Published

2023-08-30

Impact of waterlogging on fruit crops in the era of climate change, with emphasis on tropical and subtropical species: A review

Impacto del anegamiento sobre los frutales en la era del cambio climático, con énfasis en especies tropicales y subtropicales: una revisión

DOI:

https://doi.org/10.15446/agron.colomb.v41n2.108351

Keywords:

flooding, hypoxia, aerenchyma, photosynthesis, adaptation, tolerance (en)
inundación, hipocia, aerénquima, fotosíntesis, adaptación, tolerancia (es)

Downloads

Authors

Incidents of flooding in tropical and subtropical fruit trees have increased as a result of climate change. Because of flooding, the anaerobic conditions of the rhizosphere increase the conditions for phytotoxicity and infection by pathogenic fungi and bacteria. Due to oxygen depletion in waterlogged soils, growth, functions of the roots and of the entire plant are impaired. The decrease in the photosynthetic rate is considerable because of the reduced functional leaf area because of chlorosis, necrosis, leaf drop and stomatal closure, as well as chlorophyll degradation. Plants have developed different morphological, physiological, and biochemical adaptations to survive hypoxic stress. Some fruit trees form an aerenchyma in roots for the diffusion of oxygen from the aerial parts. Induced aerenchyma-containing adventitious roots, rapidly elongate stems into deeply flooded soils; or they form hypertrophied lenticels, like some mango varieties. Measures for better adaptations and tolerance of tropical fruit trees to climatic impact include the following: adaptations of the cultivated terrain, selection of varieties, rootstocks more tolerant to hypoxic stress, pruning to reestablish the balance of the aerial part/roots, and foliar applications (e.g., of glycine betaine or hydrogen peroxide (H2O2)). Mycorrhizal colonization of roots can increase tolerance to waterlogging, while the application of fertilizers, such as CaO or MgO, can improve the redox potential of flooded soils. We present results of studies on this problem for the following fruits: yellow passion fruit (Passiflora edulis f. flavicarpa) and purple passion fruit (P. edulis f. edulis), cape gooseberry (Physalis peruviana), lulo or naranjilla (Solanum quitoense), tree tomato (Solanum betaceum), citrus (Citrus spp.), guava (Psidium guajava), papaya (Carica papaya), and mango (Mangifera indica).

Los incidentes por inundaciones en los frutales tropicales y subtropicales han aumentado como resultado del cambio climático. En consecuencia, las condiciones anaeróbicas de la rizosfera aumentan las condiciones de fitotoxicidad y contagio por hongos y bacterias patógenos. Debido al agotamiento del oxígeno en suelos anegados, el crecimiento, las funciones de las raíces y finalmente de toda la planta resultan perjudicados. Se presenta disminución de la tasa fotosintética, debido a la reducida área foliar efectiva como consecuencia de la clorosis, necrosis y caída foliar, además del cierre estomático y la degradación de la clorofila. Las plantas han desarrollado diferentes adaptaciones de tipo morfológico, fisiológico y bioquímico para sobrevivir al estrés por hipoxia. Algunos frutales forman un aerénquima en raíces para facilitar el transporte del oxígeno desde las partes aéreas, inducen raíces adventicias que contienen aerénquima, alargan rápidamente los tallos hacia suelos inundados más profundos o forman lenticelas hipertrofiadas, como en las variedades de mango. Dentro de las medidas para una mejor adaptación y tolerancia de los frutales tropicales a esta adversidad climática se recomiendan una adecuada preparación del suelo, la selección de variedades y patrones más tolerantes al estrés por hipoxia, podas, para reestablecer el equilibrio de la relación parte aérea/raíz en los árboles, aplicaciones foliares como por ejemplo de glicina betaína o peróxido de hidrogeno (H2O2). La colonización micorrícica en las raíces puede aumentar la tolerancia al anegamiento y el potencial redox en suelos inundados puede mejorarse con la aplicación de enmiendas como CaO o MgO. Se presentan resultados de estudios sobre esta adversidad en maracuyá (Passiflora edulis f. flavicarpa), gulupa (P. edulis f. edulis), uchuva (Physalis peruviana), lulo o naranjilla (Solanum quitoense), tomate de árbol (Solanum betaceum), cítricos (Citrus spp.), guayaba (Psidium guajava), papaya (Carica papaya) y mango (Mangifera indica).

References

Aldana, F., García, P. N, & Fischer, G. (2014). Effect of waterlogging stress on the growth, development and symptomatology of cape gooseberry (Physalis peruviana L.) plants. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 38(149), 393–400. https://doi.org/10.18257/raccefyn.114 DOI: https://doi.org/10.18257/raccefyn.114

Bai, T., Li, C., Ma, F., Feng, F., & Shu, H. (2010). Responses of growth and antioxidant system to root-zone hypoxia stress in two Malus species. Plant and Soil, 327, 95–105. https://doi.org/10.1007/s11104-009-0034-x DOI: https://doi.org/10.1007/s11104-009-0034-x

Bailey-Serres, J., & Voesenek, L. A. C. J. (2008). Flooding stress: Acclimations and genetic diversity. Annual Review of Plant Biology, 59, 313–339. https://doi.org/10.1146/annurev.arplant.59.032607.092752 DOI: https://doi.org/10.1146/annurev.arplant.59.032607.092752

Baracaldo, A., Carvajal, R., Romero, A. P., Prieto, A. M., García, F. J., Fischer, G., & Miranda, D. (2014). El anegamiento afecta el crecimiento y producción de biomasa en tomate chonto (Solanum lycopersicum L.), cultivado bajo sombrío. Revista Colombiana de Ciencias Hortícolas, 8(1), 92–102. https://doi.org/10.17584/rcch.2014v8i1.2803 DOI: https://doi.org/10.17584/rcch.2014v8i1.2803

Basso, C., Rodríguez, G., Rivero, G., León, R., Barrios, M., & Díaz, G. (2019). Respuesta del cultivo de maracuyá (Passiflora edulis Sims) a condiciones de estrés por inundación. Bioagro, 31(3), 185–192.

