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Abstract 
The purpose of this paper is to assess the extent to which regions’ absorptive capacity 
determines knowledge flows’ impact on regional innovation intensity. In particular, it 
looks at the role of the cross-regional co-patenting and mobility of inventors in fostering 
innovation, and how regions with large absorptive capacity make the most of these two 
phenomena. The paper uses a panel of 274 regions over 8 years to estimate a regional 
knowledge production function with fixed-effects. Network and mobility variables, and 
interactions with regions’ absorptive capacity, are included among the r.h.s. variables to 
test the hypotheses. We find evidence of the role of both mobility and networks. 
However, inflows of inventors are critical for wealthier regions, while have more 
nuanced effects for less developed areas. It also shows that regions’ absorptive capacity 
critically adds an innovation premium to the benefits to tap into external knowledge 
pools. Indeed, the present study corroborates earlier work on the role of mobility and 
networks for spatial knowledge diffusion and subsequent innovation. However, it clearly 
illustrates that a certain level of technological development is critical to take advantage 
of these phenomena, and therefore “one-size-fits-all” innovation policies need to be 
reconsidered. 
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1. Introduction 
 

Launched by the Lisbon Agenda back in 2000, the European Research Area (ERA) 
initiative is also meant to be at the heart of the European Union’s (EU) 2020 growth 

strategy. Through the ERA, the EU aims at building an integrated pan-European 
research and innovation system, which enables and facilitates “free circulation of 

researchers, knowledge and technology” across national borders (European Commission, 

2008, p.4). Thus, at the roots of the ERA, the European Commission has encouraged, 
among others, the promotion of “greater mobility of researchers” within the continent, 

“improving the attraction of Europe for researchers from the rest of the world”, 
“networking of existing centres of excellence in Europe”, and “closer relations between 

the various organisations of scientific and technological cooperation in Europe” 

(European Commission, 2000, p.8).  
 

Two key elements stand out from the ERA documentation: the inter-regional and 
international mobility of scientists and engineers, and the formation of networks of 

scientific and technological collaboration. The emphasis on these two elements is hardly 
surprising. A fundamental observation of knowledge diffusion is that it tends to be 

highly localized in space (Hippel, 1994; Jaffe et al., 1993; Nelson & Winter, 1982). 

Undeniably, the implications of this for the most peripheral European regions are 
important – i.e., the sticker the knowledge, the lower the peripheral territories will 

access it (Rodriguez-Pose & Crescenzi, 2008). Skilled mobility and networks become 
critical to overcome the spatial stickiness of knowledge. Theoretical and empirical 

evidence in support of a relation between high-skilled workers mobility and knowledge 

diffusion is extensive (Almeida & Kogut, 1999; Arrow, 1962; Boschma et al., 2009; 
Magnani, 2006; Oettl & Agrawal, 2008; Rosenkopf & Almeida, 2003; Singh & Agrawal, 

2011; Stephan, 1996).  When skilled workers move, they take their embodied knowledge 
with them, and firms learn about other firms’ research after employing these high-

skilled employees. Further, when they move from place to place, their knowledge and 

skills move as well, and geographical knowledge diffusion occurs (Breschi et al., 2010; 
Coe & Bunnell, 2003). Networks are also critical means to diffuse knowledge and 

promote the cross-pollination of ideas (Katz & Martin, 1997). As stated by Bathelt et al. 
(2004) and Owen-Smith & Powell (2004), firms in regions build ‘pipelines’ in the form of 

alliances to benefit from knowledge hotspots around the world. Again, empirical evidence 

in support of networks as vehicles for the dissemination of ideas is large (Breschi & 
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Lissoni, 2009; Cowan & Jonard, 2004; Gomes-Casseres et al., 2006; Simonen & McCann, 
2008; Singh, 2005).  

 
Understanding the way in which spatial mobility of high-skilled employees and 

geographical networks interact with knowledge diffusion and subsequent regional 

innovation production is critical to effectively build a coherent ERA and promote 
regional economic growth and cohesion. In this respect, empirical evidence has also 

established a strong link between networks and mobility, on the one side, and regional 
innovation, on the other, both within (Fleming et al., 2007; Lobo & Strumsky, 2008; 

Miguélez & Moreno, 2011) and across regions (Miguélez & Moreno, 2013a, 2013b; Ponds 

et al., 2010). This latter evidence has also motivated a number of papers looking at the 
determinants of these two phenomena (Chessa et al., 2013; Hoekman et al., 2009; 

Hoekman, Frenken, & Tijssen, 2010; M. A. Maggioni, Nosvelli, & Uberti, 2007; M. 
Maggioni & Uberti, 2009; Miguélez & Moreno, 2013c; Morescalchi et al., 2013). Broadly 

speaking, they find that distance and geographical peripherality, and particularly, 

regions’ overall economic performance and country borders, explain a substantial part of 
the variation of both geographical networks and spatial mobility of skilled personnel and 

determine the effective construction of the ERA.  
 

The present paper contributes to this literature. In particular, we estimate a regional 
knowledge production function (KPF) in a panel data framework, for the case of 274 

European regions of 27 countries, from 2000 to 2007. We include among our explanatory 

variables measures of high-skilled workers geographical mobility – i.e., inventors – and 
cross-regional networks – co-inventions.  

 
A second contribution of the present paper deals with the differentiated effects of 

networks and mobility on regional innovation across groups of regions. This is an 

important issue, given that one critical ERA aim is to “reduce brain drain, notably from 
weaker regions, as well as the wide regional variation in research and innovation 

performance” (European Commission, 2012). In our view, however, this is at odds with 
the “one-size-fits-all” policy inferred from the Lisbon 2000 and Europe 2020 agendas 

(Camagni & Capello, 2013). If innovation returns to geographical networks and mobility 

are significantly different, policies aimed to encourage such phenomena – e.g., EU’s 
Framework Programmes or Marie Curie Actions – need to be redefined and adapted to 

each region’s specificities – which is precisely at the heart of the smart specialization 
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initiative (Foray et al., 2009). We investigate this issue by making use of two ad-hoc 
regional typologies in Europe, one based on space (EU accession date) and one based on 

economic development (based on EU’s Cohesion Policy classification of regions according 
to different economic policy objectives). 

