered. But extensionality determines
uniqueness of sets only insofar as the all-inclusive membership € is concerned — that is,
uniqueness must be understood as "modulo” antinomicity, disregarding the branching of xey

into either xEy or xe ¢ y.

Each specific unique set in this sense will be represented by a constant a, b, c, etc.,
as mentioned. But although y=z is an equivalent relation that implies that y and z have the
same €-members in a given universe w and may be represented therefore by the same
constant a, because the type of membership of x to z may vary from universe w, to universe
w,, then if y=z in both w, and w,, the following two cases are compatible with xea (the

meaning of zow is given in the usual way in Definition 10 below).
=x€ wyA(ae w,vacw,)AXE a, and =xe w,A(a€ w,vacw,)AXE € a.
Definition 9. y#z stands for Ix((xe yrxg z)v(xg yaxe z))v3u((ye urze u)v(ye unze u)).

Let us then distinguish the following particular cases: (i) y=z stands for

Y=ZAVX(xE yox€ )AVU(YE usz€ u)AVx(xe g yooxe g D)AVu(ye ¢ usze € u).

(i) y,=z stands for y=z Adx(xe g y)AVv(ve z=vE z). Symmetrically, the meaning of

y=,Z 1s obvious.
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(iii) y,=.z stands for y=zA3x(xe & y)AIv(ve & Z)Ax#v.

(iv) y°=z stands for y:zxﬁ!u(ve ¢ u)AVv(ze v=>zE€ v). The meaning of y="z is obvious.
(v) y*="z stands for y=zA3u(ye € u)A3v(ze & v)Au#v.

(vi) y* =",z stands for y,=zAy*="z.

These different cases show that equality is a type of equivalence relation that can be
interpreted as strict regular identity in terms of € and e¢ if and only if y=z. Thus, even if
y=z obtains in all universes w, the kind of extensionality of y and z may vary from one
universe to another, say, y,=z in w, and y="z in w,, even if y and z are not only equal but have
exactly the same e -members in w, and w,. Also, since y#z obtains if Ix(xe yrxe z), then y=,z
entails y=zAy#z, i.e., equality is antinomic in such cases. In particular, two relative universes
w, and w, may be equal and different at the same time if, say w,=w, but w,,=w, specifically.
All this necessarily affects the application of any of the forthcoming axioms in which the

existence of a set is relativized to a given universe.
§11. Inclusion.
Let us now define inclusion in the usual way.

Definition 10. ycz stands for Vx(xe y=xe z), with proper inclusion, yCz, meaning yCz

Adx(xe zaxe y).

With this definition, y=z is compatible with ycz and zCy; obviously, y,=z implies ycz.

We shall distinguish the following cases:
(1) y,cz for ycz A Ix(xe € yaxE z).
(ii) yc,z for ycz Adx(xE yaxe g y).
(ii1) y,c.z for y,czayc z.
(iv) yCz for ycz A Vx(xe y=x€E yAxE z).

To repeat, note that membership of a set x to a set y, being strictly a matter between
x and y relative to the universe in which they are considered, has nothing to do with the kind
of membership of x to the proper subsets of y or to the proper supersets of y. That is, if

XE uCyCz, it is possible to have xe € uax€ yaxe ¢ z, etc. In addition, if we change the relative
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universe w in which x and y are considered, x€ y may become xeg¢y. As a particular case,
if in any universe w a set x is an antinomic member of every set to which it belongs,
VwVy(xe wa(ye wwycw=(xe y=xegy))), we can represent this situation with the one-place

predicate Ant(x), defined by the last formula which reads "x is universally antinomic."

Finally, antinomicity makes possible mutual proper inclusion. In other words, if proper
inclusion is taken as the set-theoretic meaning of the phrase "being a part of," then it is
possible for two sets to each be a part of the other. Further, we can even say that the whole
can be part of the part, i.e., yczcy if y = z and Ix(xg yaxe z)ATv(ve yaveg z). This is also the
case if we use the expression "being a part of" in the set-theoretic sense of being a member
of, that is, xe ye x. We shall not assume the axiom of foundations that rules out xex, xe ye x,

etc., hence, x¢ x, x€ x, X € x, xe ye x, etc., all are distinctly possible.
§12. Axiom of comprehension.

One good mathematical reason for building antinomic set theories is to retrieve
Cantor's comprehension axiom in its original unrestricted form; this return to "Cantor's
paradise" would have significant consequences for the mathematical usefulness of such
theories. Here, however, since we want to relativize membership as much as possible, we
shall use an antinomic version of Zermelo's axiom of separation, the standard form of which
is expressible as follows: Given a set y and an arbitrary set-theoretic formula A(x) in which
y does not occur and x is a free variable, there exists a set z such that xe z&(xe yAA(x)). In
this form, several possibilities are in order in accordance with the two mutually exclusive
meanings of membership, that is, whether xey is interpreted as x€ y or xe €y, and whether
xe z is interpreted as x€ z or xe¢z. To leave the ambiguity unresolved would mean that z
would not be strictly unique; in effect, we could have as many z's as there are ways in which
these four possibilities can be combined. In order to make z uniquely determined in each

relative universe w, we postulate specifically:

Axiom 2: VwVyyewvycw=  JzzcyaVx(xew =((x€ zA(X)AXE y)A
(xe e zA(xX)Axe g y)))), in which A(x) does not involve any of the quantified variables w, y,
and z, and in which x is a free variable. In other words. the kind of membership of x to z is
determined by the kind of membership of x to . The notation

={x:(xe waxe y)A(ye wwycw)AA(x)} is now in order, and its meaning is unambiguously

determined by Axiom Scheme 2. If w is fixed exclusively, then the expression




z={x:xe yAA(x)} suffices; and if in addition y is w, then z={x:A(x)} suffices, and z will gather

those sets x which are members of w and satisfy A(x), with w fixed.
§13. Russell's paradox.

If A(x) is x¢x, then z={x:xe yaxe¢ x}. If zey and z¢ z, then zez, that is, ze€z — z is
an antinomic member of itself. If y is also an antinomic member of itself, then ye z, although
ye z remains undetermined. If Vx(xe y=x¢ x), then z=y, even if xe ¢ x for some x. If, on the
other hand, there is an x such that x€ x, then zcy. In any event, Russell's paradox is harmless

even if it leads to contradictions.
§14. Other axioms and the Boolean operations.

The following axioms are not all independent and each is relativized to a circumstantial
universe w in which the sets involved are (i) members of w, (ii) members of members of w,
or (iii) subsets of w. We shall not make this relativization to w explicit in all the axioms nor
for all the sets, and will assume w fixed when it does not occur in the expressions that follow.
Note once more that the kind of membership of x to w does not determine the kind of

membership of x to any member of w.
Axiom 3. VyVz(ye waze w= Ju(ue waVx(xe usx=yvx=z))). Pairing.
Axiom 4. Vy(ye w= Ju(ue waVx(xe ucxcy))). Power set.
Axiom 5. Vy3uVx(xe u=3z(xe zazey)). Union.
Axiom 6. Fy(Vx(x& y))AVYVz(Vu(ué y)AVv(v& z)=>y=z). Null set.

Definition 11. {yz} represents the unique set modulo antinomicity determined by
Axiom 3; {y} stands for {y,y}. #y) represents the unique power set modulo antinomicity
determined by Axiom 4. The expression "modulo antinomicity" already used in connection
with equality here means, precisely, that in applying Axioms 3, 4, and 5 as well, two sets u
and »” may exist in each of these three cases that satisfy the axiom but such that x€ uaxe ¢ 1/,
say, and yet, u=u’ in each case. Finally, & represents the unique null set; & does not have
antinomic members, although it may be the antinomic member of other sets; further, D€ a

may be true in the universe w, but @< a may also be true in w,.

Note that the various kinds of inclusion, together with Axiom 2, allow us to distinguish

special power sets as follows.
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(i) Ry)={x:xe Ay)axTy},
(i) Zy={x:xe Ay)axcyl,
(i) Ay)={x:xe Ay)rx,oy}.
(iv) Zy={xxe Ay)rx,.cy}

The kind of membership of x to £y, etc., is determined by the kind of membership of x to

#y) in accordance with Axiom 2.

Axiom 2 also guarantees the existence of the usual set-theoretic operations, but some
restrictions should apply on the possible kinds of membership. For the case of intersection,
for example, the usual Boolean definition xe ynze>xe yaxe z will hold in general, but whether
x€ ynz or xe & ynz will depend on the kind of membership of x to the universe w in which
the intersection is considered. To make certain that the operations are single-valued in each

universe, we then define the following:
Definition 12.

@) yn,z={x:xe yaxe z}, which implicitly means'((xe W=XE yNZ)A(XE € W=XE € yNZ)).
The kind of membership of x to y and to z is irrelevant; note also that y and z are each either
a member or a subset of w, given that Axiom 2 relativizes comprehension to a fixed universe
w. The subindex w in yn,z can be dropped when w is taken for granted. In fact, given the
final remark in §12, ynz={x:xe yaxe z} is sufficient as a definition of intersection if we take

A(x) to mean xe yaxe z with y and z as fixed parameters.

(i) yU.z={x:xeyvxez}, which implicitly means ((x€ w=x€ yUz)A(xe € w=X€E g yUz)).

(iii) y’w={x:x2y}, which implicitly means ((x€ w=x€E y")A(xe g w=xe ¢y’)). Again,
note that the kind of membership of x to the complement of y is determined not by the kind
of nonmembership of x to y but by the kind of membership of x to w. Thus, the two
mutually exclusive cases follow: first, if x€ waxe)’, then x€y’, whether x& y or x€¢y;

second. if xe 2 waxey’, then xe¢y’, whether xZy or xe¢y. The expression y’,={x:x&y}

implicitly assumes this distinction.




(iv) S,y={x:xeyvx=y}, where x€ S,y if xEw, and xe¢S,y if xeew. In addition,
S.y={x:x€ yvx=y} where yE€ w and hence y€ Sy also. If w is fixed, we simply write Sy and

Sy. For Sy, and Sy in particular, we shall assume =(y=z=Sy=Sz)A(Sy=Sz=y=xz).
(v) Nat(x) iff x=@v(x=SyaNat(y)), x is a natural number.

Axiom 7. Jy(DE yAVx(xE y=SxE€ y)). Existence of an infinite set with an infinity
of nonantinomic members. The axiom also guarantees the existence of an infinity of natural

numbers.

Axiom 8 (meta-axiom). The antinomic set theory AS, satisfies completeness in the
sense that A is an axiom or a theorem of AS, if and only if it is true in all models of AS;: +A
iff =A. It should be re-emphasized that =A includes these two mutually exclusive cases: (i)
A is simply true, =A but not-FA, and (ii) A is true-and-false, =A and EA, noting that A could
be simply true in one model and antinomic in another despite being true in all models of AS,;.
For positive formulas in AS, the only change with respect to the classical situation is the
addition of semantic antinomicity in some cases. For negative formulas in AS, the application
of Axiom 8 is ad hoc and goes from semantics to syntax. Again, the positive diagram of a
given model of AS, is predetermined by the axioms. The negative diagram, i.e., the collection
of all negative formulas true or antinomic in such. a model, remains incomplete and open to

successive additions.

Axiom 8 does not imply that AS, is syntactically complete, although the existence of
a complete extension of AS, can certainly be assumed. Since AS, is far from having a
recursive set of axioms, Godel's first incompleteness theorem does not apply; but even if AS,
could be presented as an axiomatizable extension of formal number theory, once one gives up

the premise of consistency Godel's second incompleteness theorem does not apply either.
§15. Relative complementation and Venn diagrams.

Definition 13. z-y={x:xe zaxgy}, complement of y relative to z for all sets y and z that

are either members or subsets of the implicit universe w.

Because of antinomicity, some members x of a relative universe w, which in turn
contains y as a subset, may belong to y and to its complement. The Venn diagram for the
complement of y (v represented by the horizontally shaded area inside the circle) would look

like the following vertically shaded area.
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That is, y and y” intersect, and the members of this nonempty intersection are those within the

doubly shaded area inside the circle. The area inside the circle not in yny” corresponds to

y-y'={x:xe yaxg y'}={x:xE y}.

Note that xe ¢ y is compatible with x& y’ (if x€ w), and precisely because the antinomic
member of a set is not necessarily the antinomic member of its complement, y#y” is possible.
In effect, y” may be a proper subset of y if ¥ has no antinomic members, but if it does, then
again y” and y” would intersect and y”” would not be contained in y; if x€y’, then x& y”.
Also, zcy does not imply y'cz’, since for the same x we may have xegy and x€ z, i.e.,
xey'axgz'. Further, since xe & yaxe & zax€ ynz is possible (if x€ w), then x& (yNz)” even
though xe y’Axe z’. If we define in the usual way the generalized intersection M y, (relative
to a universe w) of a family of sets (each included in w) indexed by an index set 7, then if
there is a set x such that Vi(ie [=xegy,), xe Ny, but also xe nyy,”. If the relative universe w
contains a single antinomic member x€ & w, then the complement of w is not empty. If ycw
and all the members of y are antinomic, ycy’; also, many subsets y, of w could have the same
complement, and if for each y, all its members were antinomic, then y’=w for all i. In

extreme cases, if yow and Vx(xe y’=xey), then y'cy=w, and if Vx(x€ y'<xey), then y=y'=w.

Because the laws of double negation are not valid, the logical De Morgan laws do not
obtain, and neither do the set-theoretic De Morgan laws. For example, (i) (y"z)'cy"Uz” and
(i) (ynz)"Dy"Uz” are both possible cases. To see this, consider that the kind of membership
of a set x to y’, Z/, (y"z)’, and (yUz)” is determined according to Axiom 2 and Definition 12
by the kind of membership of x to the relative universe w of which y and z are members or
subsets. The proper inclusion (i) is possible because members x of y'Uz” may not be members
of (ynz)” if the following obtains: if xE w, xe &y, xE€ z, then xe y” and xE y’'Uz7’, but xE yNz,
hence x& (yNz)'. As for (i), it may obtain if xe ¢ w, xE y, and x€ z, for then xe ¢ ynz but

x€y’ and x€ 7', hence xg y'Uz’. Also, neither (ynz)’ nor y'Uz” may be included in the other.

27




As hinted, if we iterate the operation of complementation various cases are possible.
(i) If x¢y and xeg)y’, we cannot in general assert yoy” or y”cCy. Similar situations arise if
(ii) xeg yAxEy’, and (iil) xeeyaxeey’. Cases (iv) x& yaxE y’, and (v) xE yAx& y” are the
usual nonantinomic ones. In turn, x€ y”, x& ", and xe ¢ y” yield corresponding cases for y”.
All these cases are of course determined by the kind of membership of x to the relative
universe w; that is, if x€ w, only cases (ii) and (iv) can obtain; and if xe ¢ w, only cases (i)
and (iii) are possible. A change in universe may change not only the members x of y’, y”,

etc.. but also the kind of membership of each x to y". ¥, etc.
§16. Ordered pairs, relations, functions, cardinalities, Sierpinski's theorem.

Definition 14. (i)(y,z) stands for {{y}},{{y.z}}. The existence of the ordered pair

follows Axiom 3; (x,y) could have antinomic members if {y}e & (y,z) or {v,z}e & (.2).

(ii) yXz stands for {(u,v): ue yavez}. The existence of the Cartesian product follows

Axiom 2: again, yXz could have antinomic members.

(iii) Rel(R) iff RcyXz for some y and z members or subsets of w. R is a binary
relation, and if y=z, R is a relation on y. R is antinomic iff there exists a pair (u,v) such that

(u,v)e ¢ R, nonantinomic otherwise. We shall only consider binary relations here.

(iv) If R is a relation, Dom R={u:(u,v)e R}, Rng R={v:(u,v)e R}. Domain and range

of a binary relation.

(v) Given the sets y and z in w, Func(F) iff FcyXzaDom F=ya
RngFcz=((u,v)e FA(ut)e F=v=rt). F is a function on y into z. F is antinomic iff it is an

antinomic relation, nonantinomic otherwise.

(vi) Inj(F) iff FoyXzaFunc(F)A((u,v)e F= 3lu((uv)eF)). F is a one-to-one or

injective function on y into z. Jlu is defined by FuA(WAVrVs(A)AA(s)=1r=s).
(vii) Sur(F) iff FoyxzaFunc(F)ARng F=z. F is a function on y onto z, or surjective.

(viil) Bij(F) iff FoyXzAInj(F)ASur(F). F is a one-to-one function on y onto z, or

bijective.

(ix) Two sets y and z have the same cardinality (or are equinumerous) iff
JF(Bij(F)ADom F=yARngF=z), denoted by Card y=Card z. A set x is inductive, Ind(x), iff
Jy3F(Nat(y)ABij(F)ADom F=xARng F=y).
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(x) A set y is of cardinality less than or equal to that of z iff IF(FcyXzalnj(F)A
Dom F=yARng Fcz), denoted Card y<Card z. Card y<Card z stands for Card y<Card za
Card y=Card z. A sety is reflexive, Ref(y), iff Ix3IF(xcyABij(F)ADomF=yARngF=x).

The equivalence relation Card y=Card z is antinomic iff
3F,(Bij(F))ADom F;=yARng F;=zA3(u.v)((u,v)€ & F)))vIF,(Bij(F,)ADom F,=zA
Rng F,=yA3(u.v)((u,v)e ¢ F,)), which allows for three possibilities: (i) Card y,=Card z iff the
first disjunct is true, but the second one is not in the disjunction just given: similarly, (ii)
Card y=, Card z iff there is no F, but there is a F, for the same formula, and (iii)
Card y,=, Card z iff there is both a F, and a F,.

Correspondingly, Card y,<Card z iff IF(Inj(F)A Dom F=yA Rng F czA

I(u,v)((u,v)e ¢ F)). The meaning of Card y,<Card z is obvious.

Definition 15. The cardinal number of a set y, denoted Card y, is the equivalence class
of all sets u equinumerous to y in a universe w (Card u=Card y). Card y is a subset of w and
hence relative to the given universe: from universe w, to universe w,, Card y may change its
members, and y its relative cardinality vis-a-vis other sets. Card y may contain antinomic

members as well as members which are and are not equinumerous to y.

In 1947 Sierpinski showed that given a function F on y into z, it is not possible to
prove without the axiom of choice that the cardinality of the range of F is not greater than the
cardinality of the domain of F. That is, without the axiom of choice, Card y< Card Rng F
is not inconsistent with set theory. Clearly, with the antinomic comparability of cardinalities
if VF((FcyXza Func(F)A Dom F=yARng F=zABij(F))= I(u,v)((u,v)e & F)), then Card z >
Card y as well as Card y = Card z. Thus, even with the axiom of choice Card z > Card y is

not excluded.
§17. Mediate sets.

It was Bolzano in his Paradoxes of the Infinite who first distinguished between a set
being finite if (i) it is inductive, i.e., counted by a terminal sequence of positive integers, or
(if) it is not reflexive, i.e., equinumerous to a proper subset of itself (today a nonreflexive set
is also called Dedekind finite). A mediate set is defined in Principia Mathematica® as one
which is noninductive and nonreflexive. The existence of such sets is ruled out by the axiom
of choice: without the axiom of choice. their existence is possible. The cardinality of a

mediate set p is comparable to that of an inductive set x in the sense that Card x < Card u
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(mediate sets contain finite subsets), but it is not comparable to the cardinality of a reflexive
(Dedekind infinite) set; that is, [(Card pu< X,) A ](Card u > X,), a mediate cardinal being the
cardinal number of a mediate set. There is neither a minimum nor a maximum mediate
cardinal; also, Card u # Card p +1 and Card p # Card p -1. The mediate cardinals are closed
under addition and under multiplication by a mediate cardinal or by an inductive cardinal
different from zero. Further, if Card u“? is mediate, then u or v is mediate. However, if
u is mediate, then 22 is not mediate but reflexive (the power set of the power set of a
nonempty. noninductive, and nonreflexive set is reflexive). As for 2°*“# with u mediate,

sometimes it is mediate, sometimes it is reflexive.'

A paper by Dorothy Wrinch'® generalizes the notion of mediate cardinals to those
which are comparable to all the usual cardinals up to an aleph greater than or equal to &;. The
negation of the existence of such generalized mediate cardinals implies the axiom of choice®
and is therefore equivalent to such axiom, since the latter implies the nonexistence of all
mediate cardinals. Axiom 7 above asserts the existence of nonmediate infinite sets but leaves
open the possible existence of mediate sets. One of the various axioms of choice to be
proposed here will be relativized to nonmediate sets; yet, choice and mediate sets will be

compatible.

Since classically mediate cardinals do not satisfy the axiom of choice, they need not
necessarily be comparable. The existence of incomparable mediate cardinals is still an open
question. Mediate cardinals have been described as "small" in that they share with inductive
sets the property of being nonreflexive, and as "large" because they cannot be obtained by
adding 1 to 0 a finite number of times ("finite" used in the intuitive sense that such addition
has an effective end). Here, because functions can be antinomic, a set y can be mediate and
nonmediate if every function F that maps y onto a proper subset of y contains a pair (u,v)
which belongs and does not belong to F. As a consequence, in such a case, Vz(zcya
Card y=Card z = Card z < Card y). A mediate set y which is not nonmediate shall be called
strictly mediate; if y is both mediate and nonmediate it shall be called antinomically mediate.
A set can be simultaneously antinomically mediate and the antinomic member of another set.
Note that a reflexive set y may have an injective image in an antinomically mediate set z:
since z is reflexive and nonreflexive. then y may be comparable and noncomparable to z. In
fact, if every function F that compares y to z is not only antinomic and injective but bijective
as well. and such that VuVv((u.v)e yXza(u.v)eF)=(u.v)e F), then z is both mediate and

equinumerous to a reflexive set. One should keep in mind, though, that being finite, infinite,
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or mediate in any sense are properties relative to the universe w. Changing the universe may
make a set reflexive, if it was not, by adding the appropriate function. or make it
antinomically reflexive if it was simply reflexive, etc. It is a prejudice to think that mediate
sets are useless; like the generic sets produced by forcing methods, they throw light on the
understanding of sets in general and on the axiom of choice in particular. More about this

later.
§18. Amorphous sets.

The standard definition of infinite set is that of a set not equinumerous with a natural
number, and finite if it is. A set is called amorphous if it is infinite in the standard sense but
it is not the union of two disjoint infinite sets. There are models of set theory in which the

axiom of choice fails and which have amorphous sets: one such is the basic Fraenkel model.

A set y is called Tarski finite (T-finite) iff every nonempty c-monotone chain Xc#Ay)
has a c-maximal element. Every amorphous set is T-finite; hence, not every T-finite set is
finite in the standard sense. Further, every T-finite set is nonreflexive (Dedekind finite) but

the converse is not true.

Since amorphous sets are infinite in the standard sense they are noninductive, and
because they are also nonreflexive, they are mediate. One must remember that if we do not
assume the axiom of choice, there are several nonequivalent ways of defining infinite sets, as
well as finite sets. Thus, a set may be nonfinite in one sense and finite in another. According
to Von Neumann, this situation raises serious objections to constructive philosophies of

7 The fact is that without the axiom of choice we

mathematics — intuitionism and the like.
do not know exactly what finite means, the one concept that constructivism deems
fundamental and unmistakable. We must face this issue: without the axiom of choice the idea
of finite becomes ambiguous and hazy, and a set can be finite in one sense and infinite in
another, as well as being both finite and infinite in the same sense, as is the case with an

antinomically mediate set, both Dedekind finite and Dedekind infinite.
§19. An antinomic set theory AS, based on inclusion.

In a previous paper'® we took inclusion instead of membership as the one basic
primitive set-theoretic predicate; the other primitive ideas were those of set (x, y, z, ..., variable
sets; a, b, a,, a,, as,..., constant sets), and binary relations (R, S, T, ...). The definitions and

axioms offered there are as follows.
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Definition 1. y=z iff Vx(xcy&xcz). Equality.
Axiom 1. VyVz(y=z=Vu(ycuszcu)). Extensionality.
Definition 2. ycz iff yczay#z. Proper inclusion.

Axiom 2. 3yVz(zeyaVu(uzy=>ycu)). Null set, denoted by & and not included in

itself.

Axiom 3. Reflexivity (for all sets other than &), antisymmetry, and transitivity of

inclusion.

Axiom 4. Vy3z((zeyAVx(xSyAd(x)=xS2) AVuVv((veyAd(v)=veu)=zcu)).
Separation, where ¢(x) is any well-formed formula in the language of AS, in which y, z, u,
and v do not occur and x is a free variable. If ¢(y) is also the case, then ycz, i.e., y=z by
antisymmetry. Since some subsets of y may not satisfy ¢, "separation” does not have the
clear-cut meaning that it has in Zermelo's set theory, i.e., it is possible for z to have as subsets

sets without the property ¢.

Definition 3. The notation z={x:xCyA{(x)} represents the least set u that contains all

the sets included in y having the property ¢.
Axiom 5. Vxdydz(xcyazCyazgxaxcz). Expansion. There is no class of all sets.

Now let a, be an arbitrary but fixed set, and a, a nonspecified but fixed superset of a,
satisfying the condition that y satisfies in Axiom 35, that is, a,ca,A3z(zca,Azga;Aa,22); the
existence of this a, is guaranteed by the axiom. Let a; be a nonspecified but fixed superset
of a, satisfying the same condition. In general, let a,,, be a similar superset of a,. The finite
sequence a,, a,, ..., 4y, d,,; can be made as long as one wishes by successive application of
Expansion. However, in order to assert the existence of an infinite set that contains as subsets

all the possible terms of this sequence, we need the following additional axiom scheme.

Axiom 6. For any sequence a,, a,, ..., a,, ... satisfying the description just given
Jy(a,cyn(a,cy=a,,,y)). Infinity. The infinite set y contains all the sets g, of the sequence,

plus all the subsets of each of these terms.

Axiom 7. VxVy3dzVu(ucxvucysucsz). Union.



Axiom 8. VxVy3zVu(ucxaucyoucz). Intersection. Union and intersection as
determined by these axioms differ from their usual definitions as operations given in terms
of membership; for example, no new subsets can be obtained in z by the union of x and y

other than those already in x and y.