Betancourt-Osorio, J., Sánchez-Canro, D., & Restrepo-Diaz, H. (2016). Effect of nitrogen nutritional statuses and waterlogging conditions on growth parameters, nitrogen use efficiency and chlorophyll fluorescence in tamarillo seedlings. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 44(2), 375–381. https://doi.org/10.15835/nbha44210438 DOI: https://doi.org/10.15835/nbha44210438

Bisbis, M. B., Gruda, N., & Blanke, M. (2018). Potential impacts of climate change on vegetable production and product quality. Journal of Cleaner Production, 170, 1602–1620. https://doi.org/10.1016/j.jclepro.2017.09.224 DOI: https://doi.org/10.1016/j.jclepro.2017.09.224

Blanco-Canqui, H., Shaver, T. M., Lindquist, J. L., Shapiro, C. A., Elmore, R. W., Francis, C. A., & Hergert, G. W. (2015). Cover crops and ecosystem services: Insights from studies in temperate soils. Agronomy Journal, 107(6), 2449–2474. https://doi.org/10.2134/agronj15.0086 DOI: https://doi.org/10.2134/agronj15.0086

Blanke, M. M., & Cooke, D. T. (2004). Effects of flooding and drought on stomatal activity, transpiration, photosynthesis, water potential and water channel activity in strawberry stolons and leaves. Plant Growth Regulation, 42, 153–160. https://doi.org/10.1023/B:GROW.0000017489.21970.d4 DOI: https://doi.org/10.1023/B:GROW.0000017489.21970.d4

Blom, C. W. P. M.., & Voesenek, L. A. C. J. (1996). Flooding: the survival strategies of plants. Trends in Ecology & Evolution, 11(7), 290–295. https://doi.org/10.1016/0169-5347(96)10034-3 DOI: https://doi.org/10.1016/0169-5347(96)10034-3

Bolaños, E. (2019). Efecto de las inundaciones en las plantaciones bananeras del Caribe de Costa Rica. Corbana, 45(65), 131–140.

Cardona, W. A., Bautista-Montealegre, L. G., Flórez-Velasco, N., & Fischer, G. (2016). Biomass and root development response of lulo (Solanum quitoense var. septentrionale) plants to shading and waterlogging. Revista Colombiana de Ciencias Hortícolas, 10(1), 53–65. https://doi.org/10.17584/rcch.2016v10i1.5124 DOI: https://doi.org/10.17584/rcch.2016v10i1.5124

Casierra-Posada, F., & Vargas, Y. A. (2007). Growth and yield of strawberry cultivars (Fragaria sp.) affected by flooding. Revista Colombiana de Ciencias Hortícolas, 1(1), 21–32. https://doi.org/10.17584/rcch.2007v1i1.1142 DOI: https://doi.org/10.17584/rcch.2007v1i1.1142

Castro-Duque, N. E., Chávez-Arias, C. C., & Restrepo-Díaz, H. (2020). Foliar glycine betaine or hydrogen peroxide sprays ameliorate waterlogging stress in cape gooseberry. Plants, 9(5), Article 644. https://doi.org/10.3390/plants9050644 DOI: https://doi.org/10.3390/plants9050644

Chávez-Arias, C. C., Gómez-Caro, S., & Restrepo-Díaz, H. (2019). Physiological, biochemical and chlorophyll fluorescence parameters of Physalis peruviana L. seedlings exposed to different short-term waterlogging periods and Fusarium wilt infection. Agronomy, 9(5), Article 213. https://doi.org/10.3390/agronomy9050213 DOI: https://doi.org/10.3390/agronomy9050213

Chebet, D., Kariuki, W., Wamocho, L., & Rimberia, F. (2020). Effect of arbuscular mycorrhizal inoculation on growth, biochemical characteristics and nutrient uptake of passion fruit seedlings under flooding stress. International Journal of Agronomy and Agricultural Research, 16(4), 24–31.

Chmielewski, F.-M., Blümel, K., Henniges, Y., & Müller, A. (2008). Vulnerability of fruit growers to climate change observed impacts and assessments. Italian Journal of Agronomy, 3(3), 605–606.

Crane, J. H., Balerdi, C. F., & Schaffer, B. (2020). Managing your tropical fruit grove under changing water table levels. Doc. HS957. Horticultural Sciences Department, UF/IFAS Extension, Gainesville, FL.

Davies, F. S., & Flore, J. A. (1986). Short-term flooding effects on gas exchange and quantum yield of rabbiteye blueberry (Vaccinium ashei Reade). Plant Physiology, 81(1), 289–293. https://doi.org/10.1104/pp.81.1.289 DOI: https://doi.org/10.1104/pp.81.1.289

Dey, K., Ghosh, A., Priya, B., Dutta, P., & Das, S. (2016). Impact of climate change and mitigation strategies on fruit production. Advances in Life Sciences, 5(7), 2588–2596.