 

Finally, the main hypothesis of this paper states that regions’ absorptive capacity 
determines networks and mobility returns to innovation. Innovation is an evolutionary 

and cumulative process. In consequence, only with the necessary capability to identify, 
assimilate and develop useful external knowledge can the host regions effectively benefit 

from incoming technology flows through research networks and labour mobility. As 

discussed by Cohen & Levinthal (1990), the differential impact of external incoming 
knowledge flows depends mainly on firms’ absorptive capacity. In the present inquiry, 

we argue that absorptive capacity is needed to understand and transform inflows of 
extra-regional knowledge – those that mobility and networks convey – into regional 

innovation. 

 
Overall, we conclude that both labour mobility of high-skilled workers as well as the 

participation in research networks are critical means to transmit knowledge as they 
positively affect the patenting activity of European regions. It seems, though, that this 

impact is far from being homogeneous across the EU territory, with more developed 
regions obtaining higher returns from such potentially incoming knowledge flows. When 

disentangling what makes them more efficient in assimilating and using these 

knowledge flows, our results point that the absorptive capacity of regions has a main 
role. 

 
The rest of the paper is organized as follows: in section 2 we present the empirical model 

and our main hypotheses; section 3 shows the data; whilst section 4 includes the 

descriptive and econometric results. Finally, section 5 presents the conclusions and 
implications of our research. 
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2. Theory and methods 
 

2.1. High-skilled workers mobility, spatial networks and innovation 
 

We test our hypotheses in a regional KPF framework (Anselin et al., 1997; Bottazzi & 
Peri, 2003; Feldman & Audretsch, 1999; Moreno et al., 2005). In particular, we estimate 

the following specification: 
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where ..cPATp  is the knowledge output of a given region – patents per capita, which 

depends upon regional R&D expenditures per capita ( ..cRDp ) as well as regional 

endowments of human capital ( HK ). Equation (1) includes population density 

( PopDens ) to control for agglomeration economies and ensuing localized knowledge 

spillovers, which may translate into larger productivity and innovation levels (Carlino et 

al., 2007; Ciccone & Hall, 1996) – while its squared term ( 2PopDens ) accounts for 

potential nonlinearities due to agglomeration diseconomies existent in excessively large 

metropolis. In addition, i�  stands for regional time-invariant fixed-effects (FE), which 

enable us to capture unobserved time-invariant heterogeneity that might importantly 

bias our estimates if they are not considered. In particular, we refer to institutional 

features that may affect innovation, technology-oriented regional policies, research and 
higher education institutions, social capital and, in general, all the historical path-

dependent features that may importantly affect spatial differences in knowledge 
production rates. Note that equation (1) includes the subscript t-1 in all the explanatory 

variables, which indicates that we lag one period all these variables to lessen 

endogeneity problems due to system feedbacks. 
 

As we sketched in the introductory section, we hypothesize that regions’ innovation 
capability benefits from accessing extra-regional pools of ideas by means of skilled 

workers’ mobility ( MOBILITY ) and bilateral technological linkages ( NETWORKS ). As 

a proxy for MOBILITY , we use the inward migration rate (IMR) – the number of 

incoming inventors to region i over the number of local inventors in i, as a measure of 

incoming inflows of high-skilled individuals, in a given time period t.  
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Alternative mobility variables are computed – running different models for each of the 
variables in order to avoid collinearity problems. In particular, we include the net 

migration rate (NMR) – inflows minus outflows to the current number of inventors. 
Recent studies pinpoint at outward migration of skilled individuals as an alternative 

source of knowledge flows and interactions back to the home location of the left skilled 

employee, reverting the ‘brain drain’ phenomenon into ‘brain gain’ or ‘brain circulation’ 
(Saxenian, 2006). For instance, Agrawal et al. (2006), Corredoira & Rosenkopf (2010) 

and Oettl & Agrawal (2008) report disproportionate knowledge flows from inventors 
leaving a region, a firm or a country back to their former colleagues. Miguelez (2013) 

shows that European inventors in the biotech industry are more likely to build ties 

across the space – in the form of co-patents – with their former co-located colleagues 
than if they had never lived there. Following these ideas, we also test the role of the 

outward migration rate (OMR) – the outflows of inventors to the local number of 
inventors. We also include the gross migration rate (GMR) – inflows plus outflows of 

inventors to the local number of inventors. All else equal, we expect positive and 

significant coefficients for the IMR, the NMR, and the GMR. Concerning the OMR, the 
direction of the estimated coefficient might be positive – if the ‘brain circulation’ 

hypothesis holds – or negative – if, as largely discussed in the literature, the innovation 
potential of sending regions is undermined by the lack of innovators (Agrawal et al., 

2011). 
 

To investigate the relationship between inventors’ NETWORKS  and regions’ 

inventiveness, we compute, for each region, the average number of co-inventions (co-
patents) per inventor with inventors from outside the inventor’s focal region. This 

measure proxies for the extent to which the local pool of inventors is involved in co-

patenting with colleagues from other areas. A positive effect on innovation is also 
expected. Section 3 includes further details regarding the construction of all the 

variables used in the present analysis. 
 

2.2. Regional heterogeneity in returns 
 

A key issue of the present paper is the analysis of differentiated spatial patterns on the 
returns to geographical mobility of skilled workers and their cross-regional co-

inventorship networks. The underlying idea is that these two mechanisms of 

geographical knowledge diffusion may not have a homogeneous impact in all regions. In 
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other words, we hypothesize that, quite likely, they yield different results in terms of 
innovation generation and subsequent economic growth, which in turn ultimately 

depends on the regions’ socio-economic characteristics. If innovation returns to 
geographical networks and mobility are significantly different, policies aimed to 

encourage such phenomena – e.g., EU’s Framework Programmes or Marie Curie Actions 

– need to be redefined and adapted to each region’s specificities – which is precisely at 
the heart of the smart specialization strategy. 