Definition 4. E(x) stands for x#@AVy(y#@=ycxvy=x). Elementhood. Elements are
nonempty sets without nonempty proper subsets. The null set is not an element, although it

can be the term of a predicate formula and is certainly the subset of every set except itself.

Schroder asserted that "nothing” is a subject of every predicate, to which Frege
objected, drawing the contradictory conclusion that if so, then O(D)A]H(D) would obtain,
suggesting that if one must have the null set at all, it is better to have it as a subset of every

set.”® From an antinomic point of view both positions can be made simultaneously acceptable.

Axiom 9. Vx(x#20=3y(ycxAE(y)). Regularity. Every set contains at least one

element.

Axiom 10. Vx3y3z(xcyrzcyazexaE(z)). Element expansion. There is no set of all

elements, and there is an infinity of them.

Definition 5. xey stands for xcyAE(x). Membership. Only elements are members.
Also, every element is a member of itself, and given two distinct elements, neither one is a

member of the other.

Axiom 11. FyVx(xeye9(x)). Comprehension for elements. ¢(x) is a well-formed
formula in which y does not occur and x is a free variable. This axiom asserts the existence
of a set containing as members all the elements that have the property ¢. The set of all
elements which are not members of themselves is empty, i.e., Russell's paradox cannot be

transferred to AS,.

The objective of the approach just described is to have a set-theoretic base on which
to build a topology of multiple location.'® Here. we shall outline briefly how to use inclusion
as an antinomic predicate. Assume that some sets are antinomic in the sense that they are
included and not included in another set, that is, =xcyAxcy and Excy. regardless of whether
Exgy or not-Excy, abbreviated xccy, which reads "x is an antinomic subset of y" or "y is an

"

antinomic superset of x." The set y need not be an antinomic subset of another set. In fact,

(1) some sets can be antinomic subsets of other sets, xczx included as a possibility, and (ii)
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some sets may not be antinomic subsets of any set. Symmetrically, (iii) some sets may have
only antinomic subsets, (iv) others may have some antinomic subsets and some nonantinomic

ones, and (v) some sets, finally; may not have a single antinomic subset.

Similar to the notation proposed for membership, given the constants a and b
representing fixed sets, aCb stands for =ach but not-=ach and not-Fach. regardless of
whether Eagh or not-Each. Also. adh stands for =ach but not-=ach and not-Each, regardless
of whether Each or notEach. Assuming completeness as we did with AS,, =ach is
metamathematically equivalent to rach, which also holds for every positive or negative
formula of AS,, whose axioms can now be extended to include antinomic cases. Thus, for
example, y=zAy#z may obtain, and the existence of Zy={x:xcy} be justified by Separation,
even though not every set in &,y must be an antinomic subset of y. The notions of ordered
pair, Cartesian product, relation, function, equinumerosity, and comparability of cardinals
given in the earlier paper'® can also be antinomically extended and an antinomic topology
based on inclusion developed. Further, as with membership, the kind of inclusion in xCy may
be relativized to a universe w, and modified from universe to universe. Incidentally, the null

set can also be the antinomic subset of other sets.

It should be remarked that Frege, following Schroder, considered inclusion as "the most
important relation between sets,"" fully identifying the part-whole relation with set-theoretic
inclusion. On the other hand, Hao Wang observed that an unavoidable conclusion of the
independence of the continuum hypothesis is that, from the point of view of classical set

theory, we still do not know what being a subset really means.
§20. An antinomic set theory AS; based on union taken as a primitive predicate.

In a previous paper’union was used as a primitive binary predicate rather than as an
operator. Here we shall expand the predicate of union and make it antinomic. Let us assume
a universe of sets x, y, z, 4, v, S, 1, X, X,, X5, ... in which for some sets x, y, Uxy holds ("x is
united to y"), for other sets u, v, Juuv holds ("u is disunited from v") and for still other sets

s, 1, Usta]ust holds ("s is united to and disunited from 7").

As with €, U is an ambiguous notation to cover both the nonantinomic and the
antinomic cases. Accordingly, we shall identify the following possibilities: (i) Uluxy

represents the case =Uxya|uxy and EUxy, regardless of whether Ejuxy or not-Euxy; (ii)




Uiy for the case =Uxy but not-=|Uxy and not-Euxy. whether E|Uxy or not-E|Uxy; (iii) [Uxy

for the case =]uUxy but not-=Uxy and not-EJuxy, whether BUxy or not-Euxy.

Axiom 1. IxVy(|Uxy). There is at least one isolated set strictly disunited from all

other sets including itself. If x is one such set. we write Iso(x).
Axiom 2. Vx(JIso(x)=Uxx); VxVy(Uxy=Uyx). (Union is not necessarily transitive.)
Axiom 3. Vy3x(Jlso(x)A]uxy). Unity of sets is not universal for nonisolated sets.

Definition 1. y=z iff Vx(Lxyouxz). In particular: y=z iff

Vx(UxyeUx) AVu(UluuySu [uuz).

Definition 2. ycz iff Vx(Uxy=uUxz). Note that ycz is compatible with

Fu(UlouyAUuz).

Axiom 4. VyAVx(UxzeUxyrAX)A(U|uxzeUUxyAA(x))), where A(x) is a
well-formed formula in the language of AS; in which y and z do not occur and x is a free
variable. Separation scheme. Since z is uniquely determined, the notation z={x:UxyAA(x)}
is justified. Note that if Iso(#)AA(u) is the case. still ]Uuz obtains: z does not gather isolated

sets.

Axiom 5. For any positive integer k, Ix;, Ix,, ..., Ix, (BAGEGA.. AX,#X,). This

scheme guarantees the existence of an infinity of sets.

Axiom 6. VxVy3!z(UxzauyzaVu(Uuzsu=xvu=y)). Paring. The notations {x,y} and
{x} are now justified if we define 3!x, "there exists one and only one x such that ...," by

AxAOAV UV V(AW)AAW)=U=V).
Definition 3. (x, y) stands for {{x}, {x, y}}. Ordered pair.

Axiom 7. Yu¥Vv3zVxVy(UxuaUyvéeU(x, y)z). Binary Cartesian product denoted by

UXy.
Definition 4. (i) R is a binary relation in uxv means RCuxv.

(i) Given Rcuxv, Dom R = {x: UxuaU(x. y) R} and Rng R={y:uUyuaU(x, y) R}.

Domain and range of a relation.

(iii)R™ is the inverse relation of R iff Rcuxva R'cvXuaVxVy (U(x, y) R&U(y, x)R™M).
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(iv) F is a function in uxv iff F is a relation in uxy and VxVyVz(U(x, y)FA

u(x, 2)F = y=z).
(v) Fis a bijection on Dom F onto Rng F iff F and F' are both functions.

(vi) Card u = Card v iff there exists a tunction F which is a bijection on u onto v with

u= Dom F A v=Rng F.

(vii) If z=Dom R = Rng R with R a relation in uXv, then R is a linear ordering on z
iff (Uxz=U(xx) R) AMUGYIR A UGXR = x=yAURY)RAUGY.ZR =
U)RAVY XV y(Uxzauyz=U(xY)R v U(y.x)R).  In particular, R is a well-ordering on z,
denoted RWOz or WO(z) if R is tacitly assumed to exist, iff R is a linear ordering on z and,

in addition, Yw(wczaIso(w) = Ils(UswAVH{(Utw=U(s,)R))).

It should be mentioned that instead of union, intersection can be taken as an antinomic

predicate, antinomic sets being those that satisfy muxyA]~wxy. This will not be pursued here.

Iv. Antinomic Axioms of Choice

E. Hobson proved in 1905 that the standard axiom of choice does not rule out the
existence of antinomic sets.?’ Obviously, an antinomic axiom of choice should be based on
such sets. More recently, it has been shown that the standard axiom of choice implies the law
of excluded middle.* The proof, however, breaks down if one assumes the logic outlined in
this paper: thus, the antinomic versions of the axiom of choice to be proposed will nct imply
excluded middle, although they will be compatible with specific instances of this law. (The
proof that standard choice implies excluded middle uses contradiction. which is why it fails
here.) More important, antinomic versions of the axiom of choice are compatible with
sequences of more than two alternatives: ¢,V ]0,vd,vd,v...vd,. To bring antinomicity to
choice, then, is in keeping with the fact that although 0v]d understood as an exclusive
alternative simplifies logic, the situation in mathematics and the natural sciences is replete

with instances in which ¢ and 7|¢ are far from being the only options available.
§21. Antinomic axioms of choice for AS;.

Because the standard proof of the equivalence of the axiom of choice with, say, the

well-ordering principle relies on contradiction. we cannot assume here that the axiom implies



the principle or vice versa — as is the case with most equivalent forms of the axiom of
choice. This nonequivalence has, in effect, its positive consequences in that it returns to each
of these forms some of the independence, strength. and breadth of scope with which they were

originally conceived.
Well ordering can be defined as follows within AS;.

Definition 1. WO(z) or equivalently RWOz iff 3FJRRel(R)A
Dom R=Rng R=zAVx(xez=>(x,x)eR)AVxVy((x,y)e RA(y,x)ER=>
x=y)AVxVyVu((x,y)e Ra(y,u)e R=>(x,u)e R)AVxVy(xezayezz=
(x.y)e Rv(y,x)e R)AVv(vCzavED= Ts(se zaV (1€ z=(s,H)€ R))). The expression WO(z) means
=WO(z) but not-=]WO(z) and not-EWO(z), whether E[WO(z) or not-E[WO(z); TWO(z) means
ZTWO(z) but not-~WO(z) and notEWO(z), whether EWO(z) or not-EWO(2); WOTWO()
means =WO(z2)A[WO(z) and EWO(z), whether E[|WO(z) or not-E[WO(z). WO(z) will read

"z is strictly well-ordered," WO"|WO(z) will read "z is antinomically well-ordered."

Similarly, the predicate Med(z), "z is mediate," can be defined in AS, as
Ind(z)ARef(z), using the definitions of Ind(z), "z is inductive," and Ref(z), "z is reflexive,"
given in §16. Med(z), [Med(z), and Med|Med(z) stand for "z is strictly mediate," "z is
strictly nonmediate,” and "z is antinomically mediate," defined respectively as above for
WO(z), and TWO(z), and WOTWO(z).

An antinomic axiom of choice AAC for AS; may be introduced in a number of ways;
we shall select two of them. The idea is that AAC should not apply to all sets but only to
those which are, for example, well-ordered or nonmediate. That is, we shall break the
universe w into two classes not necessarily disjoint; in one case, the class of well-ordered sets
and the class of non-well-ordered sets; in the second case, the class of nonmediate sets and
the class of mediate sets. Accordingly, we have the following two axioms in which %is a

given family of sets, A is a member of the family 4, and € is the choice set.

Axiom 1. WO(H=3% Vx(xe ¢,=TA(Ae Frxe AAVy(ye € anye A=x=y))). Choice for

well-ordered sets.

Axiom 2. Med(H=3E,Vx(xe ¢,=TA(Ae Faxe AAVy(ye €,nye A=x=y))). Choice

for nonmediate sets.
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Both axioms leave room for subuniverses in which AAC does not apply; both are also
ambiguous in the sense that all the following are possible: (i) WO(F) or WOTWO(4), (ii)
XE €, or xe € %, (iii) A€ For Aeg Z, (iv) xE A or xe €A, (v) Med(%) or Med [Med(%), and
(vi) xE %, or xeg %, Classically, (i) WO(H=>WO(%,) and (ii) Med(%# =[Med(%,), since
the injective correspondence given by F:A—x mapping # onto €, (or &,), with x the unique
representative of A in %, (or %,), makes & well-ordered (and %, nonmediate). We shall
assume implications (i) and (ii); hence, WO(%) and [WO(%,) will be incompatible (and so
will Med(%) and Med(%,)).

Axioms 1 and 2 are ambiguous in that the kind of membership of x to &, (or to %,)
is not uniquely determined, making %, (ahd %,) not uniquely determined either. The situation
is similar to the one which arose in connection with the separation axiom. Therefore, in order
to determine the choice sets %, and ?42 more specifically, we must state the following. Note

that x and A, either one or both, can be well-ordered (or nonmediate), or the opposite.

Axiom I'.  WO(H=3E/ (Vx(xE €' ©TA(Ae FAxE AAVY(YE € AYE A=X=Y))A
Vu(ue ¢ €' <3JA(Ae Frue e ANVV(ve g €' Ave g ASu=V))AVrVs(re €, 'Arc Arse €, 'Asc A

=r=ys)).

Axiom 2’. With Med(%) as a premise, same conclusion as in Axiom 1’ replacing €’

by € .

Since in the four preceding axioms the major implication goes only in one direction,
the existence of a choice set does not mean that % must be well-ordered or nonmediate; in
fact, %,” and %,” themselves can be non-well-ordered or mediate respectively. If Fis strictly
mediate, the bijection F:A—>x on % onto %,” makes the latter strictly mediate, as the following
metamathematical reasoning shows. If %,” were antinomically mediate, then a bijection G
would exist that maps %, onto a proper subset of itself y; however, such mapping must have
at least a pair (u,v) suéh that ue %,”. vey, and (u.v)e¢G, since %, is both reflexive and
nonreflexive. The composition of the three mappings F, G. and F! in this order is a bijection
on % onto a proper subset of itself, where F'! is the inverse of F. But then ¥ would be both
strictly mediate and antinomically mediate, which is a metamathematical impossibility. Of
course, as mentioned above, % could be both well-ordered and nonmediate. and the bijection
F:A—x in each case would yield the necessary function to also make %,” and %,” well-ordered

and nonmediate, respectively.




Other set-theoretic properties could be used to make room for a subuniverse in which
the axiom of choice holds and in whose complement it does not necessarily hold. For
example, since using choice it cannot be proved that every set is similar to an ordinal, once
the ordinals are introduced one could use Count(x), "x is similar to an ordinal," as a substitute
for either WO(x) or [Med(x), which would lead to an alternative version of Axioms 1 and 2.
The same applies to other principles usually given as equivalents of the axiom of choice. We

shall not pursue this matter here.
Let us finally link well-ordered sets and nonmediate sets with the following.
Definition 2. w,={x:xe waMed(x)}, w, is the nonmediate subuniverse.
Axiom 3. WO(x)=xew,, every well-ordered set is nonmediate.

§22. Ordinals.

We now represent the sequence &, {J}, {J, {T}}, ... by 0, 1, 2, ..., the finite ordinals
or natural numbers. Using the axiom of infinity, let us call ® the intersection of all sets that
have 0,1,2,..., as members. Sw=wuU{m} will be denoted by w+1, etc. We then define the

sequence of ordinals Ord in the usual way:
Definition 3. o€ Ord iff (i) x€ y€ a=x€E o and (ii) Vz(z€ 0= (uE vE z=UE 2)).

Ordinals will be represented by Greek letters except for the class of all ordinals Ord,
which is also an ordinal, and belongs and does not belong to itself. For ordinals o and B we

have the following:

Axiom 4. VoV B(aE pva=pvBE a). In addition, o€ Ord=€ WOao. and
oe Ord=Med(a), every ordinal is well-ordered by € and no ordinal is mediate. Finally,
Ord is well-ordered by € .

Essentially, ordinals behave like their standard counterparts, although they can be
antinomic members of sets which are not ordinals. Addition, multiplication, and
exponentiation of ordinals can be defined inductively in the usual way, and the necessary
theorems postulated whenever their classical proofs include negative formulas; such theorems
include the principle of transfinite induction, the statement that @ is the smallest limit ordinal,

the uniqueness of-ordinal operations, etc.
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Extending to set theory an idea introduced in a previous paper for formal arithmetic,'*

let us now add strict order as a primitive antinomic predicate.

Axiom 5. VoV BV y((a<parB<y=a<y)a([Nat(o)A|Nat(f)= a<BaB<a)a
(0<OrdaOrd<a)). Transitivity of < in Ord, and symmetry (hence reflexivity) of < for all
nonfinite ordinals. Each nonfinite ordinal is greater and less than all other ordinals including
itself, that is, every geometric representation of < requires bilocation. Whereas the order type
of the € -ordering of Ord is Ord , the usual one, the <-ordering of Ord has the following
order type: 1+ Ord “+w+ Ord +1, "1" being the order type of Ord itself, the greatest and
hence the least ordinal, Ord “is the mirror image of Ord , the last being the standard type
of the set of nonfinite ordinals, and ® the order type of the set of finite ordinals placed in the
middle of any model. Each finite ordinal has simple location, and each nonfinite ordinal has
one location to the right and another to the left of the fragment of all finite ordinals, that is,

one in the segment of type 1+ Ord * and another in the segment of type Ord +1.
§23. A mediate continuum hypothesis.

Although by Axiom 3 every well-ordered set x is nonmediate, as already mentioned
x is not necessarily similar to an ordinal; Godel's indirect proof that every well-ordered set
is similar to an ordinal cannot be carried out.in AS,.”* Further, the converse of Axiom 3 does
not hold, as the following classical example shows: if u is strictly mediate, ) is either
strictly mediate or strictly nonmediate, and $Hu) is strictly nonmediate, yet although
reflexive, the latter is not well-ordered since it contains as a subset a replica of p. In other
words, some nonmediate sets have mediate subsets, whereas all mediate sets have nonmediate

subsets.

The cardinal number Card x of a set x was defined in §16 as the equivalence class of
all sets equinumerous to the set x; Card x is a subset of the universe w and is relative to that
universe. Each set xew, then, has a cardinal number Card x regardless of the kind of order

it may have, and whether or not x is a mediate set.
The alephs can now be defined as follows.

Definition 4. R is the cardinal number of a given nonfinite ordinal y. The class of
all alephs is well-ordered as follows: X, <Xg iff ¥,€ y,vy,=Y,, where v, and 7y, are any

ordinals such that y,€ X, and v,€ K.




Axiom 6. For every ordinal o there exists a cardinal number X,. The class of all
alephs is not only well-ordered but it is also similar to Ord. Since mediate sets are members

of w, not every nonfinite set has an aleph for its cardinal number.

Cardinal arithmetic can be defined as follows. Let us symbolize cardinal numbers with
bold face letters m, m, ..., and let m, n, ..., be any representative of the classes m, n, ...,

respectively; 1, 2, 3. ..., are Card 1, Card 2, Card 3.....

Definition 5. (i) m+n is the cardinal number of the disjoint union of m and #n; (ii) men
is the cardinal number of the Cartesian product mxn; (iii)m® is the cardinal number of the set
of all functions on m into n. The antinomicity of some of the entities involved in (i)-(iii) does

not affect the uniqueness of the operations defined.

The beth numbers are defined as follows.

Definition 6. 1=, 1,,= 2

o+l

Assuming the generalized continuum hypothesis (GCH), 1,=X,, and the beth notation
becomes superfluous. GCH is not assumed here, and the relation between the alephs and the
beths is left undetermined. In addition to these two kinds of nonfinite cardinals, now we need

to introduce two more, given that not every nonfinite cardinal is an aleph or a beth.

Definition 7. If p=Card u is the mediate cardinal of a mediate set p, then 2"=1, is a
gimel number indexed by u to indicate it provenance. Gimel numbers can be mediate or

nonmediate, and only some mediate numbers are gimel numbers.

Definition 8. If fi=Card p is the mediate cardinal of a mediate set », then 2% =7,
is a daleth number indexed by u to indicate its provenance. Daleth numbers are nonmediate.
Whether T, is an aleph, a beth, or another yet undefined kind of nonfinite reflexive cardinal
is left as an open question. The relation between daleths and gimels is given by Axiom 8

below.
Axiom 7. Card p#Card p'=(2,#1,AT#T,).

The gimel and daleth numbers are not linearly ordered, and even if a gimel number
is nonmediate, it is not necessarily equal to a daleth, a beth, or an aleph. Further, if the

daleths were beth or aleph numbers, they would be well-ordered by the ordinals, thus inducing
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a well-ordering of the mediate sets. However, we shall postulate the following mediate

continuum hypothesis (MCH).

Axiom 8. Med(u)= Iu'Med(u)AT,=1,). Every daleth equals a gimel number, i.e.,
the cardinal number of the power set of the power set of a mediate set is the cardinal number

of the power set of some mediate set.

From the viewpoint of the Foundations of Mathematics, Axiom 2 has the advantage
over Axiom 1 of making the choice operation independent of order, for there is indeed
something more basic about choice than any kind of ordering that one might attach to a set.
But as mentioned, the alternative of taking % as nonmediate to guarantee the existence of a
choice set is not indispensable either: % could be merely nonamorphous, in which case some
mediate families % could also yield a choice set. However, it seems rather forced to
extrapolate the well-ordering principle from the set of natural numbers to all unimaginable sets
simply to be able to single out a definite individual from every nonempty set. And it seems
just as forced to identify infinity with Dedekind infinity since, for example, it is shortsightedﬁ
to assume that nonfinite nonreflexive sets are useless because we have not yet found any use
for them. In contrast, the operation of choice is itself truly primitive and intuitively natural
whenever it is applicable. Although not always feasible, it is essential even for selecting the
very first symbol to put on paper. Indeed, choice is as indispensable from a mathematical
point of view as the equally primitive operation of comprehension, i.e., the gathering of
individuals that share in a given property. Still other antinomic versions of the axiom of
choice should yield new foundational approaches as well as new structural understanding of

these two fundamental mathematical operations of choosing and gathering.
§24. Axioms of choice for AS,.

Axioms of choice for AS, and AS; parallel those proposed for AS;. Let us look briefly

at the case of AS;.

Axiom 1. WO(H)=TFEVx(UxCoTA(VAFGAUXAAY y(UyEAUyA=
x=yN)AVu(Uuu € IA(UTVAFAUTURAAY V(U TUY EAUTUVA =u=v))) AV IV s(Uréa

UrAaus éausA=r=s). The predicate WO(z) was defined in §20.

As is the case with AS,, premises other than WO(%) may condition the existence of
choice set € for example, we may gather all the sets generated by applications of separation

scheme 3 given in §20, as shown in the following definition:
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Definition I. Comp(z) means z exists by virtue of Axiom scheme 3, §20, i.e., there
is a well-formed formula A(x) in the language of AS, which gathers z. If the language of AS,
is uncountable, there would be an uncountable number of such formulas, and potentially an

uncountable number of sets z satisfying Comp(z).

Axiom 2. With Comp (%) as a premise, same conclusion as in Axiom 1 above. Again,
not only is the existence of a choice set not equivalent to the well-ordering of % but also is
not equivalent to the "predicability” of % as given in the definition of Comp(z) just proposed.

(It is ironic that here choice depends on predicability even if it is nonconstructive.)
§25. A final remark.

The logic on which the set theories AS;, AS,, AS, are based is obviously a limit one
in that, apart from its positive fragment, it is built semantically, posing negative formulas true,
talse, or both when desired, then postulating the true and antinomic ones as axiom-theorems
— syntax following semantics except for some metamathematical reasonings. At the level of
formulas, this is not unlike the device of adding an uncountable number of constant symbols
to the language of a theory in order to use them syntactically in the formation of terms and
formulas. These symbols provide a name for each individual in the universe of a given
structure, thus producing an uncountable number of formal atomic sentences from which to
gather those which are true in the structure. The notion of diagram introduced by A.
Robinson employs these constants and is the set of atomic sentences true in the given
structure. This diagram constitutes a ready-made complete theory.* Here, the structure is not
given in advance, and negative formulas are successively incorporated as true or antinomic
in the development of what we may call an "open diagram," a progressing diagram that keeps
adding determining characteristics and entities to the models of the true and antinomic
tormulas previously posited. The purpose is not to obtain a syntactically complete theory but
to establish the existence of desirable entities or to modify those already introduced. The next
step in the evolution of this and other chapters of antinomic mathematics should move from
this limit position toward one more proof-theoretically balanced. How far it is possible to go
in this direction and how advantageous it would be to do so are open questions. Yet, the
effort involved cannot fail to throw valuable light on the foundational problems that have been

touched upon here.
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HISTORIA DE LA ENSENANZA DEL ALGEBRA
EN LA UNIVERSIDAD COMPLUTENSE

Concepcién Romo Santos

Departamento de Algebra

Universidad Complutense
MADRID

Introduccion

En 1993 se cumplen 700 afios de la fundacién de la Universidad
Complutense, una efemérides que debe ser motivo de orgullo y
reflexién. Los que hoy formamos parte de é&sta Universidad, estamos
orgullosos de ser complutenses y vamos a unirnos a los actos
conmemorativos de su VII centenario. Estudiaremos la historia de la
ensefianza del Algebra en nuestra querida Universidad.

§1.- Historia de la ensenanza de las Matematicas en Ila
Universidad Complutense hasta su traslado a Madrid.

Sancho IV ordené que se estableciera el Estudio General de Alcala
de Henares en su Real Carta de 1293.

El historiador Esteban Azana es quien aporta mds datos sobre el
sistema educativo alcalaino a lo largo del siglo XIV y durante la primera
mitad del siglo XV. Asegura el cronista decimondnico que el Estudio
medieval de Alcala de Henares, aunque débil y sin duda intermitente,
tuvo vida académica a lo largo del siglo XIV. Pero, sin embargo, es en el
siglo XV donde empezd su esplendor, ya que en 1421 se contaba con
cursos de hebreo, MATEMATICAS y misica. De mediados del siglo XV
son las tres cdtedras que doté el arzobispo Carrillo con los frutos vy
rentas provenientes de los beneficios de su didcesis. Una era de
Gramatica, otra de Logica y la tercera de Ciencias.

La empresa iniciada por Sancho IV y conbtinuada por Carrillo
llega a su fin en las postrimerias del siglo XV con la fundacién, por el

Cardenal Cisneros de San Ildefonso en Alcala de Henares.

La Complutense Cisneriana se centra en torno al Colegio Mayor de
San Ildefonso y abarca el periodo comprendido entre 1499 y 1545.
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La Universidad Complutense durante elperiodo de Cisneros conté
con cuatro Facultades: Teologia, Artes. Medicina y Derecho Candnico y
con dos Escuelas de Gramadtica, que operaban en los Colegios Menores de
San Eugenio y San Isidoro.