Drew, M. C. (1997). Oxygen deficiency and root metabolism. Injury and acclimation under hypoxia and anoxia. Annual Review of Plant Physiology and Plant Molecular Biology, 48, 223–250. https://doi.org/10.1146/annurev.arplant.48.1.223 DOI: https://doi.org/10.1146/annurev.arplant.48.1.223

Drogoudi, P., Kazantzis., K., Kunz, A., & Blanke, M. M. (2020). Effects of climate change on cherry production in Naoussa, Greece and Bonn, Germany: adaptation strategies. Euro-Mediterranean Journal for Environmental Integration, 5, Article 12. https://doi.org/10.1007/s41207-020-0146-5 DOI: https://doi.org/10.1007/s41207-020-0146-5

Dubey, S. S., Kuruwanshi, V. B., Bhagat, K. P., & Ghodke, P. H. (2021). Impact of excess moisture in onion genotypes (Allium cepa L.) under climate change. International Journal of Current Microbiology and Applied Sciences, 10(03), 166–175.

Else, M. A., Hall, K. C., Arnold, G. M., Davies, W. J., & Jackson, M. B. (1995). Export of abscisic acid, 1-aminocyclopropane-1-carboxylic acid, phosphate, and nitrate from roots to shoots of flooded tomato plants. Plant Physiology, 107(2), 377–384. https://doi.org/10.1104/pp.107.2.377 DOI: https://doi.org/10.1104/pp.107.2.377

Faria, L. O., Souza, A. G. V., Alvarenga, F. P., Silva, F. C. M., Junior, J. S. R., Amorim, V. A., Borges, L. P., & Matos, F S. (2020). Passiflora edulis growth under different water regimes. Journal of Agricultural Science, 12(4), 231–238. https://doi.org/10.5539/jas.v12n4p231 DOI: https://doi.org/10.5539/jas.v12n4p231

Fischer, G. (Ed.). (2012). Manual para el cultivo de frutales en el trópico. Produmedios.

Fischer, G. (2021). El aumento de las inundaciones generado por el cambio climático afectará nuestros cultivos. Revista Facultad Nacional de Agronomía Medellín, 74(3), 9619-9620.

Fischer, G., Balaguera-López, H. E., & Magnitskiy, S. (2021). Review on the ecophysiology of important Andean fruits: Solanaceae. Revista U.D.C.A Actualidad & Divulgación Científica, 24(1), Article e1701. http://doi.org/10.31910/rudca.v24.n1.2021.1701 DOI: https://doi.org/10.31910/rudca.v24.n1.2021.1701

Fischer, G., & Melgarejo, L. M. (2020). The ecophysiology of cape gooseberry (Physalis peruviana L.) - an Andean fruit crop. A review. Revista Colombiana de Ciencias Hortícolas, 14(1), 76–89. https://doi.org/10.17584/rcch.2020v14i1.10893 DOI: https://doi.org/10.17584/rcch.2020v14i1.10893

Fischer, G., Melgarejo, L. M., & Balaguera-López, H. E. (2022). Review on the impact of elevated CO2 concentrations on fruit species in the face of climate change. Ciencia y Tecnología Agropecuaria, 23(2), Article e2475. https://doi.org/10.21930/rcta.vol23_num2_art:2475 DOI: https://doi.org/10.21930/rcta.vol23_num2_art:2475

Fischer, G., & Miranda, D. (2021). Review on the ecophysiology of important Andean fruits: Passiflora L. Revista Facultad Nacional de Agronomía Medellín, 74(2), 9471–9481. https://doi.org/10.15446/rfnam.v74n2.91828 DOI: https://doi.org/10.15446/rfnam.v74n2.91828

Fischer, G., & Orduz-Rodríguez, J. O. (2012). Ecofisiología en frutales. In G. Fischer (Ed.). Manual para el cultivo de frutales en el trópico (pp. 54–72). Produmedios, Bogotá.

Fischer, G., Orduz-Rodríguez, J. O., & Amarante, C. V. T. (2022). Sunburn disorder in tropical and subtropical fruits. A review. Revista Colombiana de Ciencias Hortícolas, 16(3), Article e15703. https://doi.org/10.17584/rcch.2022v16i3.15703 DOI: https://doi.org/10.17584/rcch.2022v16i3.15703

Fischer, G., & Parra-Coronado, A. (2020). Influence of some environmental factors on the feijoa (Acca sellowiana [Berg] Burret) crop. A review. Agronomía Colombiana, 38(3), 388–397. https://doi.org/10.15446/agron.colomb.v38n3.88982 DOI: https://doi.org/10.15446/agron.colomb.v38n3.88982

Fischer, G., Parra-Coronado, A., & Balaguera-López, H. E. (2020). Aspectos del cultivo y de la fisiología de feijoa (Acca sellowiana [Berg] Burret). Una revisión. Ciencia y Agricultura, 17(3), 11–24. https://doi.org/10.19053/01228420.v17.n3.2020.11386 DOI: https://doi.org/10.19053/01228420.v17.n3.2020.11386