 
In order to test this hypothesis, we make use of two ad-hoc regional typologies in Europe, 

one based on spatial features, and the other one based on economic development 

conditions. The first one corresponds to the time of accession to the European Union: 
EU15, EU Enlargement – which corresponds to the 2004 and 2007 enlargements of the 

EU (except Malta and Cyprus), and the EFTA countries – except Iceland and 

Liechtenstein[1]. This 3-group typology intends to account for pure spatial heterogeneity 
in the returns of mobility and networks – e.g., Western-Eastern Europe, core-periphery 

dichotomy. More importantly, this typology takes on board the different levels of 
integration into the EU and, as a consequence, the time elapsed during which these 

regions have enjoyed the benefits arising from the functioning of the Internal Market – 
specifically related to the diffusion and adoption of new technologies (Manca et al., 2011; 

Suriñach et al., 2009). 

 
The second regional classification refers to the one made by the Regional Policy of the 

EU, also referred as Cohesion Policy, which aims at removing economic, social and 
territorial disparities across the EU. EU's Cohesion Policy covers all European regions, 

although they fall into different tiers, depending mostly on their level of economic 

development. Regions under the Convergence objective constitute Europe's poorest 
regions whose per capita GDP is less than 75% of the EU average. This includes nearly 

all the regions of the new member states, most of Southern Italy, East Germany, Greece 
and Portugal, South and West of Spain, and Western regions of the United Kingdom 

(UK). The Regional competitiveness and employment objective covers all European 

regions that are not covered by the Convergence objective. This includes all Denmark, 
Luxembourg, Netherlands and Sweden, most regions in Austria, Belgium, Finland, 

France, Germany, North of Italy and the UK, some regions in Ireland and North-East 

Spain, and one region in the Czech Republic, Hungary, Portugal and Slovakia. Yet, a 
third tier is considered. With the 2004 and 2007 EU enlargements, the EU average GDP 
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has fallen. As a result, some regions in the EU's "old" member states (EU-15), which 
used to be eligible for funding under the Convergence objective, are now above the 75% 

threshold. These regions now receive transitional "phasing out" support until 2013. 

Similarly, regions that used to be covered under the convergence criteria but are now 
above the 75% EU-15 average per capita GDP are receiving "phasing in" support. We 

consider the regions receiving phasing-in and phasing-out support together and 
separately from the rest. Finally, the regions of Norway and Switzerland (EFTA) are 

grouped together and considered separately from the other tiers. 

 
Our empirical strategy proceeds as follows: we create a dummy variable for each tier 

under the two typologies. Afterwards, we interact our focal variables (MOBILITY and 
NETWORKS) with all dummies, separately for the two typologies. Equation (2) 

exemplifies the method we follow, for the case of the accession typology – for mobility, 

and equation (3) for the case of the EU’s Regional Policy classification: 
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Then, we look at the size, significance and direction of parameters, respectively, 1�  

through 3�  and 1	  through 4	 . Moreover, we run pairwise Wald tests to verify whether 

the estimated differences across coefficients are statistically significant. The same 
applies for the case of cross-regional co-inventorship networks. 

 

2.3. Absorptive capacity and knowledge flows 
 

One central hypothesis of this paper states that absorptive capacity is needed to 
understand and transform the inflows of extra-regional knowledge into regional 

innovation. According to Cohen & Levinthal (1990, p. 128), absorptive capacity refers to 
the “ability of a firm to recognize the value of new, external information, assimilate it, 
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and apply it to commercial ends”. Those firms with higher levels of absorptive capacity 
can manage external knowledge flows more efficiently, and therefore, stimulate 

innovative outcomes (Escribano et al., 2009). Thus, even firms exposed to the same 
amount of external knowledge – within a cluster, for instance – might not enjoy the same 

benefits, because of their different endowments of absorptive capacity (Giuliani & Bell, 

2005).   
 

Although most related empirical evidence is at the firm level, the notion of absorptive 
capacity has also been effectively applied to more aggregate contexts, such as at the level 

of regions (Cantwell & Iammarino, 2003; Doloreux & Parto, 2005; Mukherji & 

Silberman, 2013; Roper & Love, 2006; Von Tunzelmann, 2009). Thus, it is argued that 
the absorptive capacities of the local firms and organizations determine the overall 

absorptive capacity of the host region, as these firms constitute the basic elements in a 
regional innovation system. However, regional absorptive capacity is more than just the 

sum of the individual firms’ absorptive capacities located in a given region, but also the 

interactions and inter-relations between them (Abreu, 2011). A fundamental observation 
of this scant literature establishes that external-to-the-region knowledge is absorbed 

relatively easier in areas that already have a relatively large stock of knowledge.  
 

A major complication in empirical research is how to operationalize the concept of 
absorptive capacity. The related literature has extensively used the R&D intensity of 

firms, regions and countries as proxy for their absorptive capacity. Cohen & Levinthal 

(1989) already suggested the double role of R&D, that is, not only as a generator of new 
knowledge, but also as a means to enhance the firm’s ability to assimilate and exploit 

existing information. Thus, R&D activities of organizations are regarded as having two 
faces. One is the widely acknowledged knowledge creation function – i.e., as a direct 

input into the innovation process; another one is their role in the formation of absorptive 

capacity (Aghion et al., 1998; Aghion & Howitt, 1992; Griffith et al., 2003). In a similar 
vein, when firms in regions engage in R&D activities, the region itself increases its 

ability to assimilate and understand the discoveries of others, thereby raising the speed 
at which technology transfer into those regions occurs. Thus, the presence of internal 

R&D investments improves the capacity of a region to absorb foreign knowledge. 

