Published

2021-09-01

In vitro inhibition attempts and bio-elicitation of Solanum lycopersicum L. by chitin and chitosan against Ralstonia solanacearum, the causal agent of bacterial wilt

Intentos de inhibición in vitro y bioelicitación de Solanum lycopersicum L. mediante quitina y quitosano contra Ralstonia solanacearum, el agente causal de la marchitez bacteriana

DOI:

https://doi.org/10.15446/agron.colomb.v39n3.97746

Keywords:

biopolymers, defense stimulation, tomato, growth inhibition (en)
biopolímeros, estimulación de la defensa, tomate, inhibición del crecimiento (es)

Downloads

Authors

  • Amine Rkhaila Ibn Tofail University - Faculty of Sciences - Department of Biology - Plant, Animal and Agro Industry Productions Laboratory - Kenitra, Morocco https://orcid.org/0000-0002-7894-9158
  • Mouhatti Saga Ibn Tofail University - Faculty of Sciences - Department of Biology - Plant, Animal and Agro Industry Productions Laboratory - Kenitra, Morocco https://orcid.org/0000-0001-5093-933X
  • Sofia Ghizlan Grohs Ibn Tofail University - Faculty of Sciences - Department of Biology - Plant, Animal and Agro Industry Productions Laboratory - Kenitra, Morocco https://orcid.org/0000-0002-4537-7923
  • Khadija Ounine Ibn Tofail University - Faculty of Sciences - Department of Biology - Plant, Animal and Agro Industry Productions Laboratory - Kenitra, Morocco https://orcid.org/0000-0002-0144-3925

Ralstonia solanacearum is one of the most destructive pathogens of vegetables causing very important economic losses. In 2019, 20 strains of R. solanacearum were collected from potato tubers in Morocco. After their identification, the inhibitory effect of colloidal solutions of chitin and/or chitosan was evaluated in vitro on a solid medium (Mueller Hinton) supplemented with these biopolymers. The concentrations (25, 50, or 100 mg L-1) contributed to significant inhibition of the growth of the isolated strains that led to an inhibition of 45.04% with the combination of chitin-chitosan (100 mg L-1), 58.92% with the addition of 100 mg L-1 of chitin, and 68.74% in the presence of chitosan at 25 mg L-1. Likewise, in experiments with Solanum lycopersicum L. seedlings, chitin derivatives significantly promoted stem and root growth. Stem length increased by 54.95% when chitin was added at 25 mg L-1, while soil amendment with 100 mg L-1 of chitosan increased root length by 82.55% compared to the control. The severity of bacterial wilt due to R. solanacearum was reduced by 117.02% when we added 100 mg L-1 of chitosan to the soil. However, the severity of this disease decreased by 142.86% when the soil was amended with chitin at 50 mg L-1. These findings are consistent with prior research that suggests using this technique to manage bacterial wilt caused by R. solanacearum.

Ralstonia solanacearum es uno de los patógenos más destructivos en plantas hortícolas, ocasionando pérdidas económicas muy importantes. En 2019, 20 aislamientos de R. solanacearum fueron recolectados de tubérculos de papa en Marruecos. Posterior a su identificación, se evaluó in vitro el efecto inhibitorio de soluciones coloidales de quitina y/o quitosano en medio sólido (Mueller-Hinton) suplementado con estos biopolímeros. Las concentraciones (25, 50, o 100 mg L-1) contribuyeron a una inhibición significativa del crecimiento de los aislamientos, generando una inhibición del 45.04% con la combinación de quitina-quitosano (100 mg L-1), del 58.92% con la adición de 100 mg L-1 de quitina, y del 68.74% en presencia de quitosano a 25 mg L-1. Así mismo, en los experimentos con plántulas de Solanum lycopersicum L., los derivados de la quitina demostraron promover el crecimiento del tallo y de las raíces de forma significativa. La longitud del tallo aumentó en un 54.95% cuando se añadió quitina a 25 mg L-1, mientras que la enmienda del suelo con 100 mg L-1 de quitosano aumentó la longitud de la raíz en un 82.55% en comparación con el control. La severidad de la marchitez bacteriana causada por R. solanacearum se redujo en un 117.02% cuando se adicionaron 100 mg L-1 de quitosano al suelo. Sin embargo, la severidad de la enfermedad se redujo en un 142.86% cuando se enmendó el suelo con quitina a 50 mg L-1. Estos resultados son coherentes con investigaciones anteriores que sugieren el uso de esta técnica para el manejo de la marchitez bacteriana causada por R. solanacearum.