La Facultad de Artes Liberales expedia titulos de bachiller,
licenciado y maestro. El Bachillerato y la Literatura se cursaban en
cuatro anos - dos cada uno - y se estudiaban las siguientes asignaturas:
Sumulas logicales, Predicamentos, Hermenéutica, Toépicos, Elencos,
MATEMATICAS, GEOMETRIA, PERSPECTIVA, Etica, Filosofia natural y la
Metafisica de Aristételes.

Estudiaremos ahora la historia de la Complutense postcisneriana
que dura casi dos siglos y coincide con el periodo de gobierno de los
Austrias.

Su punto de partida va unido a la capitalidad de Madrid,
decretada por Felipe II en 1561, y a la creacién en ésta ciudad, en 1545,
de los Estudios de San Isidro, una escuela de ensefianza secundaria
destinada a la preparacion de los hijos de la nobleza. A partir de esa
fecha comienza a decaer, aunque lentamente, la Universidad que creé
Cisneros en Alcald y a consolidarse el Instituto de Madrid.
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investidura del grado de doctor estaba rodeada de gran ceremonial,
al que habia que asistir adornado con las mejores galas
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§2.- La creacién de la Universidad Central de Madrid.

La Universidad Complutense postcisneriana, aunque gozé de
momentos de esplendor, tuvo que soportar miiltiples conflictos: luchas
estudiantiles, guerra de. Comunidades, litigios con el Arzobispo de Toledo
y la Compaiiia de Jesis, etc.

Dichos conflictos, unidos al despojo de su patrimonio por parte del
poder real, al desgobierno de algunos rectores, que conculcaron las
normas constitucionales dictadas por el cardenal Cisneros y a la sangria
o fuga de cerebros que se produjo en las primeras décadas del siglo
XVII, debido a que la Inquisicién hizo huir de sus aulas a los partidarios
de las doctrinas filoséficas de Erasmo de Rotterdam, explican los varios
intentos de traslado de la Complutense a Madrid. que culminardn un
siglo después. Su acta de defuncién se produce el 29 de octubre de 1836
con la Real Orden que dispone su traslado a Madrid.

Aula Magna de la Universidad de la calle San Bernardo,
antes noviciado de los jesuitas

i ) S e MR st

e

1
5
3




En el periodo que transcurre entre 1836 y 1845 se organizé la
Universidad Central de Madrid segin el modelo napoleonico. La Facultad
de Ciencias quedaria instalada en la capilla de los Reales Estudios. En
1857 se promulgé la Ley de Instruccién Piblica - Ley Moyano - en la
que se estructuré definitivamente la ensefianza contemporanea hasta la
reciente Ley de 1970. En esta ley qued6 establecida como Facultad la de
Ciencias exactas.

En 1876 se cre6 la Institucion Libre de Ensenanza que propugné
la coeducacién y la ensenanza del Arte. Asimismo cred la Junta para la
Ampliacion de Estudios e Investigaciones Cientificas.

En los cursos celebrados entre 1875 y 1902 la matricula de las
asignaturas ascendié de modo progresivo. Hombres brillantes por sus
contribuciones cientificas fueron José Echegaray, Antonio Aguilar, que
instaura en Madrid el Observatorio Astronémico, Carlos Yebes,
catedratico de Geometria, y el matematico Gumersindo Vicuna.

§3.- La nueva ciudad universitaria creada por Alfonso XIII
la finca '"La Moncloa".

La Universidad Central se asentaba en una serie de locales y
caserones diseminados por el casco antiguo de Madrid, que se
encontraban desfasados y adolecian de graves defectos acusticos,
luminicos y térmicos. Alfonso XIII, a sugerencia de su odontdlogo, que
habia estudiado en Estados Unidos, decidié construir la Ciudad
Universitaria. Se organizé una junta constructora y se abrié una
suscripcién popular con 2.500.000 pts. aportadas por la Familia Real. A
principios de 1929 comenzaron las obras.

La marcha de las obras fué eficaz e ininterrumpida; el rey
presidié la ultima junta el 5 de abril de 1931. Nueve dias después se
proclamé la Republica y el rey Alfonso XIII marchaba al exilio. El cambio
politico fué, sin embargo, beneficioso para el gran proyecto del monarca.
Pronto comenzaron las inauguraciones. La Facultad de Filosofia y Letras
fué la primera de ellas.

Desgraciadamente, la Ciudad Universitaria se convirtié en primera
linea de batalla durante la Guerra Civil y fué duramente castigada por
los bombardeos. El resultado fué la destruccion de los fondos
documentales y cientificos y de los edificios.

Terminada la contienda el arquitecto Lépez Otero continud

tecnicamente al frente de la junta constructora de la Ciudad
Universitaria, creada de nuevo en 1940.
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Facultad de Ciencias Matematicas en la Ciudad Universitaria

Complemento de la Universidad habra de ser el Consejo Superior
de Investigaciones Cientificas, creado por Decreto Ley de 1939. Su
misién era fomentar, orientar y coordinar la investigacién cientifica en
Espaifia, division CIENCIAS MATEMATICAS y de la Naturaleza.

Entre las Facultades que se crearon en la Ciudad Universitaria
estaba la de Ciencias. En el periodo mas reciente se ha construido una
nueva Facultad de Matematicas, inaugurada en junio de 1992, siendo
rector D. Gustavo Villapalos. Las especialidades que en la actualidad se
pueden estudiar en la licenciatura de Ciencias Matemadticas, son las
siguientes: Fundamental, Estadistica, Astronomia, Mecanica y Geodesia,
Metodologia y Didactica de la Matematica, Ciencias de la Computacion.

§4.- Importancia y papel del Algebra en la Matematica actual.

La palabra dlgebra proviene del nombre de un tratado del
matematico y astronomo Mohammed al-Kharizmi, que vivié en el siglo
IX. Su tratado sobre dlgebra llevaba por titulo al-jebrwnalmugabala, que
significa "transposicion y eliminaciéon”. Por transposicion se entiende la
transferencia de términos al otro miembro de la ecuacidén, y por
eliminacion la cancelacion de términos iguales en ambos miembros.
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La palabra drabe al-jebr se convirtié en algebra al transcribirla al
latin, mientras que al-mugabala fué desechada, lo cual explica el término
moderno de dlgebra para esta disciplina.

El origen de este término responde muy bien al contenido real de
la ciencia misma. El Algebra es en esencia la doctrina de las operaciones
matematicas consideradas formalmente desde un punto de vista general,
con abstraccion de los numeros concretos, y sus problemas estan
relacionados fundamentalmente con las reglas formales para la transfor-
macién de expresiones y la resolucion de ecuaciones.

Mads tarde, Omar Khayyan definié el Algebra como la ciencia de
resolver ecuaciones. Esta definicion no tuvo su significado hasta finales
del siglo XIX, cuando el Algebra, junto con la teoria de ecuaciones, tomo
nuevos derroteros, modificando esencialmente su cardcter, pero no ese
espiritu de generalidad que posee como ciencia de las operaciones
formales.

El Algebra contemporanea es el estudio de las operaciones, de las
reglas de calculo. Pero no se circunscribe como el Algebra clédsica, al
estudio de las propiedades de las operaciones con nuimeros, sino que
aspira a investigar propiedades de operaciones con elementos de una
naturaleza mucho mds general. Esta tendencia viene dictada por
necesidades de orden practico. Por ejemplo, en Mecanica sumamos
fuerzas, velocidades, rotaciones, etc. Si para un conjunto dado de objetos
se definen ciertas operaciones que satisfacen ciertas propiedades, se dice
entonces que se ha definido una estructura algebraica. El actual punto de
vista sobre el Algebra consiste en considerarla como el estudio de las
diferentes estructuras algebraicas. Puede considerarse que la nocién de
estructura aparece, con la definicién por Cayley en 1854, del concepto de
grupo abstracto y se desarrolla hasta la teoria de categorias actual,
desarrollada en los ultimos cuarenta afos, que proporciona el marco
correcto para el desarrollo de técnicas de gran importancia como la
homologia, que reunen aspectos aislados que habian ido apareciendo al
profundizar en problemas de teoria de grupos, anillos, mdédulos, etc. EI
primer trabajo en el que se enfoca el Algebra desde el punto de vista de
las estructuras es la famosa obra de Van der Waerden: "Modern
Algebra", de importancia capital para el desarrollo algebraico posterior.

Hablemos ahora un poco de la influencia del Algebra en otras
ramas de la Matemdtica, y en otras ciencias en general. El Algebra no es
una ciencia aplicada en el sentido que tienen éstas hoy en dia, sino una
ciencia pura. Las ciencias aplicadas tienen, en su acepcién usual, dos
caracteristicas que las definen, la de resolver problemas concretos del
mundo que nos rodea y la de tomar prestado para este fin, un cuerpo de
doctrina ya elaborado. El Algebra no depende de nada, salvo de la teoria
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de conjuntos, de la que, en dltima instancia, depende la Matematica toda,
y ademds es una ciencia pura porque tiene su propia problematica,
independiente de los fendmenos de la vida real. Pero el Algebra si es
una ciencia que se aplica. Ella presta a otras ramas de la Matematica y a
otras ciencias en general, sus estructuras para lograr descripciones
formales que las aclaren y potencien nuevos descubrimientos. Bien
conocidas son, por ejemplo, las aplicaciones a la Fisica de la teoria de
grupos y dlgebras de Lie.

Y es que en el fondo de todo objeto matemdtico o coleccion de
objetos, se encuentra la estructura algebraica. Por eso la casi totalidad de
las ramas matematicas usan de los teoremas del Algebra en su propio
beneficio. Pero esta dependencia del Algebra no es como la dependencia,
por ejemplo, de la Loégica. La Ldgica suministra el esquema de
razonamiento verdadero, pero ahi para su misién. El Algebra en cambio,
como ciencia positiva que es, suministra a otras partes de la matemadtica,
resultados positivos que ellas usan para sacar sus conclusiones,
asimismo positivas.

§5.- Campos de investigacion y desarrollo actual del Algebra.
El Departamento de Algebra de la Complutense.

Un brevisimo esbozo histérico del desarrollo de la investigacion
matemadtica espafola nos mostraria, situdndonos en los finales del
pasado siglo, un panorama anguilosado y anclado en un pasado remoto.
Sélo insdlitos esfuerzos personales, como el de Reyes y Prosper, y la
visién de futuro de Algunos prohombres de la Matematica, que
empiezan a remover el terreno, hacen vislumbrar posibles cosechas
futuras. Hombres como Echegaray. Eduardo Torroja, 6 Garcia de Galdeano
conectan con la ciencia europea, comienzan a enseflar la matemdtica de
su tiempo y no la de siglos pasados, fundan revistas matemadticas, crean
la Real Sociedad Matemadtica Espafiola, llegan a interesar y comunicar su
entusiasmo a los estudiosos y envian a éstos al extranjero a formarse en
las mismas fuentes. Fruto, y al mismo tiempo continuidad de estos
esfuerzos, es Rey Pastor que, en su Laboratotio Matematico de la Junta
de Ampliacién de Estudios, consigue ya formar un equipo de
investigadores.

Terminada la guerra, surgen unos cuantos jovenes matematicos
que trabajan individualmente con notables aportaciones y que poco a
poco empiezan a constituir a su alrededor grupos de investigacién. El
escaso numero de matemdticos que salia de nuestras universidades, de
las que unicamente las de Madrid, Barcelona y Zaragoza, y bastante
después la de Santiago, impartian esos estudios, se ve luego altamente
incrementado al crearse secciones y facultades de matematicas en
practicamente todas las universidades. Esto favorece el numero de los
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que se dedican a la investigacion y empieza ya a realizarse ésta de un
modo continuado y en mayor escala.

Este proceso de formacién de investigadores ha llevado en
ocasiones a la constitucion de auténticas escuelas: un primer maestro,
dedicado a una determinada rama de su ciencia, la va desarrollando con
sus discipulos, que a su vez prosiguen la tarea formadora de nuevos
investigadores incipientes.

Por otra parte, la comunidad matemadtica espanola aparece
fuertemente relacionada gracias a la celebracion, desde hace treinta
afios, de una Reunién anual que va turnando su sede por las distintas
Universidades. También se han vinculado a estos congresos los
matematicos portugueses y asi se intercala una reunién en una
universidad lusitana por cada dos reuniones en universidades espafolas.
Estas reuniones, aparte de favorecer el intercambio y la colaboracién
entre investigadores y docentes de la matematica, son la mejor
plataforma para comenzar a darse a conocer nuestros jovenes valores,
cuya presencia cada vez mas activa en ellas permite predecir un
interesante futuro. También cada cuatro afos se celebra el Congreso de
la Agrupacién de Matemadticos de Expresion Latina.

Fruto de estos congresos de distintos tipos es la publicacién de las
actas correspondientes, que recogen las comunicaciones presentadas.
Otras publicaciones son dignas de ser anotadas. Muchos departamentos
universitarios publican de modo informal sus trabajos, aunque algunos
ya en forma seriada, como la Seccién de Matematicas de la Universidad
Auténoma de Barcelona, ¢ el departamento de Geometria y Topologia, 6
la revista "Alxebra", ambos en Santiago, 6 la coleccién de Monografias y
Memorias de Matematicas del Instituto Jorge Juan por citar algunos.
Asimismo, la revista de las Academias de Madrid, Barcelona y Zaragoza
dedican parte de sus numeros a articulos de investigacion matematica.
Finalmente, como revistas matemdticas de cardcter general, hay que
destacar "Collectanea Mathemadtica", editada por la Universidad de
Barcelona y "Revista Matematica Iberoamericana”, publicada por la Real
Sociedad Matemadtica Espafiola en colaboracién con el C.S.I.C.

Observamos con orgullo que la produccién matemadtica espafnola
aparece como muy superior si se la relaciona con la inversion a ella
destinada, encontrandose potencialmente en situaciéon de despegue, en
cuanto que esta inversién no necesita ser muy cuantiosa. Fundamen-
talmente, dicha inversidon estaria destinada a promover estancias de
investigadores espafioles en centros extranjeros que sirvieran para
catalizar la labor de nuestros investigadores.
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Informaremos ahora brevemente sobre las investigaciones de
Algebra en Espana. El desarrollo de la investigacién en Algebra se centra
en torno a cuatro grandes polos, que pueden ser recogidos con las
denominaciones siguientes: 1) geometria algebraica, 2) teoria de grupos,
3) teoria de categorias, 4) teoria de numeros. Estos bloques de trabajo
han nacido de cuatro grupos o escuelas que se localizan, respecti-
vamente, en Madrid, Zaragoza, Santiago y Barcelona, dando lugar a
nuevos nucleos al desplazarse alhunos de sus miembros a otros centros
del pais.

La escuela de geometria algebraica radicada en Madrid, en la
Universidad Complutense y en el Instituto Jorge Juan del C.S.I.C., ha
producido nuevos grupos localizados en las Universidades de Valladolid,
Sevilla, Santander, La Laguna, Mdlaga, y en parte en Zaragoza. Indepen-
dientemente hay grupos de trabajo en las Universidades de Barcelona,
Salamanca y Badajoz, que tocan los mismos temas. La teoria de grupos,
cultivada en la Universidad de Zaragoza, se ha extendido después, a
través de sus miembros, a las Universidades de Santander y Valencia. La
teoria de categorias y dlgebra homolégica de Santiago, tiene, igualmente,
su ramificacion en las Universidades de Granada, Mdlaga y Murcia. Y los
grupos de trabajo sobre teoria de numeros se encuentran en Barcelona,
Bilbao y Madrid. Lo anterior es una simplificacién que no excluye el
hecho de que también se trabaje algo sobre teoria de grupos en
Valladolid o sobre teoria de categorias en Zaragoza.

Como hemos dicho anteriormente, en el Departamento de Algebra
de la Universidad Complutense de Madrid existen dos grandes temas de
investigacion: La teoria de nimeros y la geometria algebraica, dividida
esta ultima en dos vertientes: la geometria algebraica real y la teoria de
la resolucién de singularidades.

Observaremos como conclusién final que el cultivo del 4lgebra es
sus distintas ramas es ya un hecho consolidado entre nuestros
estudiosos y los grupos jévenes que se han incorporado a él hacen
prometer el desarrollo de esta disciplina.
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Abstract

We provide a Ostrowski-Kantorovich convergence theorem under
standard Ostrowski-Kantorovich conditions for a family of Chebyshev-
Halley type methods in Banach spaces. We propose the upper error
bound and lower bound for this family with a real parameter A (0 < A <
2). We also discuss sufficient asymptotic error bounds for the methods.

1. Introduction.

Ostrowski-Kantorovich convergence of the Chebyshev- Halley
iterative methods in Banach space setting was studied by M.A.
Mertvecova [13] , M. Altman [1,2] , B. Doring [8] and R.A. Safiev [18,19].
Later, T. Yamamoto [21,22] developed a theory of a cubic optimal
operator and applied this theory to the study of Ostrowski-Kantorovich
convergence for the Halley method. In recent years V. Candela and A.
Marquina [6] provided Ostrowski-Kantorovich type convergence theo-
rems for both Chebyshev-Halley methods in Banach spaces, by
employing a special technique which is called the recurence relation.
They also convinced that both methods are applicable by providing
many numerical examples. This year, S. Kanno [11] examined two such
convergence theorems for Halley method by Safiev and Yamamoto [21].

He points out that Yamamoto's assumptions -are weaker than that
of Safiev and the error bound is finer than that of Safiev. In this paper,
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we consider similar problems for a family of Chebyshev-Halley type
methods which contain both Chebyshev and Halley methods as specific
cases. By employing classical analysis techniques and under similar
assumptions of the Newton-Ostrowski-Kantorovich theorem [9,10,12,14,
15.16,17,20,21] , we 'give the sufficient conditions and a complete
representation of error bound based on the initial information of the
nonlinear operator equation P(X) = 0 for Chebyshev-Halley type
methods. It means that we can provide the convergence and error
bound for Chebyshev and Halley methods based on the quadratic
optimal operator. But we also point out that there is a method for which
the quadratic optimal operator does not work. Only Yamamoto's third
order optimal operator can be applied in order to present the
convergence and error bound. Finally, we discuss some sufficient
asymptotic error bounds for the methods for all parameters A in [0,2],
and provide numerical examples.

2. The extension of Chebyshev-Halley type methods in
Banach spaces.

Consider a nonlinear operator equation of the form
PX) =0 (2.1)

where P: Dg ¢ Xg — Yp is a nonlinear mapping defined on an open
convex domain Do of a Banach space Xp with values in a Banach space
Yg. Under certain conditions and based on the original Chebyshev-
Halley type methods [23], we can define an equivalent form for the
family in Banach space for all n >0 :

Yy = Xu- PXp)! P(X,)

H(X; , Yn) = P(Xy) !t PG (Y - Xn) (22)
1 A
Xn+1= Yy - 2 [I i 5 HX,, Yn)] HXy, Yo)(Yn- Xn),

where = A is a real parameter. In section 4, we will prove that the

sequence {X,}°.

= generated by (2.2) is well-defined and convergent to

the solution of the nonlinear operator equation (2.1) under standard
Ostrowski-Kantorovich assumptions.

For convenience and brevity, in the following section 3, we
introduce the functions




A
T = K e MO ) Qo= [1+5 HXa, Yo)] (2.3)
3. The Ostrowski-Kantorovich theorem.

First we need a lemma as a useful tool for estimation.

Lemma 3.1. Let P be a nonlinear operator on an open convex domain
Do of a Banach space Xp to another Banach space. Suppose that P has
2nd order continuos Frechet derivatives on  Dg. Then the P(X,+1)

oo

together with the sequence {X,}, _, generated by (2.2) have the

following identity for all n 20 and 0<1<2:
1

P(Xn+l) = OJP"[Yl] e t(XlH-l‘Yn)](l't)dt(XuH'Yn)z £

1
IP"(Zn)[l-K(I-t)]dt(Yn-Xn\ Qn H(Xq . Yo)(Yn-X4) +
0

9 [i—

1
[Pty —; Pe) ot %) @ (a-Xy) (3.2)
0

Now we can state our main results:
Theorem:3:3 Let P: Dy X — YB., XB, Yp are real or complex Banach
spaces, and Dg is an open convex domain. Assume that P has 2nd

order continuous Frechet derivatives on Dg and satisfies the following
standard Ostrowski-Kantorovich conditions:

IP"X) I <M , [P"X)-P"(WI<NIX-Y] ,forall X,;Ye Do (3.4)

For a given initial value Xpe Dg , assume that P(Xg)-! exists and

IPXo)ll<B , IYo-Xoll<n, (3.5)
2N 1:/:2

M[l+m] SKE =0k <22 (3.6)
0.485 : 0<x<l

h=KBns< { o SR (3.7)
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S(Xg, t%) EaiDos

where S(x .,r1) ={x'eX I lIx'-xIl £r}, and set
g) =K -t +3 . g®©=0, (3.9)
Lo Nid= 21
gl i (3.10)

(AT IR) (R 2 NT T2 o, (3.11)

D
1}

where t* is the smallest root of the equation (3.9). Then the Chebyshev
-Halley type procedures (2.2) are convergent for all 0 <A< 2. Also X,

Y,e S(Xg,t¥) , forall n>0 . The limit X* is a solution of the

equation (2.1). We also have the following error estimates and the
optimal error bounds:

[ =X | <t =ity Efor=allen =105 €3:12)
LY Xes <ty =57 forall-n"> 0f; (3.13)

Now, putting

= = 2+6
V=3 laea el = A28 Ros A:\/1+76

we obtain
(1-62)n(T'9)V 1-62)n6v
——(re)\'H RIS 1_gv+1 (3.14)
Rrer
for all A in the interval [1,2) , and
(1-62)n6v z (1-62)n(AB)Y i ; (1-62)n(8V2)v
1-6v+1 : (el bl s (8v2)v+1 (3.15)
A s

for all A in the interval [0.1]. where {tn}zozo and {s,} are defined as

oo
n=0

(tn)
Sn= Uy - > (3.16)

g
g'(tn)




g"(tn)(sn - tn)

hg([n > Sn) = g'(tn)
(3.16)
hre €ty Sn) (Sn =:th)

2% hg(ty + Sn)

th+1l = Sni=

Proof. It suffices to show that the following item is true for all n by
mathematical induction:

(In) Xne S(Xo,ty)
(I1y) I P (X)L I < g ()
(L) 1Y 0-Xo I1< S0ty
(IVy) Yne S(Xo, sn)
(Vo) I Xns1- Yo Il < traiosn

Proof. It is easy to check in the case of n = 0 by initial conditions. Now
assume that (I,) - (V,) are true for a fixed n =1 . Then

(Tne1): N1 Xne1-Xo 1= 1 Xper-Yo ll + | Yo-Xn [+ | Xp-Xo ||
< (th+1-Sp) + (Sp-ty) + (tn'tO) = th+l -

1
(IIn41) : P'Xp+1)-P'(Xo) = _[P”[X0+t(Xn+1—Xo)]dr(XnH—Xo),
0

o)
I P'(Xn+1)-P'(Xo) II < Ml Xn+1-Xo [l < K(tas+1-t0) = Ktny1 < Kt* =

1-V1-2h  1-V1-2h _1 1

T et A RS R

and by Banach Theorem, P'(X,+1)-! exists and

i< Il P(Xo)-11l

T 1- I P(X) LI P (Xn+1)-P(Xo) I
< B < 1 — 1 — 0'( =1
~ 1-BK|| Xp41-Xo Il - (1/B)-K(tn+1-to) ~ (1/B)-Ktnsy  ° n+1)

Il P‘(X11+1)_1

(IITp4+1): Putting @, = Xp-Xgll, Wa=1 Yo-Xpll, and by using the identity
(3.2), we can estimate P(X,+;) to obtain:
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M2¥3

M I h (178) -M®
IPKas) IS5 1 XanYa P+ [ - 5] — = 19
2 (18) - M®
(2-2)M?2 N
= =
N 3 M (1/B) - M@
+% % MY = 5 | Xo+1-Yn ||2+1 7 MY
L2 (1) -M® © 2 (1B) -MD
(Sn‘tn)3
K 5 (2-MK2  (1/B)-Kty
< S(ta+1-8n)% + 4 1 BRsotD o 8(tn+1)
© 2(1/B)-Kty

and so

2(tns1)
I Yo1-Xae1 1€ 1P Kos) L I PKns) 1S = 53 = Sned - tos

(IVas1): I Yor1-Xo I S I Yoe1-Xost 1+ [ Xos1-Yo | + ¥ + @
< (Sn+i-tn+1) + (tar1-Sn) + (Sp-tn) + (ta-t0) = Sn+1

A =, A "
(VasD): |l 2 P‘(Xn-i-l)_lp Kns1))(Yns1-Xps) I £ E” P'(Xp+ ) LI P"(Xpg) [ *

# | Yne1-Xn+1 I € A K(Sn+1-tn+1) K(Sn+1-th+1)
n+1 n+l I = 9 'g'([n-}-l) = (1\B)<Ktn+1

thus [T+ 5 P(Xns1)? P"(Xne1)(Yor1-Xos1)]  exists, and

]

|| [14+3 P&aet)! P"Kas ) Yari K] ||
A

<[1- S 1P oty 1P CKnet) 1 Yoe1-Xinen ]

A A
2 2

-1
g'(tn-‘rl)'l K(Sn+l‘tn+1)] = [1 i g‘(tn+1)'l g"(tn+1) *
= | Sy ;\_
K(Sn+1-tn+1)] = [1 +5 hg(tn+1‘5n+l)]

From (2.2) we have




1 ? -1 <
Xots Yorl 5o 5 [y HEGL, Yam) by HXp Yo)(Ya-Xo)

and then

[ -1
”Xn+2‘Yn+1” < - %”[I a2 ')_)_ HXp+1, Yn+1)] ” Il PV(XnH)'l If =

5 1 A =l e 5
I P"(Xns1) Il Yne1-Xn+1 2 < - 2 [I + 5 hg(tn+1 ) Sn+l)] hg(tnﬂ S

* (Snel-tns1) = thed - Spl

Now we are ready to prove (3.14) and (3.15). Notice that

' K s Ne s
g(tn) =-75 [(t* - tn) + (%% - t)] .
BPenote Tan =t Aty by =% ="t; = -Then*we haye