 
On the double role of R&D, Griffith et al. (2003) show strong evidence of its ‘second face’: 

country-industry pairs lagging behind the productivity frontier catch-up particularly fast 
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if they invest heavily in R&D. Similarly, Cameron et al. (1999) look at the role of 
internal R&D as a source of both domestic innovation and capacity to assimilate 

technological spillovers for a panel of UK industries. At the firm level, Cassiman & 
Veugelers (2006) show that the reliance on more basic R&D, which proxies a firm’s 

absorptive capacity, positively affects the complementarity between internal and 

external innovation activities. Finally, among the scarce evidence at the regional level, 
Fu (2008) investigates the impact of foreign direct investment (FDI) on the development 

of regional innovation capabilities using a panel data set from China, concluding that the 
strength of local absorptive capacity in the host regions are crucial for FDI to serve as a 

driver of knowledge-based development. 

 
In light of these arguments, this paper argues that the impact of high-skilled workers 

spatial mobility and cross-regional networks on local innovation outcomes is critically 
determined by the level of absorptive capacity of regions. Following previous studies, we 

account for the double role of R&D – innovation input and absorptive capacity – by 

including interaction terms between regional R&D and proxies for incoming knowledge 
flows (Cassiman & Veugelers, 2006; Fu, 2008; Jaffe, 1986; Veugelers, 1997). Thus, we 

test the hypothesis by including interactions between local R&D expenditures and 
networks and mobility among the r.h.s. variables of our model – see equation (4).[2] The 

direction, size and significance of parametres 1
  and 2
  will indicate the extent to which 

regions’ absorptive capacity is important to make the most of external-to-the-region 
knowledge flows conveyed by skilled labour mobility and co-inventorship networks. 
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3. Data 
 

This paper uses a sample of 274 NUTS2 European regions of 27 countries – EU-27 
(except Cyprus and Malta) plus Norway and Switzerland, to estimate a regional KPF. 

Thanks to data availability, we estimate a panel FE model of 8 periods (2000 to 2007). 
Again, using longitudinal data and including FE in our regressions allow us to improve 

previous estimates of the KPF  key parametres – to the extent that these FE account for 

a number of time-invariant unobservable characteristics of the regions that might bias 
the results if not included. 

 
Regional innovation is measured using patent applications at the European Patent 

Offfice (EPO) per million inhabitants.[3] We acknowledge that not all inventions are 

patented, nor do they all have the same economic impact, as they are not all 
commercially exploitable (Griliches, 1990). Despite its caveats, the related literature 

widely uses this variable to proxy innovation outcomes. Indeed, patent data have proved 
useful for proxying inventiveness as they present minimal standards of novelty, 

originality and potential profits – and they constitute good proxies for economically 

profitable ideas (Bottazzi & Peri, 2003). We retrieve patent data at the regional level 
from the OECD REGPAT database  – January 2010 edition (Maraut et al., 2008).  

 
As for the explanatory variables, R&D expenditures per capita were collected from 

Eurostat and some National Statistical Offices, with some elaboration for regions in 
specific countries (Belgium, Switzerland, Greece, Netherlands). The share of population 

with tertiary education (Population aged 15 and over by ISCED level of education 

attained) proxies human capital endowments of regions and the data come again from 
Eurostat.[4] Both variables, as well as the remaining regressors, are time-lagged one 

period in order to lessen endogeneity problems. We also collect population and regional 
area data from Eurostat to compute the population density variables. 

 

We use unit-record data retrieved from EPO patents – OECD REGPAT database, 
January 2010 edition – to construct the mobility and network variables. In spite of the 

vast amount of information contained in patent documents, a single ID for each inventor 
and anyone else is missing. In order to draw the mobility and networking history of 

inventors, we need to identify them individually by name and surname, as well as via 

the other useful details contained in the patent document. The method chosen for 
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identifying the inventors is therefore of the utmost importance in studies of this nature. 
In line with a growing number of researchers in the field, we use different heuristics for 

singling out individual inventors using patent documents. In brief, we first clean, 
harmonize and code all the inventors’ names and surnames. Afterwards, we test whether 

each pair of names belong to the same individual, using a wide range of characteristics 

(Miguélez & Gómez-Miguélez, 2011). Once each inventor has been assigned an 
individual identification, mobility and network data can be calculated for each region. 

Note that we compute these variables for 1-year lagged 5-year moving windows. Thus, 
mobility and network measures of the period t include data from t-5 to t-1.  

 

We compute in- and out-flows of inventors in regions through observed changes in the 
reported region of residence in patent documents by the inventors themselves. We assign 

each movement in time in between the origin and the destination patent, but only if 
there is a maximum lapse of 5 years between them. Otherwise, the exact move date is 

too uncertain.  

 
For each 5-year time window, we calculate the number of inventors as the sum of 

inventors listed in at least one patent application during this time window, by region. 
We use these data as denominator to compute the ratios IMR, NMR, OMR, and GMR. 

 

Inventors are also used to build the network variables. In particular, we calculate the 
average number of co-inventions per inventor with inventors from outside the inventor’s 

focal region, again within each 5-year time window.[5] 
 

4. Results 
 

4.1. Preliminary evidence 
 

Table 1 takes a 5-year time window (2001-2005) and summarizes the patterns of 
mobility and networking of inventors. From this Table we draw the following insights. 

On average, the distance covered by inventors’ movements during this period is 395 km, 

while it is 355 km for the case of co-patents with other areas. This is in considerable 
contrast to the average actual distance between all European pairs of regions – 1,787.5 

km.  This is hardly surprising given that innovation activity in Europe is highly localized 
among few, nearby areas. Strikingly, 67% of movements and 77% of co-patents involve 

NUTS2 regions that belong to the same country. Clearly, the spatial and international 
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scope of both phenomena remains considerably limited. The figures are in line with 
previous results (Chessa et al., 2013; Hoekman et al., 2009; Miguélez & Moreno, 2013c) 

and likely explain the well-known findings reported by Jaffe et al. (1993) on the 
localization of knowledge flows (Breschi & Lissoni, 2009). 

 

[Table 1 about here] 

 
The distribution of both inflows of inventors and networks across the European 
geography is highly skewed too. Only 20 regions – out of 274 – concentrate 49.8% of 

inventors’ inflows. Meanwhile, 50% of co-patents (one of the ends of the bilateral 

collaboration) accumulate also in only 20 regions during this period – although they are 
not exactly the same regions. The Gini index computed for both variables confirms this 

concentration, since it features above 0.7 for both cases – the index ranges from 0 
(perfect equality) to 1 (perfect inequality). 