Fischer, G., Ramírez, F., & Casierra-Posada, F. (2016). Ecophysiological aspects of fruit crops in the era of climate change. A review. Agronomía Colombiana, 34(2), 190–199. https://doi.org/10.15446/agron.colomb.v34n2.56799 DOI: https://doi.org/10.15446/agron.colomb.v34n2.56799

Flórez-Velasco, N., Balaguera-López H. E., & Restrepo-Díaz, H. (2015). Effects of foliar urea application on lulo (Solanum quitoense cv. septentrionale) plants grown under different waterlogging and nitrogen conditions. Scientia Horticulturae, 186, 154–162. https://doi.org/10.101/j.scienta.2015.02.021 DOI: https://doi.org/10.1016/j.scienta.2015.02.021

Friedrich, G., & Fischer, M. (2000). Physiologische Grundlagen des Obstbaues. Verlag Eugen Ulmer, Stuttgart.

Govêa, K. P., Neto, A. R. C., Resck, N. M., Moreira, L. L., Júnior, V. V., Pereira, F. L., Polo, M., & Souza, T. C. (2018). Morphoanatomical and physiological aspects of Passiflora edulis Sims (passion fruit) subjected to flooded conditions during early developmental stages. Biotemas, 31(3), 15–23. https://doi.org/10.5007/2175-7925.2018v31n3p15 DOI: https://doi.org/10.5007/2175-7925.2018v31n3p15

Hirabayashi, Y., Mahendran, R., Koirala, S., Konoshima, L., Yamazaki, D., Watanabe, S., Kim, H., & Kanae, S. (2013). Global flood risk under climate change. Nature Climate Change, 3, 816–821. https://doi.org/10.1038/nclimate1911 DOI: https://doi.org/10.1038/nclimate1911

Hossain, A., & Uddin, S. N. (2011). Mechanisms of waterlogging tolerance in wheat: morphological and metabolic adaptations under hypoxia or anoxia. Australian Journal of Crop Science, 5(9), 1094–1101.

Iacona, C., Cirilli, M., Zega, A., Frioni, E., Silvestri, C., & Muleo, R. (2013). A somaclonal myrobalan rootstock increases waterlogging tolerance to peach cultivar in controlled conditions. Scientia Horticulturae, 156, 1–8. https://doi.org/10.1016/j.scienta.2013.03.014 DOI: https://doi.org/10.1016/j.scienta.2013.03.014

Insausti, P., & Gorjón, S. (2013). Floods affect physiological and growth variables of peach trees (Prunus persica (L.) Batsch), as well as the postharvest behavior of fruits. Scientia Horticulturae, 152, 56–60. https://doi.org/10.1016/j.scienta.2013.01.005 DOI: https://doi.org/10.1016/j.scienta.2013.01.005

IPCC. (2019). Summary for Policymakers. In Climate change and land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. Intergovernmental Panel on Climate Change, Geneva, Switzerland.

Jackson, M. B., & Colmer, T. D. (2005). Response and adaptation by plants to flooding stress. Annals of Botany, 96(4), 501–505. https://doi.org/10.1093/aob/mci205 DOI: https://doi.org/10.1093/aob/mci205

Jiménez, J. C., Moreno, L. P., & Magnitskiy, S. (2012). Respuesta de las plantas a estrés por inundación. Una revisión. Revista Colombiana de Ciencias Hortícolas, 6(1), 96–109. https://doi.org/10.17584/rcch.2012v6i1.1287 DOI: https://doi.org/10.17584/rcch.2012v6i1.1287

Jones, G. V., White, M. A., Cooper, O. R., & Storchmann, K. (2005). Climate change and global wine quality. Climatic Change, 73, 319–343. https://doi.org/10.1007/s10584-005-4704-2 DOI: https://doi.org/10.1007/s10584-005-4704-2

Kaur, G., Singh, G., Motavalli, P. P., Nelson, K. A., Orlowski, J. M., & Golden, B. R. (2020). Impacts and management strategies for crop production in waterlogged or flooded soils: A review. Agronomy Journal, 112(3), 1475–1501. https://doi.org/10.1002/agj2.20093 DOI: https://doi.org/10.1002/agj2.20093

Khondaker, N. A., & Ozawa, K. (2007). Papaya plant growth as affected by soil air oxygen deficiency. Acta Horticulturae, 740, 225–232. https://doi.org/10.17660/ActaHortic.2007.740.27 DOI: https://doi.org/10.17660/ActaHortic.2007.740.27

Kläring, H. P., & Zude, M. (2009). Sensing of tomato plant response to hypoxia in the root environment. Scientia Horticulturae, 122, 17–25. https://doi.org/10.1016/j.scienta.2009.03.029 DOI: https://doi.org/10.1016/j.scienta.2009.03.029

Kongsri, S., Nartvaranant, P., & Boonprakob, U. (2020). A comparison of flooding tolerance of guava tree propagated from shoot layering and seedling. Acta Horticulturae, 1298, 625–632. https://doi.org/10.17660/ActaHortic.2020.1298.86 DOI: https://doi.org/10.17660/ActaHortic.2020.1298.86

Koul, B., Pudhavai, B., Sharma, C., Kumar, A., Sharma, V., Yadav, D., & Jin, J.-O. (2022). Carica papaya L.: A tropical fruit with benefits beyond the tropics. Diversity, 14(8), Article 683. https://doi.org/10.3390/d14080683 DOI: https://doi.org/10.3390/d14080683

Kozlowski, T., & Pallardy, S. (1997). Physiology of woody plants (2nd ed.). Academic Press, London.