K : K n
2 an bn . g(ty) =- 2 (ap+by) , ban=ay+ (1'92)6 .

g(ty) =
Now by (3.16), we have

2 2
an-1bn=1(an-1 + ba-1)? + (1-2)a, b,

dp = an-] - 3
(ap-1 + bp.1)° - Aap_1by1(ag.) + by-y)

3

4 ‘
a, ;+(2-Ma,_;by.1

= (@g-pit bnsi) 3 n Bagiibaiilagiy  + bnll)
By a similar way we should have an expression of by :

4 3
by s+ (2a)b Au.

nE= 2% A
(apn-1 + bp-1)? - Aap-1by-1(an-1 + bp-y)

So, we obtain
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Zn-1 L (2-2)

a an-1+ (Z-K)b =1 b -1
o= e gdbin)d o e ay aE s =l
n n-1 &~ n-1 T+ (2_}\') =
bn-l
Case (i) : 0< A <1 . Note that Os;‘“':sesl,so
i

an-
n-1 (7_..)
| Az < ol

< <
dp-1
1+ (Z-K)b :
ne

That is
{ag-1/bp1}3 A2{ay.1/bp1}3 < {ap/by} < 2{ap-1/by-1}3

Then we solve this equation for a, by using the fact that
n
bp= ap+ (1—63)6 :

By (3.15), it is easy to see that

1-62)n6Y _ (1-62)n(A8)Y , (1-62)n(8V2)V

S e g S R e e

1-@v+l . (a9)v+!1 [ 4B V2)v+l
: A 5 V2

Case(ii) : 1 <A< 2 . By a similar method as above and taking into
account (3.14), we have the following error bounds:

(1-62)n(T6)Y 2 1-82)n6v
; (re)v+1l = An SE oyt S 1 -@9v+l
= F

4. Some sufficient asymptotic error bounds.

We discuss some characterizations of the methods (2.2) under the
quadratic optimal operator. We observe that if replace P(X) by g
in (3.2), then we should have

[%‘ l_2_]K2(5n'tn)3
gt [ 1+ 5hg(ta, sa)]

K 5
g(tas+1) = o5 (th+1 - Sp)* + 4.1)

9>

By using the fact that
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g"(tn) 5
o-(tn)(sn'tn)'

hg(tn . Sn)

Ul =oSna =0

N =
(S bt

and putting

Q= +m (Sp-tn)

we now get

K2(sn-tn)3 [K(sp-tn) A l_]

g(tn+1) = Qe'(tn) | L808!(tn) +7-°5 (4.2)
(i) If » =2, then
Fagee Sk
and the sufficient asymptotic error bound for n — oo, is given by
et (4.3)

(sp-tn)? 5 8(1-2h)

(i) If 0 <A < 2, then the sufficient asymptotic error bound for n — oo |
is also given by

gtas1)  (2-MK2B
(sn-ta)3 = 44/1-2h

(4.4)

5. Applications.

In this section, first we use the theorem 3.3 to suggest some new
approaches to the solution of quadratic integral equations of the form:

1

X(s) = Y(s) + & X(s) [q(s.t) X(t)dt (5.1)
0

in the space Xp = C[0 , 1] . of all continuous functions on the interval
[0, 1], with norm for 0<s< 1

I X || = max | X(s)| (
-0<s <1

N
2
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Here we assume that o is a real number called the "albedo™ for
scattering and the kernel q(s,t) is a continuous function of two
variables, with 0 <s , t <1 , and satisfying

(1) Oi<ig(sitE<il s =0iS st s
(ii) qis+rqits)=1, 0<s ,t<1;

The function Y(s) is given continuous function defined on the in-
terval [0,1] , and X(s) is the unknown function sought in [0,1] . Equa-
tions of this type are related with the work of s. Chandrasekhar [7],
and arise in the theories of radiative transfer, neutron transport and in
the kinetic theory of gasses. These exists an extensive literature on
equations like (5.1) under various assumptions on the kernel gq(s,t) and
o is a real or complex number. One can refer to the recent work in
[3,4,5] and thereferences there. Here we demonstrate that the theorem
via the iterative procedures (2.2) provide existence results for (5.1). Mo-
reover the iterative procedures (2.2) converge faster to the solution that
all the previous known ones. Furthermore a better information on the
location of the solution is given. Note that cost is not higher that the
corresponding one of previous methods. For simplicity, we shall assume
that

s
q(s‘t)—s T foralle=0i< s Ep<i

Notice that q(s,t) satisfies (i) and (ii) above. Let us now choose
Y(s) =1 forall s in [0,1] and define the operator P on Xp = C[0,1] by

1

P(X) = o X(s) J

0
Note that every root of the equation P(X) = 0 satisfies the
equation (5.3) Set Xp(s) =1 and o = 0.25 , use the definition of the
first and second Frechet derivatives of the operator P to obtain

T X(t) dt - X(s) + 1 (5.3)

1

M 2| o.| max | (

S

dt | = (2 1n2)| | = 0.34657359 |

J Sk
0
N=0
K=M
B=1P(1) =1.53039421

n 2| P(1)-1P(1) || = 0.26519711




1
h = KfBn = 0.14065901 <5
t* = 0.28704852

B = 0.08239685

(1-62n8Y _ 0.26339662[0.08239685]"
1-gv+1 1 - [0.08239685]V+!

I Xa(A) - X* || <

forr <X <2 . -and

o (1-82)n(8V2)Y  0.26339662 [0.116526742]"
I Xn(A) - X* || < (8 \/—2)\;+1 = . 1

ey

[0.116526742]V+1

w |

V2

forall 0 <A <1 andall n >0 , which shows that X* is unique in
S(Xy.t*). We now discuss the determination of the parameter A so that
the iterative procedures (2.2) will produce better solutions by spending
thesame amount of computations. Our numerical example do convince
the above theoretical conclusions. Let us consider P(X) = X3-2X -5,
where X* = 2.094551481 , and

Ei(Q) =1 X1(2) - X* 1.

Then we have the following numerical results:

Table 5.4
A Xo X Eo(}) E;(d)
030" 20 2.094 0.95 x 10-! 0.55 x 103
10 2.0 2.0943396 0.95 x 10-1 0.21 x 10-3
2.0 2.0 2.0946429 0.95 x 10-! 0.91 x 10-4
3.0 2.0 2.0949152 0.95 x 10-1 0.36 x 10-3
4.0 2.0 2.0951612 0.95 x 10-1 0.61 x 10-3
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Abstract

In this paper, we establish one Fourier exponential series for
Fox's H-function of several variables.

1. Introduction

In last three decades many mathematicians tried to present
various Fourier series and expansions for the G and H-functions of two
and several variables [6,7,8]. A serious study of their work reveals that
almost all these Fourier series and expansions are not the Fourier series
and expansions for the G and H-functions of two and more variables, but
have been presented in a misleading form to appear as Fourier series
and expansions for the G and H-functions of two or several variables
and may be viewed as the manipulative forms of already known work
on Meijer's G-function and Fox's H-function [6,7,8].

It is important to note that the Fourier series and expansions
presented by these mathematicians [6,7,8] involve only one variable x
and have been presented in terms of a single series, therefore these are
Fourier series and expansions for a function of one variable. Any Fourier
series or expansion for a function of several variables should involve
several variables and should be presented in terms of a multiple series
as discussed by Carslaw and Jaeger [2, pp.180-183] for Fourier series of
two variables.
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The object of this paper is to establish one Fourier exponential
series for Fox's H-function of several variables with the help of a
multiple integral evaluated in this paper.

Several mathematicians tried for generalizations of Fox's H-
function [4] and defined Fox's H-function of two and several variables [7,
pp-22-35 & 8, pp.82-98, 251-254].

In this paper, Fox's H-function of several variables [8, pp.251-
254] will be represented as follows:

zZ) O.n;my,ny; ---; MmN, | Z A;Cp1 Do) CPr
H L7 =

Zr P.Q: P1.q1; =5 Prdr | Zr | BiDgq 5 - Dg,

@50

(1) (r) 131 (r) (n)
0,n; my,ny; ---; MmN | Z) (a_i;oc.i \-=7,2j0 )1_pr: (cj Y )1 D (cj ¥, )4 D

H ‘e
(n (r)

151 (r) o(r)
PG : P1.g1: == PrGr | Zr [(DjiB; ---biBy g, (d;.3 )1.q4;"_(djr 3 )4,q,,

2. The multiple integral.

Putting
W=w+vV L=w+v-2 VvV = i(w - V)X
(k) = Wi + vy (k) = wi+ v -2 V(k) = i(wg - Vg)Xk

the multiple integral to be evaluated is

/2 /2
(2.1) f ———f (cos xp)H(D-—(cos x KN eVv(l)---gv(r)
-z ~t/z
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Re(wi+ vj) + tj min [Re dj/8j]1>1 i=1,2, -1
I<jsm;

and the conditions given by [8, pp.252-253, (C.4), (C.5) and (C.6)] are
also satisfied.

Proof : To establish (2.1), express the H-function in the integrand

as [8, pp.251, (C.1)], change the orders of x-integrals and ¢-integrals,
evaluate inner-integrals with the help of [5, p.340], viz.

/2 nl(w+v-1)
(cos x)Hev dx = SR Ty P R Re(w+v) > 1
-Tij2 =

and use [8, p.251, (C.1)].

Note 1 : The integral (2.1) may be viewed as the several variables
analogue of the integral [1, p.88, (2.1)].

3. The Fourier exponential series.
The Fourier exponential series to be established is

_zl(e”‘f cos X1)u
(3.1)  (cos x1)2(D+1]__(cos x;)2m(+1] H =
. z(eXrcos Xp)'r

2 2r-2(v, + ---+V,.) = =
e : St 2 -2i(u, +---+up)
2y M) e 2y o
u =-00 u =-°0

S2i{(uixy + - Furxp) - (vix] + - +vexp) }
€

0,n;mp,ni+1 ;-—-; me,n+ 1 [z |A ;(2-2u1—2\'1,t1),Cp ;—-—;(2—2u,—2vr,t,),Cpp
H
p.q;p1+1.q1+15---;p+1,q.+1|z; |B ; quw (1-2uy.ty) 5 --- 3 qu, (1-2up,tp)
valid under the conditions of (2.1).
Proof : Let
_Zl(ei"ﬂ cos xp)h

(3.2)  (cos xp)2KM+1] - (cos x,)2lu+1] H =
z:(e'*r cOS . X)lr
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we obtain the value of CU4, o u, - Sustituting the valued of Cu,, el et
(3.2), the Fourier exponential series (3.1) is obtained.

the several variables analogue of [1, p.89, (3.1)].

variables yields almost all special functions appearing in applied
mathematics and physical sciences. Therefore, the results presented in
this paper are of a general character and hence may encompass several
cases of interest.
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Abstract

In the 8-dimensional, extended phase space of the polar nodal variables we
propose a canonical reduction of a Hamiltonian H that formalizes a wide variety of
cases of perturbed two-body motion. Our procedure allows us to formally contract
the generic Hamiltonian system under consideration onto a Keplerian one, and
develop a simple analytical solution to H in closed form. In so doing, we solve
H by performing the transition to a set of canonical elements for the dynamical
problem linked to H, the independent variable being then proportional to a true-
like anomaly. These elements generalize the classical Delaunay-Similar (DS) ones
employed by Scheifele and Graf within the framework of the analytical satellite
theories in the extended phase space, and contain the perturbation originally present
in the Hamiltonian H. As a mere illustration of this approach, some special cases of
perturbed two-body motion (formulated by radial intermediaries), borrowed from
the Theory of Artificial Earth Satellites, are adduced.

Key words: perturbed two-body orbital motion, polar nodal variables, reducing
canonical transformations, generalized Delaunay—Similar (GDS) elements, artificial

satellite, radial intermediaries.
AMS (MOS) Subject Classification: 70 F 05, 70 F 15, 70 H 15, 70 M 20, 58 F 05.

PACS Numbers: 95.10.Ce, 95.40.+s, 03.20.+1i, 46.10.+z.

77




1. Introduction

The present paper tackles an analytical investigation concerning a DS—-type approach to
the canonical reduction of a general, homogeneous Hamiltonian 7 that formalizes a case
of two-body motion in which .generic perturbation effects due to certain types of dis-
turbing potentials are taken into account. As special instances after particular choices
of the potential, by extending the results obtained in Floria (1991) and paralleling the
developments presented in Floria (1993), some radial intermediaries in polar nodal vari-
ables (Ferrandiz and Floria, 1991 and 1993) for the so—called Main Problem in Artificial
Satellite Theory are easily recovered and made to fit into this pattern. To be precise,
the general perturbing potential allowed for in H will contain terms proportional to some
negative powers of the radial distance, namely r ~/ with j =0,1,2.

Our procedure allows us to formally contract the generic Hamiltonian system governed
by H onto a conventional Keplerian one. In so doing, we construct a new set of canonical
elements for the dynamical problem attached to 7. This set constitutes a generalization
of the Delaunay—Similar (DS) one (with the true anomaly as the independent variable)
applied by Scheifele and Graf (1974) to reduce the aforesaid Main Problem. Other authors
(see, e. g., Bond and Broucke 1980, Bond and Janin 1981) also considered this set or some
variants of it.

Our elements, obtained without having to seek a complete solution to the Hamilton—
Jacobi equation linked to 7 , are derived by appropriately modifying the technique devised
by Deprit (1981a) to perform the transition from polar nodal variables to a set of Scheifele
elements, and enjoy the property that they contain the perturbation characterized by the
disturbing potentials as an effect incorporated into the generating relations by means of
which the new variables are defined.

As a consequence of our approach and the subsequent reduction, a simple analytical
solution for the general dynamical problem governed by H is derived in the extended,
8-dimensional phase space. We emphasize that this is achieved by means of a canonical
transformation operating on the polar nodal variables, which produces a set of canonical
elements of a Delaunay—Similar (DS) type. The transformation is defined from a suitable
generating function S of the second type (as dubbed by Goldstein, 1980, Chapter 9) whose
functional form is, in principle, inspired by the Hamiltonian H. The development of this
transformation requires the evaluation of certain quadratures over the radial variable r,
which is performed by a standard procedure with the help of appropriately introduced
integration variables of a true-like and eccentric-like anomaly nature, formally interpreted
as paralleling the customary picture of a fictitious Keplerian motion characterized by

suitably amended elliptic elements.
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As the second step in our approach, a proper change of the time parameter in the form
of a differential relation connecting the old and the new time variable is considered. The
new time variable turns out to be proportional to the perturbed true anomaly pertaining
to the aforesaid hypothetic Keplerian motion.

The application of the new canonical variables to H converts its functional form into
the one taken on by the standard Keplerian Hamiltonian when formulated in terms of the
aforementioned set of classical DS variables used by Scheifele and Graf (1974). Conse-
quently, the simplified expression of the transformed Hamiltonian also reveals the status
of canonical elements (in the sense, e. g., of Stiefel and Scheifele, 1971, §18), for the
problem originally posed by H, attained by the new variables now introduced.

In particular, a simple analytical solution in our generalized DS (GDS) variables can
be easily derived for H. As a result of this construction, we conclude that the solution
obtained after this process absorbs the perturbation arising from the potential present in
H.

Finally, the Theory of Artificial Satellites supplies us with some examples to which we
can apply our general developments. We integrate some radial intermediaries that make
up integrable approximations to the J; problem of that theory, and find the corresponding

analytical solutions in our GDS-approach.

2. Formulation of the Basic Hamiltonian

The extended canonical set of the Hill-Whittaker polar nodal variables (Deprit 1981b,
§2, pp.113-114), namely (7,8, v, t; p;, Do, Dv, Do), Will be considered, where pg (the
canonical momentum conjugate to the physical time t) is the negative of the total energy
in the problem to which the variables are applied (see, e. g. Poincaré 1905, vol. I, Chapter
1, 8§12, or Stiefel and Scheifele 1971, §30).

In this set of variables the Hamiltonian H will be formulated as the function
2581
H = Ho(r;pr,po) + D, — Vi (Po, Pus P0; €) + o,
j=0

where

1 pe’ @
Ho(r; prope) = 3 {Pr2 & ﬁ] SH 15

stands for the conventional Keplerian Hamiltonian, and
Vi) = Viap) (Po, Pv D03 &) = > €'V.0(pe» pus o)

formalizes a perturbing potential acting on Hy, and will be an expansion (truncated at the

higher order n;) in ascending powers of a small adimensional parameter ¢, the coefficients
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V; 1(pe , pv, Po) of such an expansion being functions of the canonical momenta pg, p,
and po. In what follows, the specific dependence of the V; (»,) on these momenta and on
¢ will not be significant.

For the sake of simplicity in the notations, from now on the subscripts (n;) will be left
out, unless such omissions and the subsequent simplification of the notations could cause
misunderstanding.

The solution to the problem given by H will be approached by means of the construc-
tion of a canonical transformation, and the resulting Hamiltonian will be integrated in

the new variables.

3. Development of the Transformation

With the aim of performing a canonical reduction of this Hamiltonian and deriving a
solution to it, we propose the change of phase variables to a new set of generalized DS
(GDS, for short) variables,

S
(r,0,v,t; D¢, D0, Pv;P0). — (9e,9z, 96, qn @, L, G, N),

implicitly defined via a generating function depending on the old coordinates and the new

momenta

S Sttt o - B B PN o=l s Nttt B / JQ dr,
To

the function under the radical sign being
1
Q =Q(r;9,L,G, N;e) = } ﬂ+a—§=—2[aor2+a1r+a2],
T r T
having introduced the abbreviations
ap = —2L — 2W(G,N,L;e¢),
ay 2u — 2Vi(G,N,L; ¢),
Q2 _72—2%(G7N7L;E):
and -y designates the function of the new canonical momenta given by

y=v9(®,L,G) =G -2

Consequently




for the sake of conciseness, the functional dependence of the V; on the new momenta has
been omitted. Understand also that the lower limit 7y in the integral is any simple zero
of the function @, that, in particular, can be chosen as the lowest positive root of the
r—equation Q (r; ®, G, N, L; ) = 0.

The transition to the new variables is performed through the generating relations

derived from S, which yields the set of implicit transformation formulae

dr oS
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The equation for g;, can be looked on as a general expression for Kepler’s equation.

The way of proceeding to evaluate these quadratures is based on the idea of adapting
a technique (classically applied to a pure Kepler problem to derive Delaunay variables as
done, e.g., in Deprit 1981b, pp. 115-118, and for quasi-Keplerian systems in the same
article Deprit 1981b, pp. 124-126) to the considered, extended Hamiltonian H and taking
advantage of the homogeneous canonical formalism. In this respect we also refer to Deprit
(1981a), whose procedure is modified so as to take into account the non-Keplerian terms
present in the potential of H .

The introduction of a set of appropriate subsidiary quantities a, e, p, n, ', u*,




depending on the new canonical momenta, by means of the formulae

., = — Vi
YU REEERTA N, K K 1,

2(L + V) I'?
pra

allows one to factorize @ as the product

These formulae resemble those formally holding for a hypothetic, Keplerian motion
characterized by the above elliptic elements (a, e, p) with T’ as the modified angular
momentum magnitude, provided that p* is taken as the gravitational parameter. Corre-
spondingly, bearing in mind that py, p, and p, are not changed by the transformation,
and translating the above expressions into the respective ones in terms of the original
polar nodal variables, the moving mass can be regarded as simulating a Kepler motion

controlled by the fictitious Hamiltonian
H

Our development assumes that the quantity e is such that 0 < e < 1, in which case

the roots of the equation Q(7; ®, L, G, N;z) = 0 are
O<ro=r,=0a(l—-¢e) < =r, =a(l+e),

interpreted as the perturbed pericentre and apocentre radial distances in terms of the

Keplerian—like quantities a and e. Consequently

42 P Py Sl e et ey,

ar T ae

The auziliary integration variables E, of the eccentric-anomaly—type, and f, of the

true—anomaly-type, defined by

r:a(l_eCOSE)' —Lﬂ

vield the following expressions for Q :

u*e? sin? E

L a (1—ecosE)?’
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whence the quadratures I and I, are found to result in

ad 3
Iy=4— (E —esinE), I,= __f_
7 vV 1P
In this way, these auxiliary variables can respectively be contemplated as the eccentric

and true anomaly along the aforesaid fictitious Keplerian motion.

The quadrature I; is performed with the help of the variables £ and f. Putting

I _/T rdr £ T rd l/r /
s O L 1+ecosf

and, after introducing the quantity n = +/ 1 — e? , the last integral is calculated by

means of the Keplerian-like relations

T cos f ='a(cosE—e), rsinf = ansink =a(l — ecosE),

which allows one to express cos f and df in terms of the variable F in such a way that

f df E A b b p E r
/ T T Lo :/ R e RS = 11 = _—=
o 1+ ecosf o N 7 kXM L*n

The preceding preliminary relations allow one to complete the set of transformation
formulae, namely:

-
%—rf,

gc =6 — —(Ha—cesnb) — — ——

oG n 0G p*n
oV 1 ; oV, TE oV, f

gy =V — oo —

ON n

W 1 ) 8Vi TE {

oL ~ (2L)F?

= Vo : oW TE Vs, pye = f
qL—t—[l—i——— [ F

oL | n OL pu*n

In the next section the canonical transformation here obtained will be applied to the
Hamiltonian 7, after which it will be seen that the functional form of the new Hamiltonian

is substantially simplified if an adequate change of the independent variable is performed.

4. Transformed Hamiltonian. New Time Parameter

The Hamiltonian H will now be reduced by the effect of the preceding transformation,

which maps it onto a function H admitting a simple factorized form:

- et \
H(r, == =i PrsPo, PusPo) — H = 5 (@Z=2%).
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where © must be regarded as a function of the GDS canonical variables through the
Keplerian-like relations defining £ and f.

The homogeneous formalism in the extended phase space makes possible the introduc-
tion of new independent variables other than the physical time ¢ in a rather simple way. A
very common device for doing this consists of considering suitable time transformations
t — 7 of the Sundman type, the new fictitious time 7 being defined by a differential rela-
tion of the form dt = f dr, where the function f is taken to be proportional to a power
of the radial distance r through a coefficient which is a constant or a function of the new
canonical variables, say f =k

In the present case, the choice of f as the function
f=27/G + ),

proportional to 72, changes the independent variable from physical time ¢ to a fictitious
time 7 that can be considered as proportional to a ” generalized true anomaly’ along the
fictitious Keplerian motion previously mentioned.

This reparametrizing transformation is reflected in a significant change of expression
in the Hamiltonian: the new Hamiltonian corresponding to 7 as the independent variable

is readily found to be

K=Hi=G-75 — k=6t

2l
whose structure is easily recognizable as formulating a pure Kepler motion in terms of
the DS canonical variables presented by Scheifele and Graf (1974), page 3, Remark(b),
Bond and Broucke (1980), page 359, or Bond and Janin (1981), page 161. The canonical
equations of motion derived from the reduced Hamiltonian K are immediately integrated,

vielding a simple parametrical solution with 7 as the independent variable:

gs = T + const. and gre= (TLE)EE 7 + const.

are linear functions of the fictitious time 7, and the remaining GDS variables behave like
constants of the motion. It is seen that the canonical coordinate g¢s is the pseudo—time
7 up to a constant.

The nature of the preceding canonical solution shows that these GDS variables can
be regarded as making up a set of canonical elements (in the sense, e. g., of Stiefel
and Scheifele 1971, Section 18) when applied to the Hamiltonian H, provided that the
pseudo—time 7 is used as the independent variable.

Since K does not depend explicitly on the perturbation parameter £, the proposed
new set of variables does intrinsically contain all variations due to the potential associate
to H.




To sum up: a reduction of H to the Hamiltonian K corresponding to a hypothetic
conventional Keplerian one has been performed, and the proposed variables absorb the
perturbing influence originally included in the potential of H.

As for the way of obtaining the physical time ¢, observe that its determination does

not require the integration of the differential relation dt = f dr. As in the case of

the classical DS elements (Scheifele and Graf 1974, page 3, Remark(a); Bond and Janin
1981, page 159), an analogous remark is now pertinent: ¢ is obtained from 7 via the time

element ¢y by means of the generalized Kepler equation

Vo |1 :
L {0 B0l R R o in S oy
t qL+{ + ]n( e sin )+8Lu.*77 3L GLVE| T

o L'E Va Mo i
oL

taking into account the expressions for the remaining elements as obtained from the
canonical solution to the reduced Hamiltonian K.

By making £ = 0 in the generating function S, the resulting canonical transformation
performs the transition from Hill-Whittaker variables to the set of canonical Delaunay—
Similar variables used by Scheifele and Graf (1974).

Remember that the use of sets of polar-like variables and other ones derived from
them introduces virtual singularities due to small values of eccentricity and/or values of
the inclination close to 0° or 180°. As done in Floria and Ferrdndiz (1991), associate
canonical sets of generalized Poincaré-Similar (GPS) variables corresponding to the pre-
ceding GDS ones can be defined. Such GPS variables also incorporate the contribution
of the perturbing potential into their definition, and provide a way of avoiding the ap-
pearance of the above—mentioned virtual singularities when studies of perturbations are

carried out.

5. Form of the Solution

In the light of the preceding considerations, from the transformation equations and af-
ter solving for the original polar nodal variables in terms of the auxiliary integration
variables E and f and taking advantage of the subsidiary Keplerian-kind quantities pre-

viously introduced, a Keplerian-like solution to 7 can be set up by means of a parametric




representation schematized in the form

i
1+ecosf’

e sin 5 3
(I——eco?E—) = \/?esmf,
1 ovy TE
8G p*n
oV TE
ON p=*n

1 : oy TE
:,Z(E — esinF) + 9

r=a(l —ecosE) =

pg = G = const., p, = N = const., Don=

together with
gs - f = 7 + const., gc =

L

qL W 7 -+ const., gan

The generality of this pattern facilitates a compact and unified treatment of a wide
class of perturbed two-body problems in GDS variables. To illustrate this approach, the
next Section contains, as special cases under specific choices of the perturbing potential
that distorts the purely Keplerian orbit, the corresponding analytical solutions to some

radial intermediaries for the J; problem of the theory of artificial Earth satellites.