 

Even though the skewness of both variables seems to be comparable, differences arise in 
terms of their scope: 13.5% of regions do not receive inventors during this 5-year time 

window, whilst 30.66% only host 5 or less of them. In the meantime, only 1.46% of 
regions do not co-patent with inventors from other regions and barely 3% co-patent 5 or 

fewer times. Indeed, these differences suggest that, by and large, networks reach a large 
number of regions. Similar conclusions arise when splitting the sample across groups of 

regions – EU15, EU enlargement, competitiveness, phasing in/out, and convergence: The 

proportion of regions with zero inflows of inventors is systematically larger – among the 
number of regions classified in each group – than the share with no co-patents with 

other areas. From Table 1 it is also apparent that less developed areas – convergence – 

are the most affected by the absence of incoming skilled workers – 39.74%. Phasing 

in/out regions follow – 16.67%. Conversely, the percentage of zero networks is relatively 

low for all groups of regions – although slightly lower for the wealthier areas (Regional 

competitiveness). Again, this points to the fact that cross-regional co-inventorship 
networks are widely spread across the majority European regions, irrespective of their 

level of economic development. 

 
Table 2 displays some statistics of the variables we use in the regressions – for the whole 

sample as well as broken down across typologies. Broadly speaking, EU15 and 
Competitiveness regions presents higher levels of patents, R&D expenditures, human 
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capital and population density – these two latter ones are not presented broken down to 
save space. They also stand out on the average number of co-patents per inventor, except 

for the case of phasing in/out regions, which show the largest average value. Conversely, 

for the case of the IMR, Convergence, Phasing in/out, and EU enlargement regions 
present the largest values – although together with extremely high deviations from the 

mean.[6] Interestingly enough, these regions also present large values of outflows of 
inventors. As a result, some of them present relatively low NMR as compared to other 

groups – especially the EFTA regions, which stand out for the case of the NMR.  

 
[Table 2 about here] 

 

4.2. Mobility, collaborations and innovation production 
 
Table 3 shows the results of the FE estimation of the KPF once we include geographical 

mobility of inventors as well as the research networks in which they participate among 

the regressors. We compute Hausman tests (Hausman, 1978) for all the models and they 
always reject the null hypothesis that individual effects are uncorrelated with the 

independent variables, so the FE model is preferred to the expense of the random-effects 
(RE). In all columns of Table 3, the elasticity of patents with respect to R&D 

expenditures presents significant and positive values (around 0.24), which is in line with 
the value obtained in the literature (Acs et al., 1994; Bottazzi & Peri, 2003; Jaffe, 1989). 

The human capital parameter is also significant and with the expected positive sign. 

Additionally, population density is also significantly positive, pointing to the presence of 
agglomeration and urbanization economies, and its quadratic form is significant, but 

negative – which indicates that overly dense areas suffer congestion effects (negative 
externalities).  

 

[Table 3 about here] 
 

Results also illustrate the importance of attracting skilled labour for regional patenting 
– positive and significant estimates of the IMR coefficient. Interestingly, the OMR 

(column 2), which takes on board the outward mobility of skilled workers, is negative. 

The result gives support to the brain drain hypothesis (Agrawal et al., 2011) against the 
brain circulation/brain gain one (Saxenian, 2006). However, its point estimate is not 

statistically significant. Columns 3 and 4 introduce, respectively, the NMR and the 
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GMR, and the main results and conclusions hold – only the GMR, although significant, 
presents relatively lower point estimates. In its turn, the proxy for cross-regional 

collaborations positively affects patenting activity of regions. Overall, we confirm our 
first hypothesis on the positive effect of spatial mobility of skilled labour and 

geographical networks on regional patent intensity. Thus, the evidence provided herein 

suggests that both mechanisms can be used to access a wider range of skills, 
information, knowledge, inputs and competences external to the region, resulting in 

higher patenting activity.  
 

4.3. Regional heterogeneity and absorptive capacity 
 

We introduce interactions between our focal variables and the two typologies in Tables 4 

and 5. We aim to test whether regional variation in the returns to innovation of 
networks and inventors’ mobility exists, across a number of pre-defined dimensions – 

summarized in our two typologies. The IMR is significant and of equal size for EU15 and 
EU enlargement regions – and not significant for EFTA regions (column 1 of Table 4). 

Column 2 mimics the same estimation procedures, but for the case of the NMR. The 

results are comparable – the estimated coefficient for the EU15 regions is slightly larger, 
but the difference is not statistically significant according to the Walt test performed. 

For the case of cross-regional collaborations (column 3), again the coefficients are 

positive and significant for EU15 and EU enlargement regions and of similar magnitude 
– and not for EFTA regions. 

 

[Table 4 about here] 
 

From Table 5 we learn the following findings. The regions under the Regional 

competitiveness objective are the most benefited by the inflow of inventors. The IMR is 

also significant for convergence regions – those below the 75% of the average GDP per 

capita of the EU. However, point estimates are statistically larger for the former than for 
the latter regions – according to the Wald test. The NMR presents similar results, with 

the exception that EFTA region do benefit from the net incoming flows of high-skilled 

individuals. Differences in favour of the EFTA and Competitiveness regions are again 
statistically significant. Strikingly, Convergence regions are the only ones benefiting 

from collaboration networks with external inventors.  
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[Table 5 about here] 
 

In sum, our analysis makes clear that inflows of high-skilled workers are effectively used 
as means to reach extra-regional knowledge in the majority of regions, although the 

wealthier areas present higher returns to innovation outcomes. Contrariwise, the less 

economically developed regions are the ones benefitting the most from the geographical 
diffusion of knowledge through networks of technological cooperation.   