Kreuzwieser, J., & Rennenberg, H. (2014). Molecular and physiological responses of trees to waterlogging stress. Plant, Cell & Environment, 37(10), 2245–2259. https://doi.org/10.1111/pce.12310 DOI: https://doi.org/10.1111/pce.12310

Kunz, A., & Blanke, M. (2022). ”60 years on”- effects of climate change on tree phenology – A case study using pome fruit. Horticulturae, 8(2), Article 110. https://doi.org/10.3390/horticulturae8020110 DOI: https://doi.org/10.3390/horticulturae8020110

Lambers, H., & Oliveira, R. S. (2019). Plant physiological ecology (3rd ed.). Springer Nature Switzerland AG, Cham, Switzerland. https://doi.org/10.1007/978-3-030-29639-1 DOI: https://doi.org/10.1007/978-3-030-29639-1

Larcher, W. (2003). Physiological plant ecology. Springer-Verlag. Lenz, F. (2009). Fruit effects on the dry matter and carbohydrate distribution in apple tree. Acta Horticulturae, 835, 21–38. https://doi.org/10.17660/ActaHortic.2009.835.2 DOI: https://doi.org/10.17660/ActaHortic.2009.835.2

León-Burgos, A. F., Unigarro, C. A., & Balaguera-López, H. E. (2022). Soil waterlogging conditions affect growth, water status, and chlorophyll “a” fluorescence in coffee plants (Coffea arabica L.). Agronomy, 12(6), Article 1270. https://doi.org/10.3390/agronomy12061270 DOI: https://doi.org/10.3390/agronomy12061270

Liu, G., & Porterfield, D. M. (2014). Oxygen enrichment with magnesium peroxide for minimizing hypoxic stress of flooded corn. Journal of Plant Nutrition and Soil Science, 177, 733–740. DOI: https://doi.org/10.1002/jpln.201300424

Malik, A. I., Colmer T. D., Lambers, H., & Schortemeyer, M. (2003). Aerenchyma formation and radial O2 loss along adventitious roots of wheat with only the apical root portion exposed to O2 deficiency. Plant, Cell & Environment, 26(10), 1713–1722. https://doi.org/10.1046/j.1365-3040.2003.01089.x DOI: https://doi.org/10.1046/j.1365-3040.2003.01089.x

Martínez-Alcántara, B., Jover, S., Quiñones, A., Forner-Giner, M. Á., Rodríguez-Gamir, J., Legaz, F., Primo-Millo, E., & Iglesia, D. J. (2012). Flooding affects uptake and distribution of carbon and nitrogen in citrus seedlings. Journal of Plant Physiology, 169(12), 1150–1157. https://doi.org/10.1016/j.jplph.2012.03.016 DOI: https://doi.org/10.1016/j.jplph.2012.03.016

Menezes‐Silva, P. E., Loram‐Lourenço, L., Alves, R. D. F. B., Sousa, L. F., Almeida, S. E. S., & Farnese, F. S. (2019). Different ways to die in a changing world: Consequences of climate change for tree species performance and survival through an ecophysiological perspective. Ecology and Evolution, 9(20), 11979–11999. https://doi.org/10.1002/ece3.5663 DOI: https://doi.org/10.1002/ece3.5663

Mielke, M., & Schaffer, B. (2010). Photosynthetic and growth responses of Eugenia uniflora L. seedlings to soil flooding and light intensity. Environmental and Experimental Botany, 68(2), 113–121. https://doi.org/10.1016/j.envexpbot.2009.11.007 DOI: https://doi.org/10.1016/j.envexpbot.2009.11.007

Moreno, A., & Fischer, G. (2014). Efectos del anegamiento en los frutales. Una revisión. Temas Agrarios, 19(1), 108–125. https://doi.org/10.21897/rta.v19i1.729 DOI: https://doi.org/10.21897/rta.v19i1.729

Moreno, D., Useche, D. C., & Balaguera, H. E. (2019). Respuesta fisiológica de especies arbóreas al anegamiento. Nuevo conocimiento sobre especies de interés en el arbolado urbano de Bogotá. Colombia Forestal, 22(1), 51–67. https://doi.org/10.14483/2256201X.13453 DOI: https://doi.org/10.14483/2256201X.13453

Orazem, P., Stampar, F., & Hudina, M. (2011). Quality analysis of ‘Redhaven’ peach fruit grafted on 11 rootstocks of different genetic origin in a replant soil. Food Chemistry, 124(4), 1691–1698. https://doi.org/10.1016/j.foodchem.2010.07.078 DOI: https://doi.org/10.1016/j.foodchem.2010.07.078

Orduz-Rodríguez, J. O. (2012). Cítricos (Citrus spp.). In G. Fischer (Ed.), Manual para el cultivo de frutales en el trópico (pp. 393–420). Produmedios, Bogotá.

Pallardy, S. G. (2008). Physiology of woody plants (3rd ed.). Elsevier.