6. Solution to Some Radial Intermediaries

The potentials considered in this section exemplify some remarkable particular perturba-

tions that only contain a péwer of r with the exponent —2 (Deprit’s 1981b intermediary),
—1 or 0 (Ferrdndiz and Floria 1993). As stated in Ferrdndiz and Floria (1993), the new

intermediaries share, with that introduced by Deprit, a great formal proximity to the

Keplerian picture of motion. This statement is, once again, confirmed here by the present
analysis, in view of the simple solution in closed form (see below) that they admit.

The potentials will first be expressed in extended Hill-Whittaker variables, and the
following remarks concerning the notations are in order: the symbol ¢ = —J,, which
denotes the dimensionless oblateness parameter of the primary, will act as the (small)
perturbation parameter; y stands for the gravitational constant of the central body, and R.

represents its mean equatorial radius. Remember also that the functions of the inclination




c and s are given by

czcos]:p—", = sin/,
Pe

For convenience, the expression for the potential will be given in terms of powers of c¢?,
instead of doing it in terms of powers of s2.

Since the canonical momenta py, p,, and py remain unchanged under the considered
transformations, there is no difficulty in translating partial derivatives with respect to
them into partial derivatives with respect to the corresponding new momenta, a mere

change of notation being sufficient.
6.1 Deprit’s Intermediary (1981b)
The potential yielding this intermediary is obtained for

Vo(ps, Py po; €) =0,  Vi(pe,pv,pos €) =0,

2R2
Vo = Vi (po,p, —i€) = e B2 (3¢2-1),
Pe

and therefore

oV Uil [1__6N2} Vs 3u? RN

BN oA

e G?

while the remaining partial derivatives involved in the transformation vanish identically.

Auxiliary quantities:

5y 10 =,
L

=% + 2V, = pa(l —e?),

2 2 T2
1—- —=1- —
pa n

Fictitious Keplerian—like Hamiltonian:




Solution to the intermediary:

(2L)32 T’

= const., po = L = const.

Notice that, in the present case, the generalized Kepler equation can also be written

in the more familiar form

w ;
t =g + L7~ (E — esinE — gp).

6.2 A Brouwer-like Intermediary (Ferrdndiz, 1990)

This intermediary, directly developed by Ferrandiz in the extended phase space and pre-
sented in Ferrdndiz and Floria (1993), contains a first order contribution emanating from

a potential V of the form

Wo.o = Vf),(l)(Pe,Pu,Po; ) = eV

2
Sy Zg:s (3¢2 = 1) (2p0)%2.

The corresponding Hamiltonian is close to the secular Hamiltonian of Brouwer’s solu-
tion (1959), although not exactly the same, due to a different treatment of some quantities
involved in the derivation. Further details can be found in the aforementioned paper by
Ferrandiz and Floria (1993).

Because of a different choice of the perturbation parameter, this expression is slightly
different from that given in the said paper: on that occasion, the choice was £ =

—uR.2J, ,whilenowe= —J,.

The list of partial derivatives involved in the transformation will now be




Auxiliary quantities:

Solution to the intermediary:

oy N
1+ ecosf’

= e sinFE i FTE
sV (1 —ecosE) =~ \/p ST

— esinFE) + f,

r =a(l —ecosE) =

— esinE) — (QT“)W—f'

p, = N = const., po = L = const.

Due to the relation g = f, the true-like anomaly has become a canonical variable in

the new set of generalized DS elements.




6.3 Ferrdndiz’ Intermediary (1990)

Thisis an r ~! —radial intermediary and was also presented in Ferrandiz and Floria (1993);
remembering the above remark concerning the perturbation parameter, its functional form

is
Vi, =

I
iy
)
3
)
3
<
g
o
m
-
Il
™
Ay
-

and the derivatives

2 2. 2
S B [1_51\’ }W—L

oG 4G4 G?
Vae,  SpiRIN =
N . - 2GS T
3V1 /LQR 2 31\"2 =Y
oL T e or LV
Auxiliary quantities:
: p (2L)%2
u*=p—V, o — Ne=
- 2L w*
2
F'? = ~2 = pta(l —e?) p:a(l—eg)—q
0t
2
5 2 2L~?
T l —_ = 1 —_ —
: hra i e

90




Solution to the intermediary:

e nlh—
1+ ecosf’

1 e sinE | * Sl
r = —_ e T 1 y
2 V a (1-ecosE) \/ D

= oV, vE
7 %+ 35 7 SEE
vy v

S )
an N

T = a(l —ecosE) =

SV
L w'n ~ (2L}R

t = q %(E—esinE)+

pe = G const., p, = N = const., po = L = const.

In this case, the auxiliary variable f coincides with the canonical variable gg .
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Abstract

This paper concerns the calculation of certain auxiliary partial derivatives re-
quired to reduce perturbed Keplerian systems to Delaunay normal form, at least at
the first order. To this end, we elucidate the way in which the functions involved in
the intermediate reckoning work depend on the dynamical variables of interest, and
the detail of some elusive steps is thoroughly considered. To be precise, we have in
mind the case of the hyperbolic-type orbital motion of an artificial satellite of an

oblate planet, but applications to other dynamical systems can be found.

Key words: perturbed Keplerian systems, Delaunay normalization, hyperbolic—

type orbital motion, artificial satellite, oblateness perturbation.
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1. Introduction

The present note was originally motivated by some developments due to Brouwer (1959)
and Hori (1961). These authors worked out the analytical treatment of the oblateness
perturbation problem in Satellite Theory by using the canonical perturbation method
attributed to von Zeipel. As well known, this method mixes the coordinates and the
momenta belonging to different sets of canonical variables, since the generating function

of the transformafion at issue depends on both old and new variables. A summary of the
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main contents of Brouwer’s article can also be found, e. g., in Brouwer and Clemence

(1961), Chapter XVII, §12.

Remember that Brouwer approached the Main Problem of Artificial Satellite Theory
by formulating it in Delaunay variables and seeking an approximate canonical solution
to it. His way of analytically solving the corresponding Hamiltonian resorts to the con-
struction of a near—identity canonical transformation creating new ignorable coordinates
of a similar type. The said transformation being defined by a generating function, he
obtained the generator by means of the Poincaré—von Zeipel perturbation method. After
solving the averaged Hamiltonian, the determination of the solution to the original prob-
lem requires the knowledge of the periodic perturbations, which are calculated through
the partial derivatives of the aforementioned generating function.

Hori (1961), in his investigation of the hyperbolic motion of an artificial satellite acted
upon by the potential characterizing the Main Problem in the Zonal Satellite Theory,
formulated the J, perturbation problem in terms of a variant of the classical Delaunay
elements that is applicable to the study of hyperbolic orbital motion. He derived this
set by adapting the construction that, via the Whittaker method, Brouwer and Clemence
(1961), Chapter XI, §4 and §9, had offered in the context of elliptic motion. Next,
he also obtained a first—order analytical solution by means of a near—identity canonical
transformation whose generating function was determined by devising an appropriate
modification of the Poincaré—von Zeipel procedure. He replaced the usual periodicity
conditions by the device of imposing conditions at r = co.

Contemplated within the general framework of the problem of motion of an artificial
Earth satellite, the treatment carried out by Hori is intended as a translation (at least
up to the first order) of Brouwer’s solution (1959) to the case of hyperbolic-like orbits.
The analytical tools applied by Hori are essentially of the same nature as those previously
employed by Brouwer.

In the present paper, the Main Problem of the Artificial Satellite Theory will be con-
sidered, also under conditions such that the problem results in the case of orbital motion
with a positive value for the total energy. After formulating the Hamiltonian in a set
of Delaunay variables applicable to hyperbolic-ltke orbits, we can solve this case of the
Jo problem by means of a variant of the Lie transform technique (Hori, 1966; Deprit,
1969), which allows us to perform a near—identity canonical transformation to a new set
of variables producing a Delaunay normalization of our perturbed dynamical system. This
process is very similar, and parallel, to that carried out by Hori (1961). For this reason
we shall not go into details of the required intermediate developments, but we shall report

on some elusive calculations whose particulars we have never found in the literature and
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could turn out to be somewhat misleading, since there can be some muddle over the ex-

plicit and implicit functional dependence of certain expressions involved in the calculation.

2. Review of the Delaunay Variables in Hyperbolic Motion

Following Deprit ( 1982), p. 9, the Delaunay normal form of a perturbed Keplerian system
is obtained in two steps: (i) the expansion of the original Hamiltonian in Delaunay vari-
ables; and (ii) the elimination of the mean anomaly from the transformed Hamiltonian.
To achieve the first step, use will be made of a canonical set of Delaunay variables
which is applicable to hyperbolic motion. The set derived by Hori (1961) from the Ke-
plerian orbital elements via the Whittaker method was obtained by Floria (1990; and

1993, §9.2) in.appropriately modifying the Delaunay map considered by Deprit (1981),

§2, pp.114-118, for the treatment of elliptic motion. This Delaunay mapping oper-
ates on the phase space of the Hill-Whittaker polar nodal variables, denoted by the
symbols (7,8, v ; pr, e, Pv ), and allows us to construct a set of Delaunay elements
(ligih L G H)i

The interpretation of the polar nodal variables is the following: r stands for the radial
distance from the primary’s centre of mass to the moving point; 6 is the argument of
latitude of the orbiter, measured from the ascending node; v designates the argument of
longitude of the ascending node. As for the canonical momenta, p, represents the radial
velocity of the moving mass, py denotes the modulus of the angular momentum vector,
and p, is the polar component of the angular momentum. In addition to this, the symbol
t stands for the physical time, and p is the gravitational parameter of the central body.

Resorting to the polar nodal variables, and remembering the well known Keplerian

orbital elements (a, e, I, w, Q, M), the Delaunay variables in hyperbolic motion are
l =esinhF — F = M,
gis= =W
R =2ty =0 H: =5 Glcos =p,=

with the following meaning for the subsidiary quantities e(L, G) and p(G), as functions
of the Delaunay momenta, and the auxiliary variables F(r; L, G), hyperbolic eccentric

anomaly, and f(r; L, G), true anomaly:

2 2
ez=1+G—>1. p=G—=
[ ;

r =a(ecoshF — 1),
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Notice that
G

e2 —1 =

with the positive determination of the square root on the left-hand side.
Other usual and helpful relations between the anomalies f and F' are

ve? —1 sinhF e — cosh F

ecoshF — 1 cosf; 1= ecoshF — 1’

vVe2—1sinf

1 + ecosf

sinf =

e + cosf

inhF = ey
s 1 + ecosf

: cosh F' =
and the (hyperbolic) Gauss equation

f\IERRSE el T (E)
tan<§>— T T tanh 5 b

In the next section the Delaunay canonical elements will be applied to the Hamiltonian
of the Main Problem.

3. The Main Problem of Artificial Satellite Theory

Using the canonical set of Hill-Whittaker polar nodal variables (7,6, v ; pr, ps, p,) to
coordinatize the 6—dimensional phase space, the canonical formulation of the Main Prob-
lem of the theory of motion of zonal satellites leads to an investigation of the dynamical

system governed by the Hamiltonian function

M HO(TT"»'—§pr7p6’_)+5M1(T767—§_7p8:pu)

T 4r3

Lty «Cippd p ©R.®
§[pr % re | 1 7 E

{(3c2 = 1)i==3s2 cos29},

with the customary abbreviations for the functions of the inclination I = I (pg, p, ):

c'=icl(phin, )= Cos = % , s =5(psg,py,) = sinl.
o

As for the notations, the function H, represents the Hamiltonian of a standard Kepler
problem, R. designates the mean equatorial radius of the central body, and the (small)
parameter = = —J, is a dimensionless measure of the flattening of the primary.

By virtue of the zonal nature of this problem, the polar component of the angular
momentum, p, = H , is an integral of the motion.

It is now remembered that, unlike the Delaunay variables, the applicability of the
polar nodal variables is not restricted to the study of a specific kind of motion. Thus, we

may contemplate the above Hamiltonian M as that corresponding to any type of orbit in
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the context of the J, problem of the Artificial Satellite Theory. With all due precaution,
and taking into account the different expressions of the relations defining the Delaunay
variables and the Keplerian elements for elliptic and for hyperbolic orbital motion, we
can formalize both cases of the Main Problem under a common Hamiltonian function, as
shown below.

In terms of the Delaunay elements, the preceding Hamiltonian is formulated as

M= Ky(—,—,—;L,—, =) +eM;(l,g,—;L,G, H)
= Ko(L) + ¢ u4}f:2 {(302 —1) + 3s2 00529} X
where K is the Keplerian Hamiltonian in Delaunay variables, while r and 8 = f + g are
understood to be expressed in terms of the appropriate Delaunay set, taking into account
the form of the Keplerian orbital elements as subsidiary quantities and the auxiliary
variables f and F (or f and FE, in case of elliptic motion).

For convenience, and in anticipation of future calculations, one usually rewrites the

first—order part of M under the form

(e () » a0 (3)
M; E5ian {(30 1) = +:3s 5 cos26

ip 2 3 3
Eu4f§ {(302—1)(g> + 352 (%) cosQ&}.

4. Elimination of the mean anomaly

In what follows, we return to the consideration of the hyperbolic J, problem. Resorting to
an appropriate modification of the Lie transform technigque (Hori, 1966; Deprit, 1969), the
outlines of a first—order analytical integration based on the adequate Delaunay variables
follow the pattern presented by Hori (1961).

Correspondingly, in order to perform a first—order Delaunay normalization of the pos-
itive energy Main Problem, a canonical transformation to a new set of variables of the

same type as those in which the problem is formulated, say
i4 ! ! / / !
Gl g bl G B )i TG g s, B TG )
is proposed that is governed by a generating function

We = Willl g vh oLl G H) = eWa (U, g5 b Bl GE HY 450 (2),

whose specification is effected by a modification of the Lie transform method. For the

purposes of the present study, the determination of W up to the first order will suffice.
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(Remember also that H is an integral of the problem, and so it remains unchanged under
this transformation).

It is desired that the transformed Hamiltonian should take on the form

1% ; ; ; ; 112
M —— M =M0 =ICO ’CO(L)='2—(LI—)2

The primed quantities are obtained from the original ones by putting the corresponding
new (primed) canonical variable in place of the old one. For the sake of conciseness in
the notation, the prime symbol will be dropped out. Thus, the first—order equation of the
perturbation method will now read
_ o o

oL ol
5;11/1 s #42[]?22 {A G)a + B <§>3 cos(2g + 2f)] ;

bearing in mind that the quantities occurring in these expressions depend on the new

{K:O¢I/1;1}:_M1=> =_M1(lg’—7L~GaH)

variables. In particular, one has introduced the notations

2 .HQ 2 2
A =3¢ —j18za8— 4 =B = 36 =3(1—c°)=3(1—ﬁ>.

The reckoning work can be carried out essentially in the same way as in Hori’s 1961
paper, taking into account that now we are dealing with the new (primed) variables
instead of considering the old Delaunay angles and the new momenta.

The final specification of W; and the perturbation study can be carried out as in Hori’s
article, which requires the knowledge of certain partial derivatives. The detail of some
steps in the calculation process seems to be rather elusive. In this respect, we have never
found any clarifying remark or hint in the literature. This is the reason why we intend to
elucidate the dependence of the functions involved in the calculation.

In a more precise way, partial derivatives with respect to the angles and with respect
to H pose no problem. On the other hand, by application of the chain rule, the partial
derivatives with respect to the new canonical momenta L' and G’ (see Brouwer 1959,
pp. 378-379, and Hori 1961, p.260) are reduced to partial derivatives with respect to the
eccentricity-like quantity e (read e’). This is just the point that we wish to clarify, since
we think that the inconvenience we have encountered throughout the computation of the
said derivatives is mainly due to the form under which certain functional dependences are

nested.




5. On Certain Functional Dependences in the Kepler Problem

The analytical treatment of some perturbed Keplerian systems (e. g., the planetary the-
ory, the theory of motion of an artificial satellite), say the way of developing approximate
analytical solutions when dealing with perturbed Keplerian systems, usually resorts to
methods involving a Delaunay normalization.

With this aim in view, some mathematical tools are required. Some authors (Ahmed,
1994; Kelly, 1989) have recently contributed formulae and techniques to deal with the re-
duction of perturbed Keplerian systems to normal form. The said authors have evaluated
certain integrals occurring when performing this process of reduction. In his turn, Palacian
(1992), Appendix 2, gives a table of derivatives with respect to the Hill-Whittaker and

Delaunay variables.

In performing a Delaunay normalization of the artificial satellite problem, for elliptic

motion Brouwer (1959), p. 379, states that

=il

while for hyperbolic motion Hori (1961), p. 260, adduces

20 (Yer L (2B

(g)zcosf, Z_J; = <§ + L—2> sin f,

We have encountered certain difficulties when trying to deduce these and other formu-
lae, whose calculation seems to be rather elusive. In order to reconstruct these derivatives
for application to hyperbolic-like motion (the treatment of the elliptic case is analogous),
we establish the functional dependences through which we shall interpret and carry out
the calculation.

We start from the basic formulae

p

For convenience, we introduce

p

DO s et

r(l;L,G) = a(ecoshF — 1) <

99




A significant role is played by the (hyperbolic) Kepler equation
Il =esinhF — F.

Observe that we are considering f = f(e,l) and F = F(e,l) through the above
Kepler equation and the customary relations between f and F.
With these conventions, in the next section we undertake the construction of the de-

sired derivatives.

6. Calculation of Some Partial Derivatives

Successive steps will complete a set of formulae which will be applied in future perturba-

tion developments.

6.1 Calculation of OF/0e

According to the preceding remark concerning the dependence of F' = F(e,l) through
the Kepler equation, by forming the partial derivative with respect to e in that equation
we get

@

de ’

[
0= % = sinhF + (ecoshF — 1)

from which there results

oF — sinh F gy
e

6.2 Calculation of d(a/r)/0e and 9 (r/a)/de

From 7 = a(e cosh F — 1) we deduce

d (a 0 1 aNe : oF
%) = 5 lommr=y) = - () (o + comr )

a\? e sinh® F a\2 e—coshF
- (—) coshF — —————— | = — (—) —
T (ecoshF — 1) r/) (ecoshF — 1)

And finally




by solving for @ (r/a)/de we conclude that

20)=- () ) e

This formula may also be obtained in the following simple way: starting from

At 5] : oF
% (a) = 52(6 coshF — 1) = coshF + esmth? ;
by applying the preceding result (Subsection 6.1) concerning the form of 9F/de and the

Keplerian relations between the anomalies, we arrive at the desired final expression.

6.3 Calculation of 0f/0e

Remember that we are considering f = f(e,l) and F = F(e,[), and the basic relation

e — cosh F

o] ecoshF —1°

By constructing here the partial derivative of both sides of this equality with respect to

e, one has

. .0f (1 — sinhF(0F/0e)) (ecoshF — 1)
2 Smfég 3 (ecoshF — 1)2

(cosh F + e sinh F (0F/0e)) (e — cosh F)
(ecoshF — 1)? :

after introducing the expression previously obtained for F/de, we eliminate this deriva-

tive and get

sin® f

in i . a [ e — coshF \?
L e e? —1 r \ecoshF — 1

- 2
sin® f a a W
2————coszf=< > +—)sm‘
el T et —1 T

8f=_< 1 +§>sinf.

de e2 —1

This expression can also be recovered by performing the calculations in a different

and finally

way, which suggests an alternate derivation for this formula: starting from

I etz ol F
= = nh —
tem2 e_lta 5

and taking the logarithmic derivative with respect to e, one obtains

1 of 1 1 oF

2 tan(f/2) cos2(f/2) de  e2—1 i1 2 tanh(F/2) cosh?(F/2) Be
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Consequently, the double—angle formulae yield

Sl 0f Sk e 1/10R
sinf e = e2-1 sinh I Oe’

and keeping in mind (Subsection 6.1) the expression for 0F/de:

Of & ( 1

T ez —1

a
+ —)sinf.
T

6.4 Calculation of 8 (p/r)/0e and 0(r/p)/0e

Taking into account the relation

By solving for the sought derivative

L) - 2o 2] - 2 (- 2enr)

For an alternative derivation, we consider that a/p = 1/(e? — 1) can be looked on as

a function depending on e only, and then

4 (a
de \p

from which we have

o (r
de \p

01 () =
de\p) €2 -1

Notice also that

pr 95
r _1=>Be<r




7. Final Summary of Formulae

With the help of the auxiliary relations
o _ (3)2 P
T GJ) T’

ve2—1 sinhF

s ecoshF — 1

i oSyl 500
L

L
G
we complete the set of formulae:

oF sinh F (15 Ji LN
% _B—CW——]_ = —'T-: sinh F = E smf == <5> ; Sll'th.

of ; R L) .
B - = +—>smf——53<;+1>smf
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Summary.

We study the method of randomized response for analytic studies
proposing an unbiased estimator for affirmative proportion of a certain
intimate question, and calculating its variance. An analogously study is
carried out in stratified sampling, obtaining the minimum allocation in
this context. We conclude with a study of randomized response combi-
ning, simultaneously, stratified sampling and analytic studies.

Introduccion.

El problema de respuesta aleatorizada, propuesto por Warner
(1965), no ha sido estudiado cuando nos interesamos en estudios
analiticos (Koop, 1986), ni se ha tratado en combinacién con muestreo
estratificado, o con muestreo estratificado para estudios analiticos (Ruiz,
1991). En este trabajo presentamos, para los tres casos anteriores,
estimadores insesgados de la proporcién de la poblacién infinita sub-
yacente que contestaria afirmativamente a una cuestion de caracter
intimo. Asimismo, calcularemos la varianza de tales estimadores.

2. Respuesta aleatorizada para estudios analiticos.

Supongamos que las posibles respuestas de una poblacién finita
o "no"), constituyen una materializacion de una superpoblacién, de

"

("si




modo que la poblacién finita, de tamafo N, se puede considerar como
una muestra aleatoria simple de una superpoblacién infinita que tiene
probabilidad A 6 C de responder "si" a la pregunta intima o a la pregunta
aleatorizada, respectivamente. Si B es la respuesta afirmativa conocida
de cierta pregunta intrascendente en la poblacién finita observable y P
la probabilidad de preguntar la cuestion intima a un individuo (siendo
1-P la probabilidad de preguntar la cuestién intrascendente al indivi-
duo), resulta que la proporcién de respuestas afirmativas con la pregun-
ta aleatorizada en la poblacién finita es, por el teorema de la probabili-
dad total,

C=PA + (1-P)B (1)
siendo A y B las proporciones, en la poblacién finita, de "sies" en la

cuestiéon intima e intrascendente, respectivamente. Despejando A en (1),
tenemos

Usando disefio "masr” (muestreo aleatorio simple con reempla-
zamiento) y siendo M el modelo superpoblacional latente en estudios
analiticos (Koop, 1986), tenemos

A N -

E(A) = EMEmast(A) = Em(A) = A

es decir, A es insesgado para el pardmetro superpoblacional A. Para
calcular la varianza de A, aplicamos el teorema de Madow,

V(&) = EMVimas(A) + VMEmaer(A)

Vmasr(:&) = Do

1 C(1-0)
p2 n

de donde

A
EMV mnsr(A) =




Por otra parte, se tiene

A(l A)

Emasr(lz‘) =A VMEmasr(I/A\\) VMm(A) = N

Sustituyendo las igualdades (3) y (4) en (2), resulta

A2

A N-1 =~ A
V(A) = pz (CGCH+ — (3)

donde C-C2 = NVy(C) y A-A? = NVy(A). La expresion (5) es la varian-
za de A como estimador insesgado de A en estudios analiticos, con
pregunta aleatorizada en la primera fase.

3. Respuesta aleatorizada en muestreo estratificado.
En el estrato h (de tamafio Ny) de una poblacién finita, tenemos
Ch= PrAp + (I-Ph)Bh
siendo Py la probabilidad de preguntar la cuestién intima y Ay, Bp, Cy, las
proporciones de contestacién afirmativa en el estrato h de la pregunta
intima, intrascendente y aleatorizada, respectivamente. Entonces, el esti-
mador insesgado de Cpserd su p10porc1on muestral Ch (La pregunta
intrascendente cuya proporcién de “sies" en el estrato h, es decir By,

puede ser "una" comidn, 6 “varias" de un estrato a otro). Ahora
tendremos

A A
Ch = PyAp + (1-Py)By

de donde un estimador insesgado de Ap, serad
A Il
An= p— [Cn- (1-Pn)By]
h

siendo su varianza

1 Cp(1-Ch)
P Mh

A 1 A
V(Aw == VCy =
Ph

)
h
y donde ny es el tamafio muestral con diseiio "masr" en el estrato h.

El estimador insesgado de A, la proporcién de "sies” de la cuestion
intima en la poblacién finita, sera




I
2 = thgh
h=1
donde Wy=Np/N (h = 1,2,..,.L) y L el nimero de estratos. La varianza es

1 Cn(1-Cp)

2 n

P, L
y puede minimizarse por el método de los multiplicadores de Lagrange.
Asi, llamando n al tamano muestral global, esto es

&
n=2nh
h=1

se obtiene

Wh VCh(1-Cp)

=il [
P, th=12,..L)

Np o<

de donde la varianza minima es

2
W VCr(1-Cp)

Py

A il
Vo) =1 | X
h=1

Si P, = 1 para todo h, se pregunta con seguridad la cuestién
intima. Si 0 < P, < 1 para algin h, aumenta la proteccién de la intimidad
del encuestado, pero se pierde precision del estimador A, que puede
recuperarse aumentando suficientemente el tamafio muestral n.