 
We now turn to the analysis to the role of regions’ absorptive capacity in managing 

external knowledge flows derived from mobility and networks. As argued by the 

economic literature, knowledge is absorbed relatively easier in regions that already have 
a relatively large pool of knowledge. We also motivate this particular analysis by the 

evidence we just provided on the different impact of mobility and networks on innovation 
outcomes across groups of regions. Following previous literature and our own evidence, 

we hypothesize that those regions with large absorptive capacity – measured here as 

regional R&D expenditures, obtain an innovation premium from incoming skilled 
individuals and networks. The results provided in Table 6 are broadly supportive of this 

hypothesis. Interaction terms between R&D and the IMR are positive, but not 
significant. Conversely, the estimated interaction with the NMR is positive and 

significant. The evidence provides support to the proposition on the role of absorptive 
capacity in the assimilation of the knowledge flows from labour mobility. Thus, regions 

with higher absorptive capacity are more able to translate external knowledge coming 

from the inflow of skilled workers into new specific commercial applications more 
efficiently than in the absence of this feature. The result is expected given the empirical 

evidence we have provided in previous tables. Admittedly, this only applies to the NMR, 
and not the IMR. Thus, regions’ absorptive capacity is especially efficient when receiving 

areas are able to retain their incoming skilled talent and provide opportunities for local 

interactions and ideas’ diffusion.  
 

[Table 6 about here] 
 

Interestingly enough, interactions between R&D and cooperation are also positive and 

significant, which advocates for the enhancing effects of absorptive capacity on networks’ 
innovative role. Despite the fact that not all regions benefit from technological 
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collaborations with external inventors – as we showed in Table 5, still, regions’ stock of 
knowledge critically determines their effectiveness on producing further innovations. 

 
In sum, we have provided consistent evidence on the dual role of R&D and we have 

confirmed our third hypothesis: R&D of regions does not only contributes directly to 

innovation but also helps building up region’s absorptive capacity, which contributes to 
making innovative activities more productive. 

 

5. Conclusions and implications 
 
Technology and innovation rank high among the factors behind the lack of convergence 

across the EU regions. Part of the economic growth literature highlights the growth-

enhancing role of innovation and considers that most of the regional divergence in 
growth patterns can be ascribed to the localized and intrinsically path-dependent nature 

of the innovation process (Abreu et al., 2008). This is probably why public 
administrations have, over the last years, engaged in policies aimed at increasing the 

importance of technology in their territories, and specially supporting research 

investments, mainly public but also private. This fact has been particularly true for 
regions with less economic development levels (Bilbao-Osorio & Rodríguez-Pose, 2004).  

 
From a more aggregated policy perspective, the EU have made efforts to create an 

integrated pan-European research and innovation system capable to dismantle the 
barriers that anchored economic activity to specific locations, and spread knowledge, and 

economic development, to the whole European geography. Mobility and networks are 

central elements of the construction of the ERA. The present inquiry has found strong 
support for the positive relationship between geographical labour market mobility and 

regional innovation intensity. The influence of networks is also fairly important. 
However, the present paper has shown that the benefits of these two phenomena – at 

least to what refers to innovation – are likely to differ across regions. In particular, we 

show that regions with large levels of absorptive capacity are especially apposite to make 
the most of flows of knowledge and information brought in by mobile labour and 

cooperation networks. Mindful that other regional features, not explored here, could also 
play a role – i.e., human capital, social capital or institutions.  
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All in all, the results in this paper align with the thinking that innovation policies which 
neglect the absorption capacity of firms and regions are problematic – or at least 

incomplete. They also pinpoint that policies used in an undifferentiated manner for all 
kinds of regions may be misleading.  
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Table 1. Descriptive evidence on mobility and networks 
Mobility 2001-2005 Networks 2001-2005 
Average distance covered 395.14km Average distance covered 355.48km 
Movements from within 
national borders 67.87% Networks from within national 

borders 77.48% 

% inflows in top 20 regions 49.76% % networks in top 20 regions 49.99% 
Gini index inflows’ 
distribution 0.73 Gini index networks’ 

distribution 0.73 

Regions with 0 inflows 37 (13.50%) Regions with 0 networks 4 (1.46%) 
Regions with 5 or less 
inflows 84 (30.66%) Regions with 5 or less 

networks 9 (3.28%) 

Regions with 0 inflows EU15 11 (5.34%) Regions with 0 networks EU15 4 (1.94%) 
Regions with 0 inflows 
Enlargement 26 (48.15%) Regions with 0 networks 

Enlargement 0 (0.00%) 

Regions with 0 inflows 
Competitive 2 (1.26%) Regions with 0 networks 

Competitive 0 (0.00%) 
Regions with 0 inflows 
Phasing in/out 4 (16.67%) Regions with 0 networks 

Phasing in/out 2 (8.33%) 
Regions with 0 inflows 
Convergence 31 (39.74%) Regions with 0 networks 

Convergence 2 (2.56%) 
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Table 2. Summary statistics. Total and by region group 
 # obser. Mean Std.Dev. Min Max 

Total sample 
Patents p.c. 2,192 106.87 127.62 0.02 1014.57 
RDp.c.t-1 2,192 0.38 0.41 0.00 2.88 
Hum.Cap.t-1 2,192 10.53 4.27 0.73 26.44 
Pop. Dens. t-1 2,192 336.92 824.58 3.08 9275.65 
I.M.R. t-1 2,192 4.29 5.70 0.00 66.67 
N.M.R. t-1 2,192 0.19 5.19 -50.00 66.67 
O.M.R. t-1 2,192 4.08 5.45 0.00 59.06 
Co-pat. per inv. t-1 2,192 1.20 0.74 0.00 6.69 

EU15 
Patents p.c. 1,648 123.28 124.39 0.09 1014.57 
RDp.c.t-1 1,648 0.43 0.40 0.01 2.88 
I.M.R. t-1 1,648 4.25 4.33 0.00 66.67 
N.M.R. t-1 1,648 0.29 3.23 -28.57 66.67 
O.M.R. t-1 1,648 3.97 3.54 0.00 50.00 
Co-pat. per inv. t-1 1,648 1.25 0.79 0.00 6.69 