Pan, J., Sharif, R., Xu, X., & Chen, X. (2021). Mechanisms of waterlogging tolerance in plants: research progress and prospects. Frontiers in Plant Science, 11, Article 627331. https://doi.org/10.3389/fpls.2020.627331 DOI: https://doi.org/10.3389/fpls.2020.627331

Panda, D., & Barik, J. (2021). Flooding tolerance in rice: Focus on mechanisms and approaches. Rice Science, 28(1), 43–57. https://doi.org/10.1016/j.rsci.2020.11.006 DOI: https://doi.org/10.1016/j.rsci.2020.11.006

Parent, C., Capelli, N., Berger, A., Crèvecoeur, M., & Dat, J. F. (2008). An overview of plant responses to soil waterlogging. Plant Stress, 2(1), 20–27.

Paull, R. E., & Duarte, O. (2012). Tropical fruits (2nd ed.). (Vol. 2). CAB International.

Pedersen, O., Sauter, M., Colmer, T. D., & Nakazono, M. (2020). Regulation of root adaptive anatomical and morphological traits during low soil oxygen. New Phytologist, 229(1), 42–49. https://doi.org/10.1111/nph.16375 DOI: https://doi.org/10.1111/nph.16375

Peña-Fronteras, J. T., Villalobos, M. C., Baltazar, A. M., Merca, F. E., Ismail, A. M., & Johnson, D. E. (2008). Adaptation to flooding in upland and lowland ecotypes of Cyperus rotundus, a troublesome sedge weed of rice: tuber morphology and carbohydrate metabolism. Annals of Botany, 103, 295–302. DOI: https://doi.org/10.1093/aob/mcn085

Pérez-Jiménez, M., & Pérez-Tornero, O. (2021). Short-term waterlogging in Citrus rootstocks. Plants, 10(12), Article 2772. https://doi.org/10.3390/plants10122772 DOI: https://doi.org/10.3390/plants10122772

Potopová, V., Zahradníček, P., Türkott, L., Štěpánek, P., & Soukup, J. (2015). The effects of climate change on variability of the growing seasons in the Elbe River lowland, Czech Republic. Advances in Meteorology, 2015, Article 546920. https://doi.org/10.1155/2015/546920 DOI: https://doi.org/10.1155/2015/546920

Pucciariello, C., & Perata, P. (2012). Flooding tolerance in plants. In S. Shabala (Ed.), Plant stress physiology (pp. 148–170). CAB International. DOI: https://doi.org/10.1079/9781845939953.0148

Rankenberg, T., Geldhof, B., Veen, H., Holsteens, K., Poel, B., & Sasidharan, R. (2021). Age-dependent abiotic stress resilience in plants. Trends in Plant Science, 26(7), 692–705. https://doi.org/10.1016/j.tplants.2020.12.016 DOI: https://doi.org/10.1016/j.tplants.2020.12.016

Reeksting, B. J., Taylor, N. J., & van den Berg, N. (2014). Flooding and Phytophthora cinnamomi: Effects on photosynthesis and chlorophyll fluorescence in shoots of non-grafted Persea americana (Mill.) rootstocks differing in tolerance to Phytophthora root rot. South African Journal of Botany, 95, 40–53. https://doi.org/10.1016/j.sajb.2014.08.004 DOI: https://doi.org/10.1016/j.sajb.2014.08.004

Reig, G., Zarrouk, O., Font i Forcada, C., & Moreno, M. Á. (2018). Anatomical graft compatibility study between apricot cultivars and different plum based rootstocks. Scientia Horticulturae, 237, 67–73. https://doi.org/10.1016/j.scienta.2018.03.035 DOI: https://doi.org/10.1016/j.scienta.2018.03.035

Revelo, R. (2020). Indicadores físicos e hídricos y uso del suelo en los frutales. Suelos Ecuatoriales, 50(1–2), 40–53. DOI: https://doi.org/10.47864/SE(50)2020p40-53_119

Robinson, J. C., & Galán-Sauco, V. (2010). Bananas and plantains (2nd ed.). Series Crop Production Science in Horticulture. CAB International. DOI: https://doi.org/10.1079/9781845936587.0000

Rodríguez, G., Schaffer, B., Basso, C., & Vargas, A. (2014). Efecto del tiempo de inundación del sistema radical sobre algunos aspectos fisiológicos y desarrollo del cultivo de lechosa (Carica papaya L.). Revista Facultad de Agronomía UCV, 40(3), 89–98.

Rutto, K. L., Mizutania, F., & Kadoya, K. (2002). Effect of root-zone flooding on mycorrhizal and non-mycorrhizal peach (Prunus persica Batsch) seedlings. Scientia Horticulturae, 94, 285–295. DOI: https://doi.org/10.1016/S0304-4238(02)00008-0

Saavedra, R., Vásquez, H. D., & Mejía, E. (2012). Aguacate (Persea americana Mill.). In G. Fischer (Ed.), Manual para el cultivo de frutales en el trópico (pp. 319–348). Produmedios.