4. Respuesta aleatorizada en muestreo estratificado
para estudios analificos.

El estimador propuesto en este caso, serd

A L — A
A= Z WirAy
h

=1

£ . ; A
donde Wy es el peso relativo superpoblacional en el estrato h, y Ap la
proporcién poblacional estimada que contesta afirmativamente a la




pregunta intima en el estrato h. Sea Ny el tamafio del estrato h en la
poblacién finita, de modo que si L es el numero de estratos, tendremos

L
=2Nr
h=1

A
El estimador A es insesgado para A cuando, en cada estrato, se
muestrea independiente y aleatoriamente con reposicién. En efecto,

= Lot A L - - —
E(A) = ), WhEMEmasr(An) = Y, WhAy =
h=1 h=1

siendo Ay la probabilidad de respuesta afirmativa a la pregunta intima
en el estrato superpoblaciopal h-ésimo. Utilizando la igualdad (5), en
cada estrato la varianza de en estudios analiticos, es

2 )
(No-1)(Ch-Cp)  Ap-A,

I L A = 2
VA = X vAn = X W) S
h=1 h=1 nhNhPh 2

siendo np el tamafio muestral en el estrato h, Cp la probabilidad de
respuesta afirmativa a la pregunta aleatorizada en el estrato super-
poblacional h-ésimo, y Py la probabilidad de pregunta intima en el
estrato h.

Minimizando la varianza obtenida en (6), sujeto a que
&
— z nh
h=1

deducimos (aplicando el método de los multiplicadores de Lagrange) que
debe guardarse la siguiente proporcionalidad

np o \“Nh\/ (N-1)(C-C)/PpV Ny

Finalmente, sustituyendo (7) en (6), la varianza minima es

A E 2 15 Ah- Ah

= 1 — ) = .

Vmin(A) = {Z wh\/ (N-1)(Cp-C;))/PpV Nh]+ YW (8)
h=1 h=1




Observar que, en cada estrato, By (proporcién de respuestas afir-
mativas a la pregunta intrascendente en el estrato h de la poblacién
finita) debe ser conocida, pudiendo variar la pregunta de un estrato a
otro.

Si 0<P, <1 para algin h, la varianza dada por (8) es mayor
respecto del caso P,= 1. De cualquier modo, si Py > O para todo h, al
aumentar el tamafo muestral n, la precisién puede recuperarse a un
nivel mayor de proteccién de la intimidad de los encuestados, pues el
segundo monomio en (8) es constante.
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Summary.

The linear invariance of optimum stratification bounds are stu-
died for estimating population mean and variance; moreover, the inva-
riance of optimum sample allocations and the proportionality of usual
variance estimators in each stratum, allow us of the stratification techni-
ques of infinite population, to have valid instruments for a population
and all transformed from this to origin and scale changes in the measure
of the units, that is to say, the techniques are communly valid for wide
families of populations.

Introduccion.

Hasta ahora se conocen dos problemas de estratificacién Optima,
planteados para minimizar la varianza de estimadores insesgados en
muestreo estratificado con el objetivo de estimar la media poblacional y
la varianza poblacional, respectivamente. El problema de estratificacion
Optima para estimar la media poblacional, es debido a Dalenius, T. (1957,
cap. 7), mientras que para estimar la varianza poblacional, es debido a
Ruiz, M y Ruiz, M.M. (1992). En ambos casos se producen sustanciales
ganancias de precisién con respecto a los estimadores media y
cuasivarianza muestrales cldsicos.




Su aplicacién actual en problemas de inferencia estadistica es
relativa, pues a pesar de dar pautas para minimizar la varianza de los
estimadores insesgados habituales, su uso practico s6lo se hace mediante
aproximaciones, que si bien dejan ya de dar soluciones OJptimas,
producen ganancias suficientes en precision como para considerarlas
itiles en problemas interferenciales concretos.

En orden a hacer buen uso de estas técnicas, vamos a justificar
que los puntos de estratificacion Optima son invariantes lineales y que,
las afijaciones muestrales y los tamanos relativos de los estratos no
varian al hacer transformaciones lineales en la variable aleatoria con-
siderada; por dltimo, las varianzas de los estimadores insesgados para
poblaciones transformadas linealmente son directamente proporcionales
a la varianza de una poblacién fija, previamente considerada. De este
modo, si disponemos de una poblacién fija, las soluciones que obten-
dremos con ella serdn anadlogas a las que resulten para cualquier otra
poblacién transformada linealmente de la anterior. Estas ideas nos
permiten dar los pasos a realizar ante un problema concreto de infe-
rencia o estimacion estratificada de la media o varianza poblacional
cuando se conoce el tipo de distribucién poblacional, salvo un cambio de
origen y escala.

2. Estimacion de la media poblacional.
Partimos de la variable aleatoria Z con funcién de densidad f(z) ,
z ¢ R. Esta variable aleatoria es Z = a + bY (a real y b positiva), siendo Y

la variable aleatoria de interés. Entonces, la funcion de densidad g(y) (y
real) de la variable aleatoria Y serd para todo y real

g(y) = bf(a+by) .1

Para verlo, sea F la funcién de distribucion de la variable aleato-
ria Z,

7=
F(z) = pZ <2) = p (f

por lo que
iaveaiEa L = cpile
fz)=F(2)=G [b ) Gy =

siendo G Ia funcién de distribucién de la variable aleatoria Y.
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2.1. Invarianza de los pesos relativos.
Sea Wy(z) el peso o tamafo relativo del estrato h , para la va-

riable aleatoria Z ; y sea Ry el recorrido del estrato h en la variable
aleatoria Z. Haciendo el cambio Z = a+bY , el nuevo recorrido para la

variable aleatoria Y | serd R%,y de acuerdo con (2.1), tendremos

Whi(z) =th f(z)dz =J “f(atby)bdy = { gly)dy = Wp(y) (2.2)
R’ R’
h h

luego los pesos relativos no varian para cambios lineales con b positivo.

2.2. Invarianza de la afijacion minima.

Veamos primero que para las varianzas de los estratos se verifica
la igualdad

6. (z) = b2 G, (y)

En efecto, segin (2.2), tendremos
2 1 5
0 = T | Ry (M2 H2)dz =

1

= JR’ b2[y-Un(y)12g(y)dy = b2 0y (y)
h

ya que las medias de los estratos verifican la relacion Wu(z) = a + bup(y).

Como consecuencia (para L estratos), para todo h = 1,2,...L:

Wh(z)Ch(z) Wh(y)boh(y)
np(z) = n 7 =n =np(y)

. L
Y Wi(2)0x(2) > Wk(2)bGx(y)
k=1 k=1

Proporcionalidad de la varianza del estimador.

Siendo z' e §' los estimadores insesgados usuales en muestreo
estratificado, sus varianzas con afijacién minima verifican la relacion

1 E 1 B 2
Vanin 7)== [th(zm(z)]Z - [th(,y)boh(y)] = b2 Vi )

h=1 h=1




y como consecuencia, estas varianzas ‘s€ minimizan para los correspon-
dientes puntos de estratificacién que pueden obtenerse directamente
mediante el cambio lineal z = a + by . Es decir que, los puntos de
estratificacién son invariantes lineales, y la varianza minima es direc-
tamente proporcional a cualquier varianza minima del estimador para la
variable aleatoria relacionada de forma lineal, o sea, para amplias fa-
milias de poblaciones. Es importante observar que la regla “cum Vf" (ver
Sarndal, C.E. et al, 1991, p. 463), que aproxima los puntos de estratifica-
cién Optima para la funcién de densidad f , es también invariante ante
cambios lineales de la variable aleatoria.

3. Estimacién de la varianza poblacional.

Siguiendo la notacién de Ruiz, M y Ruiz, M.M. (1992), ante un
cambio lineal del tipo z = a + by (a real y b positivo), el momento
central de orden 4 en el estrato h, verifica las igualdades

Tha(z) = b% Tn.a(y) o, (2) = b* G, (y)

Por tanto, para h = 1,2,....L, nu(z) = np(y) , y la afijacién optima
dada por Ruiz, M. y Ruiz, M.M. (1992, secc. 4) es invariante, asi como los
pesos relativos de los estratos: Wp(z) = Wy(y) . Consecuentemente, coin-
ciden los minimos de las varianzas siguientes:

2 2
V(',p( (851(2)) = b* VéPl (Gst(y )j

ya que son directamente proporcionales sus sumando respectivos, con
idéntica constante de proporcionalidad b#.

La invarianza lineal de los puntos de estratificacién equilibrada
Optima, usados para estimar la varianza poblacional, como se sugirié en
Ruiz, M. y Ruiz, M.M. (1992), es consecuencia inmediata del teorema 4.1
de Ruiz, M. (1990).

4. Conclusion.

Las técnicas de estratificacién optima son béasicamente
invariantes lineales, de manera que, ain desconociendo la funcién de
densidad exacta "g" de un problema concreto, pero si la funcién de
densidad "f" de un cambio lineal de ésta, podemos trabajar con la
funcién "f", determinando las caracteristicas principales de su

estratificacién Optima, y estimando las constantes "a" y "b" del cambio




lineal. De esta forma tendremos los elementos necesarios para su
aplicacion a la poblacién caracterizada por la funcion "g".

La estimacién de las constantes "a" y "b" puede realizarse del
siguiente modo:

Para estimar U (y), podemos partir de una muestra piloto alea-
toria simple (muestra piloto reutilizable en el proceso inferencial con
estratificacion oOptima), de manera que para inferir sobre W(y) y o(y) ,
bastaria exigir que

1L(z) = a + bli(y) y 6(z) = bG(y) 4.1)

de donde

A=u - Bi(y)

Entonces, para estimar G2(y), siendo W(y) conocida, tendremos

siendo yi( ) la i-ésima observacién de la muestra aleatoria simple piloto.

Los pasos a realizar para completar la inferencia, son:
Proponer la forma de la funcién de densidad f(z) (z real).

Determinar los puntos de estratificacion Optima para la variable
aleatoria Z, conocida.

Calcular los tamanos relativos Wy(z) , h = 1,2,....L , de los estratos asi
construidos, como la afijacién éptima np(z) , h = 1,2,.....L. , ya sea
para estimar [ 6 GZ2.

Obtener una muestra piloto aleatoria simple de la variable aleatoria

de interés Y , estimando "a" y "b" (donde Z = a+bY), como hemos
indicado (8 y b).

Estimar los puntos de estratificaciéon Optima para Y , realizando el
cambio lineal con 2 y 6 , desde los puntos de estratificacién
optima ya calculados para Z.

Tomar np(y) = nn(z) unidades del estrato h de Y , pudiendo
aprovechar o reutilizar las observaciones tomadas en la muestra




piloto, completando hasta el tamafio muestral indicado por la
afijacién minima u dptima, ya calculada en 3.

Estimar U(y) 6 ©2(y) por los estimadores usuales en muestreo
estratificado, que requieren el conocimiento de los pesos relativos
Wi(y) = Wi(z) , ya calculados en el punto 3.

De este modo queda completada la inferencia a realizar en la
practica, aprovechando las ventajas en precisién que consigue el
muestreo estratificado optimizado, aunque implica un céalculo numérico
mayor por precisarse los puntos de estratificacién Optima, los tamafos
muestrales determinados por la afijacién minima U O6ptima, asi como los
tamafios o pesos relativos de los estratos.
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Summary.

We determine the probability mass function of the number of
different units selected in a simple random sample with replacement, of
size n (= 1), of a finite population of size N.

Introduction.

Dada una poblacién finita de tamafio N, se toma una muestra
aleatoria simple con reemplazamiento de tamafio n(= 1). El nimero V (=
1,2,3,...,min{n,N}) de unidades distintas seleccionadas en la muestra es
una variable aleatoria discreta cuya funcién de cuantia vamos a calcular.

Esta variable aleatoria ha sido citada por Cassel et al. (1977) vy,
recientemente, por Thompson (1992), dando algunas propiedades de la
misma como que la media muestral, basada en las Vv unidades distintas
seleccionadas en la muestra aleatoria simple con reemplazamiento, es un
estimador insesgado de la media poblacional.

Sin embargo no conocemos ningin trabajo en el que figure de

forma expresa su funcién de cuantia. Este es el objetivo de la presente
nota

2. Funcién de cuantia.




Aplicando la regla de Laplace, para Vv = 1,2,..m =
funcién de cuantia es la siguiente

N

(v)n-w»l n-v+2 n-1 i o TG

AR »12-17, Jly-1-1y-2,0-1y.-
p(v) = L Z 2 2 PRn

i1=1  ix=i+1 iy y=iy-2+]

es el nimero de permutaciones con repeticion de m elementos tomados
de mjen mjiguales, m;en m;iguales,...hasta mgen my iguales.
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Abstract

Let (Q, A, P) be a probability space and let Cqla,b] denote the space of sto-
chasticaliy continuoijs stochastic processes with index set [a,b]. When Cl[a,b]
cVc Cqla,b] and L: V- Cgqla,b] is an E(expectation)-commutative linear
operator on V, sufficient coNnditions are given for E-preservation of global
smoothness of X €V through L. Namely, it is proved-that

o, (E@X): §) < IILII~G](EX ; °”'“8 < (ILll +¢) - ©,(EX ; §) , where
L

L =EIC[a,D] , andfor 0< 8 <b-2a, w, denotes the first order modulus of
continuity with @, its least concave majorant and ¢ a universal constant.
_Applications-are-given to different types of stochastic convolution operators
defined through a kernel. In particular, are studied -extensively in this
connection, -stochastic operators defined through a bell-shaped trigonometric
kernel. Another application of the above result is-to stochastic discretely
defined Kratz and Stadtmiller operators.

Q901 Mathematics Subject Classification: 41A17, 26A15, 26A18, 60G99.

Kev Words: global smoothness preservation, modulus of continuity, stoch_astic
processes, stochastic approximation, convolution-type operators, beil-shaped
kKernels, stochastic Bernstein operators, discretely defined operators.




1. Introduction

In approximating a stochastic process X = X(t,w) by means of approximation
operators Ln, it is interesting to find out which properties of X are preserved
by the approximants 'Ian‘ For instance, one can be interested in comparing glo—
bal smoothness characteristics of X and fnx. Global smoothness of a stochas-
tically continuous stochastic process X(t,w) can be expressed by the behaviour
of the modulus of continuity o, (EX;:), where E is the expectation operator.

A study of the convergence of monotone linear operators fn, defined on a

space of stochastic processes, to the unit operator has been done more
recently by M. Weba [16, 17] and G.A. Anastassiou [2].

In the present note we give the stochastic analogue of our main theorem in
[3] (see also [4]) and apply it to various types of operators such as the
stochastic analogues of transformed convolution-type operators investigated
recently by Cao and Gonska [7,8], of a class of discretely defined operators as
considered earlier by Kratz and Stadtmuller [11], and of a further class of
convolution-type operators dealt with by, among others, Anastassiou [1].

The results of this note show that the stochastic analogues of many approxi-
mation operators quite naturally inherit qualitative properties of their non-
stochastic predecessors. Furthermore, Section 4.1 below (dealing with global
smoothness preservation by transformed convolution-type operators) seems
to be of interest in itself in the sense that global smoothnes is preserved by
slight modifications of the most powerful approximation operators.

2. Preliminaries

Let (Q,A,P) denote a fixed probability space and L'(Q,A,P) the set of all

(2,2)-(R,B) measurable mappings Z = Z(w) with I |z(w)|- P(dw) < =, where B
Q
is the 6-field of Borel subsets of IR. By X = X(t,w) we will denote a stochastic

process with index set [a,b] and real state space (R,B).

The space of stochastically bounded processes is given by

Bola,bl := (X: sup JIX(t,m)|-P(dm)<°°
t € [a,b]

Note that B[a,b], the space of real-valued and bounded functions on the com-
pact interval [a,b], is a subspace of Bqla,b] . Furthermore, the vector space

of stochastic processes being stochastically continuous in the L'-sense is
defined by

Cola.b] = 2,01, LN(Q.AP)) = {X: [ [X(ty,0) - X(t,0)| P(dw) = 0 for t, — t} .




0
A subspace of Cqla,b] is the space Cq [a,b] of all sample continuous pro-

cesses. Here a stochastic process X(t,w) defined for t in a topological space
is called sample continuous iff, for all w € Q, the paths (partial functions,

trajectories) X(,,w) :t+ X(t,0) are continuous (cf. [9, p. 351]). We thus have
the natural inclusions

Cla,b]  Cg [ab] © Cqla,b] € Bgla,b].

3. A Theorem on Stochastic Global Smoothness Preservation
In order to formulate the basic theorem of this note, we need the following
auxiliary results.
Lemma 3.1. (see Weba [17, Lemma 2.1 (ii)])

If X € CQ[a;b]. then EX € C[a,b], where E denotes the expectation operator gi-
ven by

(EX)(t) =J X(t,0) - P(dw).
Q

A linear operator L: V- CQ[a,b] is said to be E-commutative on the
subspace V, Cla,b]c V c Cqla,bl, if E(LX) = L(EX) for all X € V. E-commutative
operators leave the space C[a,b] invariant as can be seen from the following
Lemma 3.2.

Let L be E-commutative on V, where C[a,b]l € V. Then L maps C[a,b] into C[a,b].
Proof, Let f € C[a,b]; then Lf = L(Ef) = E(LF).

Here Lf=Y(t,0) for some Y(t,0) € Cqla,bliie., for t >t we have
o«-[ [Y{tn,o) = Y(t,0)| - P(de) > I (¥(tn,@) = Y(t,@)) - P(do)
Q Q

= [(EV)(t,) - BV .

Thus (EY)(t) is continuous in t, which means that E(Lf) is continuous in t, and
this implies that Lf = E(Lf) € C[a,b]. o

Remark 3.3.

Let X € Cqla,bl and [x,,x,] < [a,b]. We have [X] € Cqla,b], and thus E|X| € C[a,b]

b
by Lemma 2.1 of [17]. Hence[ (EIXI)(s) ds < o, so that Fubini's theorem
a

implies




X2 X2
E J X(s,w) ds| = I (EX)(s) ds .
X1 X1

Theorem 3.4.

Let V be a subspace of Cqla,b] such that Cla,b] € V = Cqla,bl.
LetT:v— CQ[a.b] be linear and such that the following hold:

(i) L is E-commutative on V,

(ii) The restriction L := t[c[a bl (mapping C[a,b] into itself) is bounded with norm
[ILll =0,

(i) L: C'la,b] = C'[a,b] such that [(Lg)|le < ¢ - llg'llee for all g € C!la,bl.

Then for all X€ V and 0 <& <b-a onehas

@, (E@X): 8) < |ILil- G,(EX IIC—SH) < (JILll + ¢) - o, (EX; 8).
L

Here &, denotes the least concave majorant of w, with respect to the second
variable.

Proof. Apply Corollary 6 of [3] for f=EX, also noting that

o, [E@X); §) = o, (LEX); §) .

Remark 3.5.

(i) The inequalities in Theorem 3.4 remain valid if [|L|| is replaced by any
upper bound d.

Theorem 3.4 is also true for operators L :V - Cqlc,d] where [c,d] c [a,b].

Of course, for this case the assumptions (ii) and (iii) have to be modified
appropriately, and a suitable generalization of Lemma 3.2 has to be used.

4. Applications

4.1. Stochastic Convolution—-type Operators on Cg[a.b]

In this section we investigate the stochastic analogues of certain convolution—
type operators which play an important role in the approximation of continuous
functions by algebraic polynomials (see, e.g., the recent papers [7, 8]). The
results presented here are not only of interest in the context of stochastic
approximation, but are also new for the 'classical' case.

Suppose that L : C[a,b] = Cla,b] is a linear operator. For X& C% [a,b] define
(IX) (to) = LIX(,0); t).

Due to the fact that the stochastic process X is sample continuous, i.e., each
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path X(-,w) is continuous in t, the above right hand side is well defined for each
fixed w € Q. In this section, w.l.0.g., we shall consider the case [a,b] = [-1,1].
Furthermore, we assume that the operator L is given by
i
L(f;x) == 17! J f(cos s) - K(s — arccos x) ds ,
-7

where the kernel K=+ 0 is continuous and 2mi—periodic.

We show next that, undg_r some additional assumptions to be made below, the
corresponding operator L satisfies the conditions of Theorem 3.4.

= 0
Firstly, L indeed maps Cq [a,b] into Cqla,bl. To see this, let (t,) be a
sequence in [-1,1] such that t, converges to t. Then

B J T(XC,0)5tn) = TXC,0)it)| P(do)
Q

j lﬂ-"rr X(cos s,0) K(s — arccos ty) ds
Q

= I:TX(COS s,0) K(s - arccos t) ds| P(dw)

< J Eln [X(cos s,0)- |K(s - arccos ty) - K(s — arccos t)| ds P(dw)
Q

m
< I ]_ﬂlX(COS s,0)|-€ ds P(dw) for n > N(e) by the uniform continuity of K
Q

3 n s 5
£ Ln {IQ [X(cos s,w)| P(dw)} ds by Fubini's theorem

m
E'J E(|X(cos s, -)|Jds = € ¢ for some ¢ < oo,
-1

Hence 1 j [L(X(-,0)itn) - TIX(-,0)it)| P(dw) tendsto O a2st, approaches
Q

t, showing that X € Cqla,bl.

We show next that the three additional assumptions of Theorem 3.4 are
fulfilled.




(i) L is E-commutative onV = C% [a,bl. Indeed,
[EEx0lte) = LEXto)

L(EX(,0)t)

m
= n_]J (Ex)(cos s) - K(s - arccos t) ds
—

b
J X(cos s,w) P(dw) - K(s — arccos t) ds
Q

X(cos s,m)- K(s - arccos t) ds P(dw) (Fubini)

E(L(XC,0)it) = E[L(Xt,0))
= [E IX] (t,0) .

Note that, for the above application of Fubini's theorem, we have used the fact
that if X € CQ[a,b] , feCla,b], then f-X € CQ[a.b].

(ii) It is well known that |[|L|]| = 1! ||K||,_l[-ﬂ_ﬂ] The assumption that K= 0 is
continuous, implies ||K||L‘[_n’n} >0, ie, |ILl+0.

(iii) To verify this we first give a general estimate for |- L(f;x)|. Note that

dx
the operator L from above can be written as

m
L(f;x) = TT"J f(cos s) - K(s — arccos x) ds
=T

f(cos(t + arccos x)) K(t) dt

f(cos(arccos X — t)} K(t) dt .

Writing,

g:=fe°cos, ©:=arccos x, L attains the form




i
L(f;x) = m! j 9(8 = t)- K(t) dt =: E(G ; 9)
-1

Note that f(g H 9) is defined for all g € Coy and 6 € R.. From [6, Prop.
1.1.15] we have

T
d T(ge)=m" [ [-GL ale - t)}- K(t) dt .
de -1 ldt

——._l_' so that L:H
1 - x2 de dx

Hence,

4 T(fecos, arccos x) - V1 - x2

dx
=-d T(fecos, arccos x)
de

m
=S j d dcos(e - t))- k(t) dt
—17 dt

sin(e - t) - f'(cos(® - t))(~1) - K(t) dt

o-m :
=ﬂ"j sin's . f(cos s)-K(8 - s)ds
S8+ T

i
= —W"J sin s - f'(cos s)-K(8 - s) ds
-7

0 ] e
=g Sy Lft . il
(J’ +IO )sm s-f(cos s)-K(e-s)ds

™
=——J-J sin's - f(cos s)-[K(B - s) - K(B + 5)] ds .
™ Jo

Thus,

d Tffecos, arccos x)|- Y1 - x2

dx




m
-L-I sin's - f'(cos s)-[K(e—s)—K(9+s)] ds
™ JO

i
_][f‘||~—L-J sins~|K(e—s)—K(e+s)|ds.
m JO

t thus remains to give a representation of

! I(T)T sin s - [K(8-s) - K(8+s)| ds

To this end, first recall that a function g € C,, is called bell-shaped on

[-77.77], if it is even and decreases on [0,m] (see [12]). Furthermore, it is
known from a lemma of Beatson [5] that g € C,p is bell-shaped if and only if

for all t, x € [0,7] one has
gt - x)-glt+x) > 0.
Thus bell-shaped kernels K constitute an important class of kernels for

which the above integral can be further simplified. A whole class of examples
will be given below. Indeed for them the above quantity becomes

! jg sin's - [K(8 - s)-K(8 +s)] ds

=__]_-ETn sins - [K(8 - s) - K(8 + s)] ds
2T

m
sin (8 = 3) - K(3) dg—J sin (5 - 8) -
-

[sin(e - s) - sin(s - 8)] - K(s) ds
sin(8 - s) - K(s) ds
[sin 9-.co0s s-cos 9-sin s] - K(s) ds
m

coss-K(s)ds—cose-J sins -
-1

cos s - K(s) ds




=:sini6i- g;[K] .

Thus we have

dLof; x0T - x2
dx

=ifd. E(f"cos ,arccos x)[- Y1 - x2 < [Ifl - sin 8 9,[Kl,
dx

or

4L x| < g KD IR
dx

Recalling further that for operators L of the form before one has |[|L||
=Tl ||K||L.][_ﬂ _ the above can be summarized as follows.

Theorem 4.1.

Let L be a convolution-type operator of the form given above which is based

upon the non-negative and bell-shaped kernel K+ 0. Then for all X € C?z[—l,l]
and all 0 <8 <2 one has

o i{E@X) ; 8) < -l-”Kl|L1[—n,ﬂ] GifEx ; —SuKl1-8
n

=
RS ”K”L)['ﬂ,ﬂ]

(DS HKHL][_n‘ﬂ] +8,[KI) - @, (EX; 8) .

We now specialize K further by assuming that

m(n)
K(t) = K@ =L+ = g mm) - cos kt
2 k=1

is a non-negative, even and bell-shaped trigonometric polynomial of degree
< m(n). The operators L based upon these kernels will be denoted by G

Then we have

m(n) *

Theorem 4.2.

Let G, be a convolution-type operator as given azbove. Then for all

X € CQl-1,1] and all 0 <8 <2 one has

0 (EGmmX) i 8) < &(EX: 8 memy  8) < (1 +8 ) = ©,(EX; 8).