EU enlargement countries 
Patents p.c. 432 6.34 10.29 0.02 64.94 
RDp.c.t-1 432 0.05 0.07 0.00 0.57 
I.M.R. t-1 432 4.57 9.60 0.00 50.00 
N.M.R. t-1 432 -0.24 10.02 -50.00 50.00 
O.M.R. t-1 432 4.73 10.10 0.00 59.06 
Co-pat. per inv. t-1 432 1.04 0.54 0.00 3.37 

EFTA countries (Norway & Switzerland) 
Patents p.c. 112 230.17 175.74 8.48 630.82 
RDp.c.t-1 112 0.87 0.44 0.05 1.83 
I.M.R. t-1 112 3.76 3.97 0.00 37.50 
N.M.R. t-1 112 0.34 1.14 -4.35 5.88 
O.M.R. t-1 112 3.42 4.19 0.00 41.18 
Co-pat. per inv. t-1 112 1.01 0.37 0.44 2.52 

Regions under the competitiveness and employment objective 
Patents p.c. 1,272 147.28 128.36 1.09 1014.57 
RDp.c.t-1 1,272 0.51 0.41 0.02 2.88 
I.M.R. t-1 1,272 3.84 2.60 0.00 28.95 
N.M.R. t-1 1,272 0.18 1.41 -7.69 18.18 
O.M.R. t-1 1,272 3.66 2.39 0.00 25.00 
Co-pat. per inv. t-1 1,272 1.23 0.73 0.25 6.69 

Regions under the phasing out the convergence objective & phasing in competitiveness 
Patents p.c. 184 38.82 37.60 0.09 172.63 
RDp.c.t-1 184 0.17 0.10 0.01 0.40 
I.M.R. t-1 184 5.20 6.45 0.00 50.00 
N.M.R. t-1 184 -0.23 3.33 -20.00 15.56 
O.M.R. t-1 184 5.42 6.97 0.00 50.00 
Co-pat. per inv. t-1 184 1.33 0.96 0.00 4.00 

Regions under the convergence objective 
Patents p.c. 624 12.63 24.63 0.02 166.98 
RDp.c.t-1 624 0.07 0.10 0.00 0.83 
I.M.R. t-1 624 5.12 9.45 0.00 66.67 
N.M.R. t-1 624 0.32 9.63 -50.00 66.67 
O.M.R. t-1 624 4.76 8.89 0.00 59.06 
Co-pat. per inv. t-1 624 1.13 0.72 0.00 3.82 
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Table 3. FE estimations, regional KPF 2000-2007. Mobility and networks 
 (1) (2) (3) (4) 
 FE FE FE FE 
ln(RDp.c.)t-1 0.233*** 0.237*** 0.242*** 0.233*** 
 (0.0456) (0.0459) (0.0456) (0.0458) 
Share tertiary educ. t-1 0.0273*** 0.0275*** 0.0253*** 0.0283*** 
 (0.00887) (0.00894) (0.00888) (0.00890) 
ln(Pop. density) t-1 5.664** 4.789* 5.711** 5.077** 
 (2.452) (2.459) (2.453) (2.455) 
ln(Pop. density)2 t-1 -0.629*** -0.578** -0.648*** -0.587** 
 (0.243) (0.245) (0.244) (0.244) 
(Inward Migration Rate) t-1 0.0114***    
 (0.00250)    
(Outward Migration Rate) t-1  -0.000331   
  (0.00288)   
(Net Migration Rate) t-1   0.0112***  
   (0.00244)  
(Gross Migration Rate) t-1    0.00539*** 
    (0.00186) 
ln(Co-patents per inventor) t-1 0.229*** 0.250*** 0.241*** 0.235*** 
 (0.0523) (0.0525) (0.0521) (0.0525) 
Constant -8.039 -4.965 -7.689 -6.226 
 (6.204) (6.202) (6.195) (6.203) 
Observations 2,192 2,192 2,192 2,192 
Hausman 323.29 319.36 320.42 321.87 
p-value 0.000 0.000 0.000 0.000 
# Regions 274 274 274 274 
Region FE Yes Yes Yes Yes 
Log Lik -879.87 -891.73 -879.65 -886.90 
F-test 21.77 18.12 21.84 19.60 
p-value 0.00 0.00 0.00 0.00 
Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Explanatory variables expressed 
as percentages are not log-transformed for ease their interpretation.
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Table 4. FE estimations, regional KPF 2000-2007. Differences across EU 
accession date 
 (1) (2) (3) 
 FE FE FE 
ln(RDp.c.)t-1 0.234*** 0.255*** 0.233*** 
 (0.0457) (0.0462) (0.0463) 
Share tertiary educ. t-1 0.0273*** 0.0253*** 0.0279*** 
 (0.00889) (0.00889) (0.00894) 
ln(Pop. density) t-1 5.608** 5.864** 5.762** 
 (2.459) (2.454) (2.458) 
ln(Pop. density)2 t-1 -0.623** -0.667*** -0.630*** 
 (0.244) (0.244) (0.243) 
(Inward Migration Rate) t-1   0.0114*** 
   (0.00251) 
ln(Co-patents per inventor) t-1 0.228*** 0.234***  
 (0.0525) (0.0525)  
(I.M.R.) t-1*EU15 0.0119***   
 (0.00366)   
(I.M.R.) t-1*EU enlargement 0.0114***   
 (0.00360)   
(I.M.R.) t-1*EFTA 0.00707   
 (0.0107)   
(N.M.R.) t-1* EU15  0.0150***  
  (0.00444)  
(N.M.R.) t-1* EU enlargement  0.00924***  
  (0.00292)  
(N.M.R.) t-1* EFTA  0.0869**  
  (0.0432)  
ln(Co-patents p.i.) t-1* EU15   0.223*** 
   (0.0766) 
ln(Co-patents p.i.) t-1*EU enlarge.   0.241*** 
   (0.0714) 
ln(Co-patents p.i.) t-1* EFTA   -0.206 
   (0.446) 
Constant -7.910 -7.948 -8.508 
 (6.218) (6.195) (6.248) 
Observations 2,192 2,192 2,192 
Hausman 317.68 303.43 313.28 
p-value 0.000 0.000 0.000 
# Regions 274 274 274 
Region FE Yes Yes Yes 
Log Lik -879.77 -877.21 -879.31 
F-test 16.33 16.93 16.44 
p-value 0.00 0.00 0.00 
Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Explanatory variables expressed 
as percentages are not log-transformed for ease their interpretation.