Sánchez-Reinoso, A. D., Jiménez-Pulido, Y., Martínez-Pérez, J. P., Pinilla, C. S., & Fischer, G. (2019). Chlorophyll fluorescence and other physiological parameters as indicators of waterlogging and shadow stress in lulo (Solanum quitoense var. septentrionale) seedlings. Revista Colombiana de Ciencias Hortícolas, 13(3), 325–335. https://doi.org/10.17584/rcch.2019v13i3.10017 DOI: https://doi.org/10.17584/rcch.2019v13i3.10017

Sanclemente, M. A., Schaffer, B., Gil, P. M., Vargas, A. I., & Davies, F. S. (2014). Pruning after flooding hastens recovery of flood-stressed avocado (Persea americana Mill.) trees. Scientia Horticulturae, 169, 27–35. https://doi.org/10.1016/j.scienta.2014.01.034 DOI: https://doi.org/10.1016/j.scienta.2014.01.034

Sathi, K. S., Masud, A. A. C., Anee, T. I., Rahman, K., Ahmed, N., & Hasanuzzaman, M. (2022). Soybean plants under waterlogging stress: responses and adaptation mechanisms. In M. Hasanuzzaman, G. J. Ahammed, & K. Nahar (Eds.), Managing plant production under changing environment (pp. 103–134). Springer Nature. https://doi.org/10.1007/978-981-16-5059-8_5 DOI: https://doi.org/10.1007/978-981-16-5059-8_5

Schaffer, B., Davies, F., & Crane, J. H. (2006). Responses to tropical and subtropical fruit trees to flooding in calcareous soil. HortScience, 41(3), 549–555. https://doi.org/10.21273/HORTSCI.41.3.549 DOI: https://doi.org/10.21273/HORTSCI.41.3.549

Schaffer, B., Urban, L., Lu, P., & Whiley, A. (2009). Ecophysiology. In R. E. Litz (Ed.), The mango. botany, production and uses (pp. 170–209) (2nd ed.). CAB International. DOI: https://doi.org/10.1079/9781845934897.0170

Schopfer, P., & Brennicke, A. (2010). Pflanzenphysiologie. 7. Auflage. Spektrum Akademischer Verlag, Heidelberg. DOI: https://doi.org/10.1007/978-3-8274-2352-8

Schwarz, D., Rouphael, Y., Colla, G., & Venema, J. (2010). Grafting as a tool to improve tolerance of vegetables to abiotic stresses: Thermal stress, water stress and organic pollutants. Scientia Horticulturae, 127(2), 162–171. https://doi.org/10.1016/j.scienta.2010.09.016 DOI: https://doi.org/10.1016/j.scienta.2010.09.016

Singh, A., Krause, P., Panda, S., & Flugel, W. A. (2010). Rising water table: A threat to sustainable agriculture in an irrigated semiarid region of Haryana, India. Agricultural Water Management, 97, 1443–1451. DOI: https://doi.org/10.1016/j.agwat.2010.04.010

Sthapit, B. R., Rao, V. R., & Sthapit, S. R. (2012). Tropical fruit tree species and climate change. Bioversity International, New Delhi.

Taiz, L., & Zeiger, E. (2010). Plant physiology (5th ed.). Sinauer Associates, Sunderland, MA.

Taiz, L., Zeiger, E., Møller, I. M., & Murphy, A. (2017). Fisiologia e desenvolvimento vegetal (6th ed.). Artmed.

Thani, Q. A., Vargas, A. I., Schaffer, B., Liu, G., & Crane, J. D. (2016). Responses of papaya plants in a potting medium in containers to flooding and solid oxygen fertilization. Proceedings of the Florida State Horticultural Society, 129, 27–34.

Tuheteru, F. D., & Wu, Q.-S. (2017). Arbuscular mycorrhizal fungi and tolerance of waterlogging stress in plants. In Q.-S. Wu (Ed.), Arbuscular mycorrhizas and stress tolerance of plants (pp. 43–66). Springer. https://doi.org/10.1007/978-981-10-4115-0_3 DOI: https://doi.org/10.1007/978-981-10-4115-0_3

Unger, I. M., Kennedy, A. C., & Muzika, R.-M. (2009). Flooding effects on soil microbial communities. Applied Soil Ecology, 42(1), 1–8. https://doi.org/10.1016/j.apsoil.2009.01.007 DOI: https://doi.org/10.1016/j.apsoil.2009.01.007

Unger, I. M., Motavalli, P. P., & Muzika, R.-M. (2009). Changes in soil chemical properties with flooding: A field laboratory approach. Agriculture, Ecosystems and Environment, 131(1-2), 105–110. https://doi.org/10.1016/j.agee.2008.09.013 DOI: https://doi.org/10.1016/j.agee.2008.09.013

Villarreal-Navarrete, A., Fischer, G., Melgarejo, L. M., Correa, G., & Hoyos-Carvajal, L. (2017). Growth response of the cape gooseberry (Physalis peruviana L.) to waterlogging stress and Fusarium oxysporum infection. Acta Horticulturae, 1178, 161–168. https://doi.org/10.17660/ActaHortic.2017.1178.28 DOI: https://doi.org/10.17660/ActaHortic.2017.1178.28

Wang, X.-C.., & Lu, Q. (2006). Effect of waterlogged and aerobic incubation on enzyme activities in paddy soil. Pedosphere, 16(4), 532–539. https://doi.org/10.1016/S1002-0160(06)60085-4 DOI: https://doi.org/10.1016/S1002-0160(06)60085-4

Wood, S., Sebastian, K., & Scherr, S. (2000). Pilot analysis of global ecosystems: Agroecosystems. International Food Policy Research Institute and the World Resources Institute, Washington, D.C.