Proof. We note first that




||Km(n)”L|[-ﬂ,ﬂ] =17 (so that ”Gm(n)” =kl

Furthermore,

m

81 Knem!) =l J cos s - Km(n)(s) ds
n -m

m(n)
coss-|L+ T gum(ncos ks|ds
2 ke

m
=1 J cos2s - gy,m(n) ds
T

=TT

ls+1l.sinzs

=1 91,m<n)'[
ki 2 4 -n

=81,mn) -

The inequalities of Theorem 4.2. then follow directly from Theorem 4.1.

Corollary 4.3.
Under the above assumptions on K., it can be easily verified that

0<8mm<1. Thus we have

01(E[@mmX) : 8) < B1EX:8) < 2-wilEX; 8).

Example 4.4. (Construction of bell-shaped kernels)
kernels

In Beatson's report [5] the author constructs positive and bell-shaped
using Steklov means. To be more specific, let re€ N={1,2,..} and

A 2r
sin Ot rn-r
— 2} = 1i 3 g)pp-r-coskt.

Jrn-r(t) = cp-
2 ey

sin L
2

m
Here the constant ¢, is chosen so that —L-J Jrin-1)(t) dt = 1
TRE) =11

For r = 1 we obtain the Fejér kernel, r = 2 gives the Jackson kernel, and for




r > 3 one arrives at Jackson kernels of higher order (Matsuoka kernels)
Beatson defined new kernels & _.(x), based upon the J. ., and given as

m/n rn-r
Brnp(x): =0 J Jn-r{x+t)dt =: L+ 3T Neen-r- cos kt
2T J-mi/n 2 k=1

He noted that these are bell-shaped. It remains to be shown what A, ... looks

like for these kernels. For the higher order Jackson kernels J. . 2s given
above one has

u

$1 er = it J €05°S - Jrner(s) ds .
T I=T

Below we show the relationship between g, - and N, n-r - Note that for the
argument we only need the fact that J,_. is even. One has

i m/n
Nprsergo (s cos s {- I Jrn-r(s + t) dt} ds
4 L) e 2m J-mi/n

T/n

bt
I cos s - Jrn-r(s + t) dsy dt (Fubini)

-T1/n U

m/n

m

n J cos(s — t) - Jrp-r(s) dsy dt
2 1

21 J-mi/n )

Using the trigonometric identity cos(r — t) = cos r-cost+ sinrsint itis
seen that

T/n L

-n_ . (coss-cost+sins-sint)-Jm-r(s)ds

A DS

2
2m -T1/n

m
cos t J c0s s - Jrp-r(s) ds
-7

-T1/n

sin s - Jrn-r(s) dsy dt

where the second summand equals O due to J.,_. being even. Hence,




T/n
)\]m_r‘=—ﬂ—--f cos t- -9y m-r dt

2m? J-m/n

m/n
= gl'm_rA_r]_.[ £=ic0s tdt

2T J-mi/n

= AT
= gl,rn-r'_rl" Sm? :
™

Thus our conclusion for the operators L based upon Beatson's kernels

Drn-r » Which we now denote by W, can be summarized as follows.

Theorem 4.5.

Let W, . be the convolution-type operator based upon @ where @

denotes Beatson's modification of the Jackson kernel J

rn-r ? rn-r

rn=r 2= 1. Then for

allX e €ol=1, 11 band sl 10°<:5.2 thers holds
0 ([E(Wrn-rX) 5 8) < 81(EX i Ay (- §) < &,(EX; 8)
and also

) (E(Wrn-rX) ; 8) < 8, (EXi A - 8) < (1 + Morner) "9 (EX:8) <2 0, (EX; §) .

To conclude this section, below we give explicit representations of
8irm-r for r=1,2,3,4. These can be found in the literature, but sometimes in

less accessible sources. General, however less explicit representations for
all convergence factors Sk.rn-r Of higher order Jackson kernels can be found

in a paper by Matsuoka [13].

Example 4.6.

Here we give explicit representations of the convergence factors g, . . of the
Jackson kernels Jrnp foREr e 2 =mi g

Fejér kernel (r = 1):

In this case one has S =l -?Im_ (see, e.qg., [15, p. 69]).

Jackson kernels of higher orders (r > 2):
The convergence factors Sk r(n-1) of Jrn-r can be written as (see (10, p. 37 f‘]]

Mgnlr,r)
Mo,n(r,r)

Sk,r(n-1) = where




2r A i
My plrir) = = (—1)’(”)(””‘ ‘ 'J“"‘). 0<k<r(n-1).
j=0 j 2r-1

Note that in the latter representation the convention {”) F=0" for “n;k €=Z 7,
K
n<k, isused.

A simple computation for the case r =2 shows that

Wy a(2,2) =& n(n?-1) and
? 5

Hon(2,2) =L n@n2+ 1), sothat
' 3

—3  (ctf.[6,p. 60]).

812(n-1 = ! -
2n2 + |

For r =3 it was shown by Stark [14, p. 73] that

11n% - 5n2-6
11n4 +5n2 + 4

81,3(n-1) =

and for r =4 one has the explicit representation ([14, p. 74])

IOS(n4+ n2 + 1)
15108 + 70n4 + 49n2 + 45

$1,4n-1) =
From these the corresponding factors A\, ... of @, can be easily derived.O

4.2. Operators on Cqla,b]

If one wants to investigate global smoothness preservation of more general
stochastic processes, i.e, X € CQ[a,b], it is appropriate to consider special

approximation operators L mapping Cla,b] into itself. In [3] we investigated
global smoothness preservation by discretely defined operators of the form
[see Kratz and Stadtmuller [11])

La(fix) = 2 f(%; ) pj,(x), where J,is a finite index set.
jedn 7 ;

Furthermore, we assumed that the following hold:
(a) ' b Pin(X)=s,%0,
j €dn
() = |pj()l<c =0,

j €dn

(c) pj€ C'la,b] and 2 I(Ej,n_ ) p’j'n(x)| <c,.
j €dn




For these we have by Theorem 10 in [3] that
a(Lafit) < ¢y - al(f ,ECZL) < (¢ + C2) s (fit).
|

The classical Bernstein operators are typical examples of operators with
these properties.

Recall the representation
L X (t,0) = La(X(:,0);t]

= X Ra e )
j€Jdn

We show next that Theorem 3.4 can be applied with V = Cqla,b]. First we verify
that L : Cqla,b] » Cqla,bl. Let ty > t. Then

f |an(tN,m) -, X(t,m)l P(dw)
Q

: f | 2, 2ean0)- oyt - 51,00
li €Jdn

= f X |X(§j,n»0)l . |pj.n('tN) - pj,n(t)l P(dw)
QJ €dn

L, |pj'n(tN)—pj’n(t)l-I [X(%j n00)] P(dw)
J €dn Q

< 2 -|pj,n(tN) = pj)n(t)l
j €dn

whereM:=  sup J X(t,0) P(dw) < + o0, since X € Bgla,bl.
t € [a,0] @

Here, due to the continuity of Pjn: J € Jy, all differences pj,n(tN) - Pj a(t) tend
to 0, so that Ly X € Cqla,bl.

(i) Show that Ly is E-commutative.

EL, X(t,0) E(J Z X(%j,00) - pjalt)
j € Jn

Z EX(%j0) - Pj,n(t)
j € Jn




= [TAEX))(t,0)

(i) I ll = 0, since s, = 0. Also, by condition (b) it follows that [[L || < ¢ < .

(iii) Obviously, L,:C'[a,b]l = C'[a,b]. From [3] it follows that

llcLg)ll < ¢, - llg'll for all g € C'la,bl.

Hence we conclude from Theorem 3.4 and Remark 3.5 that
@, ([E@CX)8) < ¢ Gl(EX;ECZE) < (¢} + cp). 0 (EX;8)
1

for all X € Cqla,b] and 0 <8 <b-a

As a typical example one may consider stochastic Bernstein operators on
Cql0,1] defined by (see, e.g., [16])

n
(BX)(tw) = =

k x(lr%, o}-(")t"(l 2y

0 K

For these one obtains for all X € CQ[O.I] and 0 < § < 1 the inequality

o (E(BX)8) < B(EX:S) < 2w (EX:8).

4.3. Further Convolution-type Operators
The following type of stochastic convolution operators obeys the global
smoothness preservation property in a natural direct way by producing a

better constant in the associated inequality which can be in terms of both the
first order modulus of continuity «, and the second order one w,, thus

improving the inequality coming from our main theorem 3.4. We will discuss
both approaches below.

Example 4.7.

Consider the positive linear convolution operators [see [l]]

L,:Cl-2a,2a] » C[-a,a] , a>0,

given by

a
Ln(f.x)=f (L(X*—Y)M)gn(y) dy, fecC[-2a,2a], neN,
2

i)
a

where g,(y) > 0 is continuous and J gnly) dy = 1.
-.2
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The corresponding stochastic positive linear convolution operators now have
the form
a

(T, 0)tw) = [ (X(t e @) Xihe iy, “’)}' ga(y) dy,

map CQ[—Za,Za] into CQ[—a,a] and are = 0. Here t,y € [-2a,a]. To show that
Theorem 3.4 is also applicable in this case, we note the following:

(i) fn is E-commutative, that is

(ELX)(t,0)

a
I (Ex) (t+y) + EXt-y) T1) 87

= [L(EX))(t,0), e, EL, =LE .
(ii) tn'C[—Za,Za] is a bounded operator, i.e.,

a
IL,(£.%)] sf If—(i*y);f$y)lgn(y) dy < 1-1flloo »
-a

in fact HLnll = 1.

(iii) Observe that

Ly C'[-2a,22] = C'[-2,a] and |[(L)'lleo < lIf'lleo i.e., ¢ = 1 in Theorem 3.4
(iii).

Indeed,

a
(L (F,x))" =f MV)—;’”}‘_‘” anly) dy = L(f,x)
-a

and thus

L)' < 1floo o thatis (LDl < l1Fllso -

Therefore, from Theorem 3.4 (see also Remark 3.5 (ii)) we immediately get

@, (EECX).6) < BEX,8) < 20,(EX,8) , for all X € Cql-22,2a], 0<§<2a. O

Remark 4.8.

Let f € C[-2a,22]. One easily observes that




a
ILqf - flloo < ZLJ w2(f,lyD) gnly) dy ,
=q

that is, for proper choices of the g, we obtain approximation operators. Also
one can establish directly that

w,(Lyf,h) < @ (f,h) and wy(L,f,h) < wy(f,h),
that is obtain the constant 1 on the right hand side, instead of the 2 which could
be derived using the main result of [3]). For X € Cq[-23,2a] we have that EX €

Cl-2a,2al. Also, from L, X eCql-a,a] we have E(L,X) € Cl[-a,a]. Note also that
EL, =L, ie,

0 5(E@TX),8) = 0, ,(L (EX),8].

Therefore picking f: = EX and applying the above inequalities, we obtain

0 H(E@X),6) < 0 H(EX,8) .

This is better than what was derived from Theorem 3.4. in the previous
example. [m]
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Summary

One of the methods of increasing the precision of the estimates in sample surveys
is the use of auxiliary information. But, the main drawback of the commonly adopted
estimators exploiting auxiliary information on one (or more than one) auxiliary variable
is that they are biased. This as prompted many research workers to develop estimators
that are either almost unbiased (weekly biased) or wholly unbiased. This paper presents

a brief review of research work on some unbiased estimators recently developed in sample

survey theory for sampling from finite populations.

1. Introduction and some preliminaries.

Let y and = denoté the study variable and the auxiliary variable taking values y; and z;
( = 1,2;..., N) respectively on the zth unit of a finite population. A simple random
sample (WOR) of size n (n < N) is selected in orden to estimate the population mean Vi
of y, when the population mean X of z is known.

It is well known that when z has a high positive correlation with y, one can use the

ratio method of estimation and obtain two reasonable ”design biased” ratio estimators

(1)




where 1 = %; 7, T and T are the simple arithmetic means of the sample of y;, z; and
r; = % respectively. If z has a high negative correlation with y, a natural analogue of
the ratio method of estimation is the product method of estimation, which results in the

design—biased product estimators

Yp =

Sl

and = 2
yp X (2)
where p = ¥ T and 7 is the simple arithmetic mean of the sample of p; = y;z;. However,

the design biased linear regression estimator

Tre =T — b (- X), (3)
where by is the sample regression coefficient of y on z, can be used for both the situations
of positively and negativaly correlated variables. The precision of yrg is usually higher
than that of ¥ and Y or Tp and Y. But, in the large scale surveys these estimators are
frequently used for their simplicity.

In many surveys, data on p (p > 1) auxiliary z—variates (z1, 72, ..., Z) are available.
It is then natural to investigate whether data on all the auxiliary variables can be used to
provide an efficient estimator of Y. Olkin (1958), introduced multivariate ratio method of
estimation which later on extended to the multivariate product and regresssion methods of
estimation by Singh (1967 a) and Srivastava:(1965) respectively. When ¢ (¢ < p) auxiliary
variables (1, s, ..., Z,) are positively and (p — ¢) auxiliary variables (zg41, g2, - - -
z,) are negatively correlated with y, Rao an Mudholkar (1967) have extended Olkin’s
multivariate ratio estimator to a weighted combination of ratio and product estimators.

But, in the same situation, Singh (1967 b) has suggested an estimator called ratio—cum-

product estimator.

Lack of unbiasedness in the classical estimator has encouraged many research workers

to develop unbiased estimators or by modifying the basic designs.

2. Unbiased estimators using single auxiliary variable

Basic work on unbiased ratio estimation was initiated by Hartley and Ross (1954). They

constructed an unbiased ratio estimator

yHRZ?I}H‘H@‘FT) (1)

starting with 7, and correcting it for the bias. Goodman an Hartley (1958) derived the
exact variance of ¥yz when N >> n, and studied the relative precision of ¥ and Yyp-

Mickey (1959) and Williams (1961) have constructed broad classes of unbiased estimators
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from which the ¥ comes out as a particular case. Ruiz and Santos (1989) offered two
expressions of the bias of ¥z and proposed a new class of unbiased estimators including

Yyr and based on the same or less statistics, as

n(N =1) (n=1)N_,

Ype = ——F T — 2
YRST 0 N St & N_n IR (2)

which does not include ¥.

In practice, it is not possible to obtain an unbiased estimator of the bias of 7 under
simple random sampling. So, many authors have studied the problem of constructing
almost unbiased ratio estimators (unbiased upto terms of order n~!) by considering suit-
able modifications of J. The notable ones in this direction are due to Quenouille (1956),
Murthy and Nanjamma (1959), Pascual (1961), Beale (1962), Tin (1965), Sahoo (1983,
1987), Singh; Iachan and Upadhyaya (1985) among others. But, however by correcting
the sampling design, many authors have managed to make 7 a completely unbiased esti-
mator. Lahiri (1951) showed that Y is unbiased if the sample is drawn with probability
proportional to 3 z;. The simplest method of doing this is due to Midzuno (1952) and
Sen (1952) in which the first member of the sample is draw with probability proportional
to z; and rest (n —1) units with SRSWOR. Midzuno’s technique of changing the selection
procedure for obtainig unbiased ratio estimators was further studied by Raj (1954), and
Nanjamma, Murthy and Sethi (1959). Another generalisation of the Lahiri’s method and
the corresponding unbiased. ratio estimator was given by Deshpande (1984).

During the years that followed several attempts were also made to construct unbiased
product estimators which run parallel to the construction of the unbiased ratio estimators.
The early contributions in this direction were due to Robson (1957) and Murthy (1964).
Srivastava, Shukla and Bhatnagar (1981) have shown that Robson’s estimator gives a bet-
ter performance than Murthy’s estimator. Srivenkataramana and Tracy (1979) reviewed
some of these methods while at the same time offering some more estimates. Vos (1980)
generalized these methods to obtain mixing estimators and considered the efficiency of
these estimators. In the recent past, unbiased product estimators were also considered
by Shah and Shah (1979), Gupta and Adhvaryu (1982), Iachan, Singh and Upadhyaya
(1987), Rao (1983, 1987), Singh (1989).

For the first time Ruiz and Santos (1990) proposed a new sampling design for which
a new product estimator is rendered unbiased. Under this design the probabililty of

selecting s—th sample is given by

3)




and the estimator taken into consideration is ypr = yf, where m is the equiprobable
harmonic mean of Z—values.

More recently, Dalabehera and Sahoo (1993) generated three unbiased estimators by
correcting the estimators ?g—: 7X » and % for their biases, where T, and X are respec-
tively the sample and population harmonic means of z—values.

Estimators of the regression-type that are unbiased have been developed by Mickey
(1959) and Williams (1961, 1963), but have not yet been extensively tried. Rao (1969)

found Mickey’s estimator usually inferior to the classical ratio and regression estimators

in natural populations. Singh and Srivastava (1980) proposed a new sampling scheme
(SS1, say) for which ¥ is unbiased. This scheme consists in selecting two units z and j
say, with probability proportional to (z; — z;)? and remaining (n — 2) units in the sample
by SRSWOR. Singh and Srivastava (1980) also proposed another sampling scheme (SS2,
say) in which the first unit ¢ say, is select with probability proportional to (:r,- - 7)2
and remaining (n — 1) units by SRSWOR. Employing SS2 they made their proposed

regression—type estimator

-~

Xn:yi (df;—y)
= s TL(N = 1) = i=1 T
YRG = ]\'7(71 = 1) Y i (IA —7)2 ( 7) (4)

1=1

completely unbiased. The authors also study the efficiencies of the proposed methods in

comparison with standard ratio estimator on samples of size 4, taken from 11 populations
of size 20, generated from a bivariate normal population. It turns out that the estimator

Yre under SS1 is the best in most and next best in all other cases.

3. Unbiased estimators using multi—auxiliary vari-
able

Olkin (1958) generalised the Hartley-Ross unbiased ratio estimator for p-auxiliary vari-
ables. The exact expression of the variance for the generalised Hartley—Ross unbiased
ratio estimator has been discussed by Ramachandran and Pillai (1976).

Sahoo and Swain (1980) introduced an unbiased ratio-cum-product estimator using
two auxiliary variables z; and z,, which was observed to be a particular case of the

generalized unbiased estimators due to Williams (1961, 1963) and Mickey (1959). This

unbiased estimator is given by

N
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such that T, and X, are respectively the sample and population means of the k-th
auxiliary variable (k = 1,2); and z; is the value of k-th auxiliary variable on the i—th
unit.

While constructing Jyrp it was assumed that z; is positively and z, is negatively
correlated with y. In case z, is not used, Jyrp reduces to Hartley—Ross unbiased ratio
estimator. But if z; is not used yypp reduces to a Hartley—Ross-type unbiased product
estimator based on ¥} studied earlier by Gupta and Adhvaryu (1982). It was also shown

by Sahoo and Swain (1980) that, the unbiased estimator ;;zp is however not unique and

any estimator of the type

A A N—i1 AR\ ES
jedp e e _f*_<1__)_f2] 4
< X1>92 (X1>g1 N [Xl %), @

is also unbiased for Y, where ) is any known function of X; and X,.
When ¢ auxiliary variables are positively and (p — ¢) auxiliary variables are negatively
correlated with y, Sahoo and Swain (1983) also proposed a Hartley—Ross-type unbiased

ratio—cum—product estimator, of the population mean.

3.1. A general class of unbiased estimators

Following Srivastava (1980), Sahoo (1986) proposed a general class of unbiased estima-
tors using p—auxiliary variables. The theoretical background in the construction of the

estimator is as follows:

Letit: '= h(y:,1i, - - -5 Tpi); De a: function of 'y, o1z, - ., Tpe (v =1, . -, n) ‘such ‘that
Yp) =Y. The function may contain X; (k=1,2,...,p) but independient

of Y. Thus, a class of design biased estimators for Y may be defined by

1 n
Y= ;Zit
=1

whose bias is given by




n

B=x> (t-w (6)

=1

The estimation of bias involves in expressing B in a simpler form wich further depends

on the nature of the function & (y;,z1:,- - ., Zp:). But, sometimes the bias is in the form

B:ZBkCov(fk,xk) (M

k=1
where fi, fa, ..., f, are functions of y, z;, ..., z,; independent of ¥ and 61, 8, ..., 8, are

known constants. If

B=3 6,05 (fu ) ®)

k=1
is an unbiased estimator of B, the class of unbiased estimators of Sahoo (1986) is defined

as

v=9%—-B (9)
The class of estimators represented by 7, covers unbiased estimators including those of
Hartley and Ross (1954), Gupta and Adhvaryu (1982), Sahoo and Swain (1980, 1983) and

Olkin (1958). Sahoo (1986) also pointed out some other interesting unbiased estimators

of the class.
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Abstract
We propose an alternative model designed for estimating. the variability asso-
ciated with stimuli within a metric Multidimensional Scaling (MDS) analysis of
" dissimilarity data deriving from one subject and based on the confirmatory model
proposed by May. The variability factors are estimated by maximum likelihood
using the lognormal distribution as the dissimilarity data- distribution. The choice
between the Ramsay model and ours is discussed. .

1. Introduction.

The first confirmatory MDS model (see Schiffman et al. [7]) was that proposed by Ramsay
[3], which offered the possibility of analyzing data from the point of view of statistical
deduction. The first subsequent work. in this context; showing the necessity of variability
decomposition in factors associated with each element of a model was also conducted
by Ramsay [4]. He examined one variability factor dependent upon the individual being
questioned and another dependent upon each pair of stimuli on which the individual

_ bases his judgement. At the same time he proposed considering separately the variability -
associated with the stimuli by using an additive decomposition model.

Estimating these components through maximum likelihood in the MDS model causes
va.ri()us inconveniences in the interpretation of the results and requires a great deal- of
éomputation, which is deterrined by the (-j-.stimatidn of an additive model within the
lognormal distribution. In many cases this estimation has to be calculated after the
estimation of the remaining parameters of the model, since otherwise the computations
become much more numerous and complex.

-The need for variability decomposition had to be proven by experience as the distances
estimated by the MDS models do not adjust themselves perfectly to the observed dissimi-

larity values. There are many very diverse factors that cause the residuals to have a value
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other than zero. There are two direct ways of controlling the variation in the residuals, or
errors: firstly, by taking into account the different variation components, thus making a
great refinement of the analysis possible by using more precise estimations; and secondly,
by a summary of the variation components, which may also add many important aspects
to the data interpretation.

One aspect worth considering is that of explicitly establishing the possibility that
the value of each stimulus might be independent of the global value of the variance for
each pair, ;. This is achieved by the decomposition of v;; into specific components
for each stimulus, which will be ¢;. Therefore these components will be interpreted as
the relative contributions to the variance for each stimulus in each pair and the data
interpretation is conditioned by the stimulus variability factors. Thus, the choice of the
procedure that establishes the relationship between the variation components constitutes
an important element to bear in mind inside the analysis and, as will be shown below,
different decomposition models may result in different interpretations.

The subject’s perception of a particular stimulus, 7, may be variable or undetermined,
causing the classifications of pairs to force the stimuli to have a high degree of variability.
This may be reflected in the fact that the value belonging to the component which corre-
sponds to a defined stimulus, oy, is close to the total variability of each pair, ;. On the
other hand, a certain stimulus might act as a typical stimulus or one used as a reference
to those with which it is compared, thus causing a minor variability in those judgements
in which this stimulus is involved and identified by a value of its variability component,
¢, which will be lower than the rest of the stimuli with which it is compared.

All this requires that we should take special care with the decomposition model em-
ployed, so that the interpretation of the variability designated to the stimulus should
not lead to contradictory conclusions in the data analysis. The decomposition model
proposed in this paper explains the influence exerted by each stimulus on the individual

being questioned, when the distribution model is lognormal.

2. Description of the Model.

Following Ramsay’s [5] model notation, we use n stimuli, one subject and T replications.

Generally, the differing data will comprise 7' squared matrices n X n from dissimilarity

data between each pair of stimuli, the elements of which will be represented by d;;;, with

1,7 =1,...,

n associated with each pair of stimuli (¢,5) and ¢ = 1,...,T and for each
response t. The configuration matrix to be estimated will be represented by X and the
point corresponding to each stimulus, ¢, will be represented by z;.

The distance model will be the Euclidean one, where the distance between each pair of
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points 7 and j, associated to their corresponding stimuli, will be indicated by d};, expressed

as follows

: 1/2
di = [Z (@im — 1jm)2} (1)

m=1

In this situation, from the statistical point of view, the data are considered as being

values taken from the corresponding random variable D;;, each being independent of the

other. They formally take on values in IR" and are distributed around the corresponding

central value log(d};), according to a two-parameter lognormal distribution represented

as

a5) (2)

is considered to be dependent upon each pair (,7) or constant

Di; ~ A(log(d3;),

where the variance Ufj

with the value o2.

Although obtaining the configuration matrix associated with the dissimilarity data

constitutes the central aspect of MDS, one of the additional advantages of the confirma-

tory model lies in the possibility of estimating the variability factors that influence the

obtention of this configuration.

The variability model proposed in this paper (see Vera [10]) is broken down in the

following manner:

1/2

(3)

The variability generated by the stimuli in the study and analysed by means of this

= (ofes)

fY’L j

decomposition offers important advantages when used in a lognormal context. Although

the additive decomposition model allows for an easy interpretation of the estimated values

when the distribution chosen for the data representation is the normal distribution, the

additive model joined to the lognormal distribution creates several disadvantages that

make the interpretation of the results of the analysis more difficult.

The use of the multiplicative model in the lognormal case solves these problems since

its computational cost is relatively low and the interpretations of the estimated values are

similar to those which are found when an additive model is used jointly with the normal

distribution. Let us see the estimation of these components.

The loglikelihood associated to the model will remain as

T 1 :
2 Elog(a?a?ﬁmz—m 5| = D> log(dijs) — Mlog(v2m)  (4)

i#j t

logL = —
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- g (32) )
t d;j
and M is the number of dissimilarity data actually observed.