 26

Table 5. FE estimations, regional KPF 2000-2007. Differences across regional 
development level 

 (1) (2) (3) 
 FE FE FE 
ln(RDp.c.)t-1 0.243*** 0.253*** 0.237*** 
 (0.0455) (0.0461) (0.0456) 
Share tertiary educ. t-1 0.0249*** 0.0262*** 0.0328*** 
 (0.00885) (0.00887) (0.00936) 
ln(Pop. density) t-1 4.656* 6.727*** 5.704** 
 (2.449) (2.462) (2.453) 
ln(Pop. density)2 t-1 -0.511** -0.747*** -0.591** 
 (0.244) (0.244) (0.244) 
(Inward Migration Rate) t-1   0.0113*** 
   (0.00250) 
ln(Co-patents per inventor) t-1 0.233*** 0.240***  
 (0.0521) (0.0519)  
(I.M.R.) t-1*Competitiveness objective 0.0381***   
 (0.00745)   
(I.M.R.) t-1*Phasing in or out -0.0111   
 (0.00688)   
(I.M.R.) t-1*Convergence objective 0.0116***   
 (0.00295)   
(I.M.R.) t-1*EFTA 0.00677   
 (0.0106)   
(N.M.R.) t-1*Competitiveness object.  0.0460***  
  (0.0108)  
(N.M.R.) t-1*Phasing in or out  -0.00369  
  (0.0135)  
(N.M.R.) t-1*Convergence objective  0.00960***  
  (0.00253)  
(N.M.R.) t-1* EFTA  0.0874**  
  (0.0431)  
ln(Co-patents p.i.) t-1* Competitiveness   -0.0843 
   (0.190) 
ln(Co-patents p.i.) t-1*Phasing in or out   0.268 
   (0.210) 
ln(Co-patents p.i.) t-1*Convergence   0.252*** 
   (0.0554) 
ln(Co-patents p.i.) t-1*EFTA   -0.309 
   (0.450) 
Constant -6.125 -10.16 -9.247 
 (6.185) (6.220) (6.233) 
Observations 2,192 2,192 2,192 
Hausman 335.39 306.09 335.02 
p-value 0.000 0.000 0.000 
# Regions 274 274 274 
Region FE Yes Yes Yes 
Log Lik -866.17 -870.99 -877.58 
F-test 17.33 16.33 14.96 
p-value 0.00 0.00 0.00 

Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Explanatory variables expressed 
as percentages are not log-transformed for ease their interpretation.
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Table 6. FE estimations, regional KPF 2000-2007. The role of absorptive 
capacity 
 (1) (2) (3) (4) (5) 
 FE FE FE FE FE 
ln(RDp.c.)t-1 0.227*** 0.240*** 0.241*** 0.236*** 0.248*** 
 (0.0459) (0.0455) (0.0457) (0.0460) (0.0456) 
Share tertiary educ. t-1 0.0281*** 0.0265*** 0.0236*** 0.0244*** 0.0232** 
 (0.00890) (0.00888) (0.00902) (0.00906) (0.00904) 
ln(Pop. density) t-1 5.413** 5.458** 5.797** 5.568** 5.562** 
 (2.463) (2.452) (2.451) (2.461) (2.451) 
ln(Pop. density)2 t-1 -0.609** -0.631*** -0.663*** -0.644*** -0.660*** 
 (0.244) (0.243) (0.244) (0.244) (0.244) 
(Inward Migration Rate) t-1 0.0177***  0.0113*** 0.0170***  
 (0.00622)  (0.00250) (0.00622)  
ln(RDp.c.)t-1*(I.M.R.) t-1 0.00173   0.00156  
 (0.00157)   (0.00157)  
(Net Migration Rate) t-1  0.0295***   0.0290*** 
  (0.00794)   (0.00794) 
ln(RDp.c.)t-1*(N.M.R.) t-1  0.00427**   0.00420** 
  (0.00176)   (0.00176) 
ln(Co-patents per inventor) t-1 0.228*** 0.229*** 0.452*** 0.446*** 0.427*** 
 (0.0523) (0.0523) (0.114) (0.114) (0.114) 
ln(RDp.c.)t-1*ln(Co-patents) t-1   0.0595** 0.0581** 0.0529* 
   (0.0270) (0.0270) (0.0270) 
Constant -7.357 -6.905 -7.792 -7.183 -6.647 
 (6.234) (6.195) (6.198) (6.229) (6.191) 
Observations 2,192 2,192 2,192 2,192 2,192 
Hausman 316.55 317.37 315.50 308.77 304.07 
p-value 0.000 0.000 0.000 0.000 0.000 
# Regions 274 274 274 274 274 
Region FE Yes Yes Yes Yes Yes 
Log Lik -879.17 -876.26 -877.08 -876.51 -874.05 
F-test 18.83 19.61 19.39 17.09 17.66 
p-value 0.00 0.00 0.00 0.00 0.00 

Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Explanatory variables expressed 
as percentages are not log-transformed for ease their interpretation. 
 
 
 
                                                 
1 The EFTA countries are European countries that do not belong to the European Union. Norway and 
Switzerland were among the founding Member States of EFTA in 1960. Iceland joined EFTA in 1970, 
followed by Liechtenstein in 1991. 
2 In unreported results we experiment with a measure of R&D stocks, instead of R&D expenditures – 
calculated using the perpetual inventory method. The results remain virtually unchanged. 
3 Patent data are allocated in time according to the priority date of the application– that is, the first year in 
which the applicant filed the patent anywhere. 
4 We are grateful to CRENoS (University of Cagliari and University of Sassari) for providing us with data on 
R&D and human capital. 
5 We added a small value, 0.1, to this variable in order to allow for the logarithmic transformation.
6 This result may well be due to the low values of the denominator, local number of inventors, in such 
regions. 
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