Xie, L.-J., Zhou, Y., Chen, Q.-F., & Xiao, S. (2021). New insights into the role of lipids in plant hypoxia responses. Progress in Lipid Research, 81, Article 101072. https://doi.org/10.1016/j.plipres.2020.101072 DOI: https://doi.org/10.1016/j.plipres.2020.101072

Yohannes, H. (2016). A review on relationship between climate change and agriculture. Journal of Earth Science & Climatic Change, 7(2), Article 335. https://doi.org/10.4172/2157-7617.1000335 DOI: https://doi.org/10.4172/2157-7617.1000335

Zandalinas, S. I., Fritschi, F. B., & Mittler, R. (2021). Global warming, climate change, and environmental pollution: Recipe for a multifactorial stress combination disaster. Trends in Plant Science, 26(6), 588–599. https://doi.org/10.1016/j.tplants.2021.02.011 DOI: https://doi.org/10.1016/j.tplants.2021.02.011

Zeng, F., Konnerup, D., Shabala, L., Zhou, M., Colmer, T. D., Zhang, G., & Shabala, S. (2014). Linking oxygen availability with membrane potential maintenance and K+ retention of barley roots: implications for waterlogging stress tolerance. Plant, Cell & Environment, 37(10), 2325–2338. https://doi.org/10.1111/pce.12422 DOI: https://doi.org/10.1111/pce.12422

Zhang, Y., Liu, G., Dong, H., & Li, C. (2021). Waterlogging stress in cotton: Damage, adaptability, alleviation strategies, and mechanisms. The Crop Journal, 9(2), 257–270. https://doi.org/10.1016/j.cj.2020.08.005 DOI: https://doi.org/10.1016/j.cj.2020.08.005

How to Cite

APA

Fischer, G., Casierra-Posada, F. and Blanke, M. (2023). Impact of waterlogging on fruit crops in the era of climate change, with emphasis on tropical and subtropical species: A review. Agronomía Colombiana, 41(2), e108351. https://doi.org/10.15446/agron.colomb.v41n2.108351

ACM

[1]
Fischer, G., Casierra-Posada, F. and Blanke, M. 2023. Impact of waterlogging on fruit crops in the era of climate change, with emphasis on tropical and subtropical species: A review. Agronomía Colombiana. 41, 2 (May 2023), e108351. DOI:https://doi.org/10.15446/agron.colomb.v41n2.108351.

ACS

(1)
Fischer, G.; Casierra-Posada, F.; Blanke, M. Impact of waterlogging on fruit crops in the era of climate change, with emphasis on tropical and subtropical species: A review. Agron. Colomb. 2023, 41, e108351.

ABNT

FISCHER, G.; CASIERRA-POSADA, F.; BLANKE, M. Impact of waterlogging on fruit crops in the era of climate change, with emphasis on tropical and subtropical species: A review. Agronomía Colombiana, [S. l.], v. 41, n. 2, p. e108351, 2023. DOI: 10.15446/agron.colomb.v41n2.108351. Disponível em: https://revistas.unal.edu.co/index.php/agrocol/article/view/108351. Acesso em: 1 jun. 2024.

Chicago

Fischer, Gerhard, Fanor Casierra-Posada, and Michael Blanke. 2023. “Impact of waterlogging on fruit crops in the era of climate change, with emphasis on tropical and subtropical species: A review”. Agronomía Colombiana 41 (2):e108351. https://doi.org/10.15446/agron.colomb.v41n2.108351.

Harvard

Fischer, G., Casierra-Posada, F. and Blanke, M. (2023) “Impact of waterlogging on fruit crops in the era of climate change, with emphasis on tropical and subtropical species: A review”, Agronomía Colombiana, 41(2), p. e108351. doi: 10.15446/agron.colomb.v41n2.108351.

IEEE

[1]
G. Fischer, F. Casierra-Posada, and M. Blanke, “Impact of waterlogging on fruit crops in the era of climate change, with emphasis on tropical and subtropical species: A review”, Agron. Colomb., vol. 41, no. 2, p. e108351, May 2023.

MLA

Fischer, G., F. Casierra-Posada, and M. Blanke. “Impact of waterlogging on fruit crops in the era of climate change, with emphasis on tropical and subtropical species: A review”. Agronomía Colombiana, vol. 41, no. 2, May 2023, p. e108351, doi:10.15446/agron.colomb.v41n2.108351.

Turabian

Fischer, Gerhard, Fanor Casierra-Posada, and Michael Blanke. “Impact of waterlogging on fruit crops in the era of climate change, with emphasis on tropical and subtropical species: A review”. Agronomía Colombiana 41, no. 2 (May 1, 2023): e108351. Accessed June 1, 2024. https://revistas.unal.edu.co/index.php/agrocol/article/view/108351.

Vancouver

1.
Fischer G, Casierra-Posada F, Blanke M. Impact of waterlogging on fruit crops in the era of climate change, with emphasis on tropical and subtropical species: A review. Agron. Colomb. [Internet]. 2023 May 1 [cited 2024 Jun. 1];41(2):e108351. Available from: https://revistas.unal.edu.co/index.php/agrocol/article/view/108351

Download Citation

CrossRef Cited-by

CrossRef citations1

1. Gerhard Fischer, Franz Leonard Fischer-García. (2023). Heavy metal contamination of vegetables in urban and peri-urban areas. An overview. Revista Colombiana de Ciencias Hortícolas, 17(2) https://doi.org/10.17584/rcch.2023v17i2.16099.

Dimensions

PlumX

Article abstract page views

756

Downloads

Download data is not yet available.