The estimation by maximum likelihood of the variability factors is carried out by

imposing the following constraints

Zafzn (6)

These constraints lead to the use of a penalty function (see Fiacco & McCormick [1]).
The term of this function Q(X, @) = ¢(X) + ¢(a) associated with the restrictions of the
subject’s typical errors, g(a), is expressed by,

ot@) =3 (Xat -n) G

Taking the partial derivative of the log L with respect to ozf, the following is obtained:

B ) (e o

1#]

Simplifying the previous expression gives these results

Spj ar Sjp
(o)

2Rn(a?)'/? = Z

and finally

(10)

where the distances, df;, dre given in terms of the configuration matrix, X, estimated by

the implicit equation of Ramsay (3]

Tpq Z tp; = Z Tjqlp; (11)
j J

and where




Table 1.-—Variability of recreative activities.

|| STIMULI ADITIVE MODEL | MULTIPLICATIVE MODEL |

1 CONCERT 0.50 0.2528605
2 MUSEUM 2.07 1.8750590
3 THEATRE 1.30 0.3061745
4 CINEMA 2.54 0.8480011
5 TELEVISION 2.64 4.8404140
6 CONFERENCE 0.00 0.1742502
7 READING 1.35 0.7342721
8 HOCKEY 0.43 0.1304034
9 BALLET 0.00 0.0026923
10 DEBATE 1.09 0.7239251
11 FASHION 0.28 1.9462000
12 DOC-CINEMA 0.00 0.0890419
13 EXHIBITION 0.67 0.3169389
14 SHOPPING 1.68 2.5689700
15 RESTAURANT 1.24 0.1907957

Our experience with this structural hypothesis has been that much less calculation
time is needed for the total computation of these estimators of the model. Furthermore,
the choice of a geometric approach to the variability decomposition is more suited to the

structure of the variance in the lognormal models.

3. An Illustrative Example.

First of all it is necessary to emphasize that the resolution of the implicit equations which
determine the obtaining of the estimators that maximize the likelihood is carried out
numerically, since it is not possible to obtain estimators explicitly. To do this we have
used a process similar to that described by Takane et al. [8], which consists of a cycle of
main iterations, inside each of which the parameters are updated in blocks. To update
each block of parameters, a new cycle of secondary iterations is employed in which this
updating of the parameters is achieved by means of a procedure of conjugate gradient

containing an algorithm that relies upon cubic interpolation and extrapolation, has been

used, (see Fletcher [2]) to determine the optimal step size, Torgerson’s [9] algorithm being

used to obtain the initial configuration matrix.
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Table 2.—The order of stimuli according to their variability (least to greatest).

[[ADDITIVE MODEL

| MULTIPLICATIVE MODEL

0.00 BALLET

0.00 CONFERENCE
0.00 DOC-CINEMA
0.28 FASHION

0.43 HOCKEY

0.50 CONCERT
0.67 EXHIBITION
1.09 DEBATE

1.24 RESTAURANT
1.30 THEATRE

1.35 READING

1.68 SHOPPING
2.07 MUSEUM

2.54 CINEMA

2.64 TELEVISION

0.00 BALLET

0.09 DOC-CINEMA
0.13 HOCKEY

0.17 CONFERENCE
0.19 RESTAURANT
0.25 CONCERT
0.31 THEATRE
0.32 EXHIBITION
0.72 DEBATE

0.73 READING

0.85 CINEMA

1.88 MUSEUM

1.95 FASHION

2.57 SHOPPING
4.84 TELEVISION

Two convergence criteria have been simultaneously employed in our model: firstly, a
purely geometric one (the gradient method), in which not only the direction is controlled,
but also the module of the gradient vector to determine the end of the iterative process;
and secondly, a statistical procedure based on the x? contrast, in view of the fact that

the method does have a strong statistical character.

To illustrate the methogi, we examine an example from Ramsay [6] in which he analysed

105 values of the dissimilarity given by a particular subject about 15 recreative activities:
concert, museum, theatre, cinema, television, conference, reading, hockey, ballet, debate,
fashion, documentary cinema, exhibition, shopping and restaurant.

The results are shown in Table 1, where the variability associated with each stimulus
is compared to the multiplicative decomposition model explained earlier and the additive
proposal of Ramsay [4]. In Table 2 the stimuli are put in order from the least variability
to the greatest.

These results show the differences that exist upon considering a multiplicative model
instead of an additive one. The results shown in Table 2 show clearly the effect that the
multiplicative model has on the distribution of the variabilities, assigning extreme values

only to those stimuli which exert an extreme influence and distributing the remaining
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variability among the stimuli which have a moderate impact on the subject. This is
determined by the same degree of extreme variability which both a very familiar stimulus
or a completely unknown or rejected one may produce on the subject’s answers. The rest
of the stimuli, which cause a moderate response in the subject tend to produce moderate
variability values.

In this example it can be seen how stimuli with opposite variabilities such as ballet
and television and, generally speaking, the groups of stimuli which have greater or lesser
variability are distinguished in the same way by both models. Nevertheless, stimuli to
which the additive model assigns no variability, such as conference and doc cinema are
distinguished by the multiplicative model, whilst activities such as concert and theatre or
fashion and shopping, which produce very pronounced differences between each other in
the additive model, are classified as similar influences when the multiplicative model is
applied.

Even though the criteria for choosing between the two models is based upon the
researcher’s own opinion, this example clearly shows the influence of the choice of the de-
composition used in the final interpretation of the analysed data. Therefore, the resulting
individual’s profile, and consequently the final interpretation of the configuration matrix,
changes considerably depending upon whether the additive model or the multiplicative
model is used, and although the estimation of the configuration matrix is not altered by
the model employed, the choice between an additive and a multiplicative model must be

considered in any analysis.
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Abstract.

We exemplify different applications of the dynamic systems use
in order to make up usable models on environment education:
radioactive decreasing, increasing of the population without control,
relation between prey and predator, reversible quimical reactions, with
or without a losing of reagent material....

They are exemplified in this way, the numerous possibilities that
dynamic technics of systems can be use full to the educational deve-
lopment.

Introduccion.

La palabra sistema es de gran actualidad en la ciencia, se refiere a
un todo o conjunto en el que se pueden distinguir diversos elementos
que actian unos sobre otros, o se influyen mutuamente de algin modo,
de manera que las propiedades del sistema no son coincidentes con la
suma de los elementos que lo conforman.

En el estudio de los sistemas interesa mds el conocimiento de las
relaciones entre los elementos interactuantes que la naturaleza exacta
de estos elementos, y ésto es los que hace la ecologia cuando estudia los
ecosistemas, donde basicamente considera las entradas y salidas de




materia y energia, la organizacidn e interacciones entre los componentes,
asi como el cambio y evolucién que se experimenta.

Toda la cubierta viva de la Tierra se puede decir que constituye
un ecosistema - el mayor que existe - que recibe el nombre de biosfera.
Pero también se denominan ecosistemas a cualquier parte mas pequeifia
de esa biosfera (un lago, un bosque, el océano, etc.). El conocimiento del
medio ambiente pasa por la comprension de los distintos ecosistemas y
de su interaccién con la actividad antrépica.

Con la dindmica de sistemas (DS) se aporta una herramienta capaz
de simular las interacciones y cambios que se producen en un
ecosistema a partir basicamente del conocimiento de su estructura. El
ordenador es el medio que hace operativa la dindmica de sistemas.

2. La dinamica de sistemas.

La dindmica de sistemas (DS) nace como una técnica que permite
analizar los sistemas y simular sus comportamientos en el tiempo. J.W.
Forrester, ingeniero de sistemas del Instituto de Tecnologia de
Masschusets (MIT), desarrolld este método durante la década de los afios
cincuenta. La primera aplicacién fue el analisis de la estructura de una
compania eléctrica Norteamericana y el estudio de las oscilaciones de
ventas de dicha empresa. Posteriormente, la DS se aplicé al estudio de
sistemas mecdnicos ecoldgicos (especialmente poblaciones), al
comportamiento de sistemas sociales y a la planificacion urbana, pero la
DS se popularizé con su utilizacién por Forrester para la elaboracién del
"World Dynamics” 6 "Modelo del mundo”, que fue bdsico para la
elaboracion del primer Informe del Club de Roma, donde aparecen por
primera vez los términos, actualmente en uso, de "crecimiento cero",
"desarrollo sostenido”, "limites al crecimiento”, etc.

La difusién y bajo precio de los ordenadores y la disponibilidad
de software de facil utilizacién (Stella, Dynamo, etc.) hacen de la DS una
técnica de gran futuro a nivel técnico, cientifico y educativo.

Basicamente la DS es una técnica que permite:

A) Establecer la estructura del sistema, determinando que
elementos son mds significativos y como estdn relacionados.

B) Simular la evolucién temporal de los elementos del sistema,
segun las circunstancias en que se desenvuelva el sistema, es decir, su
funcionamiento.




2.1.- Componentes de un sistema.

Un sistema presenta los siguientes componentes estructurales:

a) Elementos: Son los componentes fundamentales del sistema vy
cada elemento es la representacién simplificada de alguna caracteristica
de la realidad objeto de estudio.

b) Relaciones entre los elementos: En un sistema los elementos
estdn interrelacionados por redes de comunicacién que aportan materia,
energia, informacidn, etc.

c) Limites: Los sistemas tienen espacio donde se encuentran sus
elementos. Pueden existir elementos externos al sistema (elementos
exdgenos) que no actdan directamente sobre el sistema, pero si sobre
algin elemento interno (endégeno) y que, por tanto, deben ser
considerados.

Entre los componentes estructurales se establecen las siguientes
relaciones funcionales:

o) Flujos de materiales o de informacién o de energia, que
circulan entre variables de estado. La circulacién se efectia a través de
las redes de comunicacidn.

B) Mecanismos de control de los flujos (valvulas, grifos)

v) Retardos, que resultan de las discrepancias entre unidades de
tiempo y velocidades de circulacién de los flujos.

d) Bucles de ralimentacion (feedback) o cadenas de causalidad o
influencias circulares entre elementos.

La representacion formal de un sistema es un modelo
matemadtico, y con la DS se construye este modelo de un modo sencillo,
mediante la elaboracién de diagramas de causalidad y su expresion en
una simbologia muy didédctica debida a Forrester, que con pequeias
modificaciones han adoptado los distintos softwares de DS.

2.2.- Diagramas causales y de Forrester.

Un diagrama causal es una representaciéon grifica en la que
aparecen formalizados los elementos del sistema y se establecen las
relaciones que existen entre eilos, haciendo constar cual es el signo de




variacién esperado entre cada par de elementos. Asi, cuando se indica la
relacion:

a (presa) ——— — + b (+ predador)

se quiere significar que las variables a y b se mueven en el tiempo en
el mismo sentido (cuando crece a, crece b).

Evidentemente, una relacién del tipo:

a (predador) —— - ¢ (- presa)
significa todo lo contrario; es decir que, las variables a y ¢ se mueven
a lo largo del tiempo en sentido contrario: cuando una crece la otra
decrece.

Especial interés tienen los bucles de realimentacion que en un

diagrama causal se indican por medio de una "flecha" que partiendo de
una variable "vuelve" a ella, después de un camino mds o menos largo.

+ emanda
Ty s T

Presa Predador ;
\y Sﬁrwcws
Fig. l.- Diagramas causales: A) Diagrama causal estable.

B) Diagrama causal explosivo o autorreforzado.

Asi, la Fig. 1 A) muestra un diagrama causal estable: el numero de
individuos de la especie depredada (presa), actia positivamente sobre el
nimero de individuos de la especie depredadora (predador), simulta-
neamente, el nimero de individuos depredadores actia negativamente
sobre el nimero de individuos depredados. Otros bucles como el de la
Fig. 1 B), son explosivos o autorreforzados, como sucede en la espiral
inflacionista.

A partir de los diagramas causales se pasa a los diagramas de
Forrester, cuya simbologia se expresa en la Fig. 2. Con esta simbologia los
programas informadticos DS construyen las ecuaciones en funcién de los
esquemas de relacion que nosotros realizamos graficamente. Tan sélo es
preciso, en todos los casos, asignar valor a las constantes, -valores
iniciales a las variables de nivel, tiempo de simulacién y valor del
incremento de tiempo considerado. En determinados casos los datos se
pueden introducir en forma de grificos o tablas.
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Los resultados, también denominados trayectorias, corresponden
a la evolucién temporal de las variables y aparecen expresados, tanto
grafica como numéricamente. Las modificaciones en los datos iniciales
son muy féaciles de realizar, pudiendo asi simular diferentes escenarios.

Nube: Representa una fuente o un sumidero; puede interpretarse
o8 como un nivel que no liene interés por ser praclticamente
inagotable.

Nivel: Representa una acumulacién de flujo, es una variable de
estado.

Flujo: Variacion de nivel. representa un cambio en el estado del
sistema.

Canal de material: Canal de transmision de una magnitud fisica que
s€ conserva.

Canal de informacién: Canal de transmision de una cierta
informacién, que no e€s necesario que Se conserve.

Variable auxiliar: Una cantidad con un cierto significado fisico en
el mundo real y con un tiempo de respuesia instantanco.
—e— Constante: Un elemento del modelo que no cambia de valor.

E Retardo: Un elemento que simula retrasos c¢n la (ransmision de
. ~ - s V. :
informacién o material.

Variable exdgena: Variable cuya evolucién es independiente de la
del resto del sistema. Representa una accién del medio sobre el
sistema.

Fig. 2.- Simbologia de la dinimica de sistemas, introducida por Forrester

3. Ejemplo de aplicacién de la DS.
A continuacién se muestran algunos ejemplos de aplicacion de la
DS mediante el programa Stella, que pretenden ser una muestra de las

enormes posibilidades que esta herramienta tiene.

3.1.- Crecimiento vy decrecimiento explosivos.

Son dos sencillos ejemplos de como, en funcion de una tasa,
aumenta o disminuye exponencialmente el valor de una variable de
estado 6 nivel (Fig. 3). En la naturaleza se tienen numerosos ejemplos de
esta evolucion en el tiempo: desintegracion radiactiva, crecimiento de
plagas o epidemias sin control, agotamiento de manantiales, etc.
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1 Nivel

1 100.00
1 75.00
1 50.00
1 25.00
1 0.00528
Nivel
1 Nivel
1 100.00
1 75.00
1 $0.00
1 25.00
1 0.00528

] r
] nlvel r
1 fiujo
/ tasa
1
e
0.0 i 6.00 ‘ 12.00 i 18.00 - 24.00
Time
3 O Nivel = Nivel + dt * ( -flujo )
{NIT(Nivel) = 100
flujo QO flujo = tasa*Nivel
O usa= .4
tasa
= =
L
1
l\' 1 1 1 1
0.0 6.00 - 12.00 18.00 24.00
Twne

Fig. 3.- Diagramas DS, ecuaciones y trayectoria de la variable para casos de
crecimicnto o decrecimiento  explosivos o autorreforzados.

3.2.- Flujos

reversibles

conservativos y no conservativos.

Se establece un flujo de material (o energia) entre dos variables
de estado, controladas por dos tasas distintas. En funcion de esas tasas,
las variables evolucionan hacia un equilibrio
dindmico (conservativo). Un ejemplo podria ser una reaccién quimica
reversible (fig. 4 a). Si en una de las variables existe un flujo que extrae
material (o energia), la evolucién de las variables es claramente distinta
(fig. 4 b). Un ejemplo de esta evolucién podria ser una reaccién quimica
en que parte del material resulta precipitado, saliendo del sistema.

los valores

iniciales de
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O x=x+dt*(K1-k2)

INIT(x) = 100
Oy=y+dt*(-Kl+K2)
INIT(y) = 300
O K1 =6y
i . O k2= 3%
1x 2y
3} 30000 4= i ; T
\ 1 !
1} 22500 Y = =
3} 1s000 A R = - 3 ‘
3} 7so00 T
]
T |
1) 0.0 TTT 1
2 0.0 250 5.00 7.50 10.00

Time

FIG.4a-Diagramas DS, ecuaciones y trayectorias de las
variables en una reaccidon reversible conservativa.
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3} 30000 _ - — — —
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- L — — e e e
1} 22500 i E R : 7 T B
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7~ i ] ) I
1 | il 155 | [
3 150.00 T T T
| 1 1 11 f
\ | [ 11
‘} 75.00 1 i | 1
2 : INSEEEEY T T3 T
I e | SN e et tes v |
1T e e e T i P g s [ } 3l
. EE R R T | ——erpeeh ;
2] 0.0 4 T - 2 2= | 2y 1 2yt
0.0 12.50 25.00 37.50 50.00

FIG.4b-Diagramas DS, ecuaciones y trayectorias de las
variables en una reaccion reversible no conservativa.
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O x=x+dt*(Ki1-K2)

INIT(x) = 100
Oy=y+dt*(K1+K2)
INIT(y) = 300
O K1 =6%
O K2 =.3%
1x 2y
1} 30000 i - -
A\ Y Tt ! I
\ =
1} 22500 \ -
1} 1s0.00 L e > > - >
7
I I
i} 7500 ! !
| 1
|5l 1 |
3} 0.0 E] - !
0.0 2.50 5.00 7.50 10.00

Time

FIG.4a-Diagramas DS, ecuaciones y trayectorias de las
variables en una reaccién reversible conservativa.
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FIG.4b-Diagramas DS, ecuaciones y trayectorias de las
variables en una reaccién reversible no conservativa.

162




3.3.- Modelo predador-presa (modelo Volterra).

En un ecosistema la evolucién de la poblacién de organismos
predadores y de sus presas estd intimamente relacionada. El modelo fue
establecido por Volterra, y la DS permite mostrar de una forma muy
didactica esas relaciones, tal y como puede verse en la Fig. 5, del mismo
modo que su evolucién se representa en la Fig. 6.

[J Conejos = Conejos + dt * ( Nac_Con - Mue_Con - Depred ) 8

INIT(Conejos) = 340

[ Zorros = Zorros + dt * ( Pred - Mue_Zor )

INIT(Zorros) = 35

O D=003

(O Depred = C*Conejos*Zorros
O E=0.0002

(O Mue_Con = B*Conejos*Conejos
O Mue_Zor = D*Zorros

(O Nac_Con = A*Conejos

O Pred = E*Conejos*Zorros

=03

Fig. 5.- Diagrama DS y ecuaciones que representan el modelo Volterra.

45.57

35.39

2521

Zorros

15.04

Zorros vs Conejos

3362 11022 186.81 26341

Conejos

340.00

1 Conejos 2 Zorros
1 34000 _
2 45.57
1 26341 ]
2 35.39
2
1 186.81 4 1 -
2 9531 1
ey
1 2
1 110.22:2=] L
i 20.22 ; 1 2/-2\_/
2
1 33.62
2 286 0 T T =Y T T T
0.0 250.00 500.00 750.00 1000.00
Time

Fig. 6.- Trayectoria
en funcidn

de las variabies predador-presa. relacionadas entre si. y
del tiempo.
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Abstract

The evolution of REE distribution patterns in the acidic waters of the Arroyo del Val
stream is studied using samples collected along the headwaters zone. The hydrologic system of
the Arroyo del Val drainage basin contains a main stream (Arroyo del Val) of acidic waters
naturally generated and several neutral tributaries. Mixing of the acidic stream with neutral
tributaries yields spectacular flocculants that precipitate at the confluences, along the principal
stream.

Extensive removal of dissolved (0.1 um filtered)) REE from acidic waters occurs along
flow path; and this removal by mixing-induced flocculation of colloids leads to fractionation
among the REE with the order of removal being heavy REEs > middle REEs > light REEs.
These results are consistent with previous studies of REE in the colloids of this system but
opposite to those obtained in other rivers and for many coagulation processes in estuaries.

1. Introduccion

Los cada vez mds frecuentes estudios sobre el comportamiento geoquimico de las Tierras
Raras (REE) en sistemas acuosos naturales estdn evidenciando que su distribucién depende de la
actuacién competitiva entre procesos de superficie y de formacién de complejos. La existencia
de fenémenos de fraccionamiento en estas pautas, asociados a la presencia de fases coloidales
(Goldstein & Jacobsen, 1988; Elderfield er al., 1990; Sholkovitz, 1992, 1993; etc.), parece
constituir una de las consecuencias mds importantes de la interrelacién entre ambos tipos de
procesos.

No obstante, la caracterizacién precisa de estos fenémenos de fraccionamiento presenta
todavia considerables problemas (p. ej. Sholkovitz, 1992), condicionados por las bajas
concentraciones en las que se encuentran estos elementos y por las dificultades en separar la
fraccién asociada a las fases coloidales.




El sistema geoquimico del Arroyo del Val en la provincia de Zaragoza (Gimeno, 1991;
Gimeno er al., 1994; Auqué er al., 1993) estd constituido por un curso principal de aguas 4cidas
(Arroyo del Val), generadas por el lavado de los materiales paleozoicos que atraviesa (con
abundantes sulfuros metdlicos dispersos), afectado por sucesivos aportes de afluentes neutro-
bésicos que neutralizan progresivamente las aguas del arroyo principal. En los puntos de
confluencia de estos afluentes cor el Arroyo del Val se producen procesos de mezcla con una
floculacién masiva de coloides blanquecinos que tapizan el fondo del arroyo.

En este sistema se conjugan varias circunstancias que lo hacen especialmente interesante
para el estudio del comportamiento de las REE: se trata de un sistema inicialmente 4cido, de baja
temperatura y, a priori, capaz de transportar y/o movilizar una importante concentracién de estos
elementos; la presencia de sucesivos procesos de floculacién coloidal facilita el andlisis de su
influencia en la distribucién de Tierras Raras; y la abundancia de coloides en algunos tramos
permite un muestreo relativamente fécil.

La idoneidad de este conjunto de caracterfsticas ya ha sido verificada en estudios
preliminares. A partir de los datos obtenidos en el primero de los puntos de floculacién del
Arroyo del Val (figura 1), Auqué ez al. (1993) indican la existencia, tanto para las aguas 4cidas
como para las fases coloidales, de una pauta de REE definida por un enriquecimiento neto en las
Tierras Raras pesadas (HREE) y con una marcada convexidad en torno a los contenidos
normalizados de las Tierras Raras intermedias (IREE). Y sefalan la presencia de un
fraccionamiento en el proceso de floculacién, caracterizado por un enriquecimiento sistemdtico
en las Tierras Raras mds pesadas.

En este articulo se exponen los resultados de un muestreo més completo, analizdndose la
evolucién de la distribucién de REE en las aguas 4cidas a lo largo del curso superior del Arroyo
del Val y verificando las pautas de fraccionamiento ligadas a los sucesivos fenémenos de
floculacién coloidal.

2. Metodologia

El muestreo realizado para el andlisis de Tierras Raras, se localiza en el tercio superior
del curso del Arroyo del Val y se inscribe dentro de otro més amplio, en el que fueron tomadas
muestras para la determinacién de elementos mayores y menores de las aguas de este sistema.
En la figura 1 se muestra un esquema simplificado de esta parte del arroyo, con los principales
puntos de mezcla y floculacién coloidal, tras la confluencia con afluentes (primero, segundo,
cuarto y quinto puntos de mezcla) y aportes hipodérmicos de aguas neutras (tercer punto de
mezcla). A lo largo de este tramo se realizé un completo desmuestre que incluyé muestras de las
soluciones 4cidas del Arroyo del Val, tanto entre las zonas de floculacién coloidal como en los

propios puntos de floculacién, y muestras de los afluentes de aguas neutras que desembocan en
este tramo.

Los procesos de floculacién coloidal, inducidos por la mezcla de soluciones, se
distribuyen de forma perfectamente localizada tras la confluencia de los afluentes de aguas
neutras. Pero en esos puntos los efectos de esos fenémenos de floculacién varian tanto espacial
como temporalmente, razén por la que en este trabajo tnicamente se utilizardn las muestras
tomadas antes y/o después de los fenémenos de mezcla y floculacién (cuya situacién se indica
en la figura 1), excluyendo las tomadas durante la actuacién de esos procesos. De esta forma,
se considerardn los datos correspondientes a las soluciones acuosas una vez que el conjunto de
procesos actuantes han homogeneizado sus efectos sobre la evolucién de las REE, evitdndose las
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Figura 1. Esquema de la cabecera del Arroyo del Val y localizacion del muestreo. Los puntos
de floculacion coloidal (asociados a procesos de mezcla con soluciones neutras) se indican con
areas rellenas a lo targo del tramo estudiado.




heterogeneidades inducidas local y/o instantdneamente en los puntos de confluencia por los
procesos de mezcla y floculacidn coloidal (que serdn objeto de un estudio posterior més
detallado). La tinica salvedad a este criterio se encuentra en la muestra W-5, situada en un punto
de floculacién, y que se incluye por ser la ultima de las tomadas en el tramo muestreado (fig.1)
y representar, en cierto modo, la resultante final de la distribucién de REE en la evolucién del
sistema.

En cada punto de muestreo se procedi6 a la determinacion in situ de pH, Eh, temperatura
y conductividad, y a la toma de varias alicuotas, con tratamientos diferentes, para su posterior
andlisis quimico. Una descripcién completa de la metodologia de desmuestre y andlisis utilizada
puede verse en Gimeno (1991) o Gimeno ez al. (1994) y aquf solamente referiremos la que afecta
a la determinacion de Tierras Raras. Asi, las alicuotas tomadas para el andlisis de esos elementos
fueron filtradas mediante una bomba neumdtica ANTLIA, modelo SP 050/2, con tres portafiltros
de idéntica marca y modelo FP050/0, todo ello construido en policarbonato. Para esta operacién
se utilizaron filtros de 2, 0.45 y 0.1 pm sucesivamente dispuestos. La muestra filtrada se
almacené en botes de polietileno de 100 ml, previamente lavados, homogeneizados en soluciones
de 4cido nitrico ultrapuro durante varios dias, enjuagados posteriormente con agua destilada y
secados en corriente de aire. Las alicuotas tomadas se acidificaban con 4cido nitrico ultrapuro
hasta pH < 1 y la totalidad del equipo era cuidadosamente lavada con agua destilada antes de
acceder al siguiente punto de desmuestre.
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