References

Adebayo, O. S., & Ekpo, E. J. A. (2005). Biovar of Ralstonia solanacearum causing bacterial wilt of tomato in Nigeria. Plant Disease, 89(10), 1129. https://doi.org/10.1094/PD-89-1129C

Ahmed, N. N., Islam, M. R., Hossain, M. A., Meah, M. B., & Hossain, M. M. (2013). Determination of races and biovars of Ralstonia solanacearum causing bacterial wilt disease of potato. Journal of Agricultural Science, 5(6), 86–93. https://doi.org/10.5539/jas.v5n6p86

Algam, S. A. E., Xie, G., Li, B., Yu, S., Su, T., & Larsen, J. (2010). Effects of Paenibacillus strains and chitosan on plant growth promotion and control of Ralstonia wilt in tomato. Journal of Plant Pathology, 92(3), 593–600.

Bank, T. L., Kukkadapu, R. K., Madden, A. S., Ginder-Vogel, M. A., Baldwin, M. E., & Jardine, P. M. (2008). Effects of gamma-sterilization on the physico-chemical properties of natural sediments. Chemical Geology, 251(1–4), 1–7. https://doi.org/10.1016/j.chemgeo.2008.01.003

Beatrice, C., Linthorst, J. M. H., Cinzia, F., & Luca, R. (2017). Enhancement of PR1 and PR5 gene expressions by chitosan treatment in kiwifruit plants inoculated with Pseudomonas syringae pv. actinidiae. European Journal of Plant Pathology, 148, 163–179. https://doi.org/10.1007/s10658-016-1080-x

Benhamou, N., & Thériault, G. (1992). Treatment with chitosan enhances resistance of tomato plants to the crown and root rot pathogen Fusarium oxysporum f. sp. radicis-lycopersici. Physiological and Molecular Plant Pathology, 41(1), 33–52. https://doi.org/10.1016/0885-5765(92)90047-Y

Borines, L. M., Sagarino, R. M., Calamba, R. B., Contioso, M. A. A., Jansalin, J. G. F., & Calibo, C. L. (2015). Potential of chitosan for the control of tomato bacterial wilt caused by Ralstonia solanacearum (Smith) Yabuuchi et al. Annals of Tropical Research, 37(2), 57–69. https://doi.org/10.32945/atr3725.2015

Cellier, G. (2010). Description des écotypes du phylotype II dans le complexe d’espèces Ralstonia solanacearum : diversité et évolution [Doctoral dissertation, Université de la Réunion]. HAL Theses. https://tel.archives-ouvertes.fr/tel-00716870

Chamedjeu, R. R., Masanga, J., Matiru, V., & Runo, S. (2018). Isolation and characterization of Ralstonia solanacearum strains causing bacterial wilt of potato in Nakuru County of Kenya. African Journal of Biotechnology, 17(52), 1455–1465. https://doi.org/10.5897/AJB2018.16659

Chandra, S., Chakraborty, N., Dasgupta, A., Sarkar, J., Panda, K., & Acharya, K. (2015). Chitosan nanoparticles: a positive modulator of innate immune responses in plants. Scientific Reports, 5, Article 15195. https://doi.org/10.1038/srep15195

Chandrashekara, K. N., Prasanna Kumar, M. K., & Saroja, S. (2012). Aggressiveness of Ralstonia solanacearum isolates on tomato. Journal of Experimental Sciences, 3(9), 5–9.

De Mahieu, A., Ponette, Q., Mounir, F., & Lambot, S. (2020). Using GPR to analyze regeneration success of cork oaks in the Maâmora forest (Morocco). NDT & E International, 115, Article 102297. https://doi.org/10.1016/j.ndteint.2020.102297

Douira, A., & Lahlou, H. (1989). Variabilité de la spécificité parasitaire chez Verticillium albo-atrum Reinke et Berthold, forme à microsclérotes. Cryptogamie Mycologie, 10, 19–32.

Douira, A., Lahlou, H., Elhaloui, N. E., & Bompeix, G. (1994). Mise en évidence de la variabilité du pouvoir pathogène dans la descendance d’une souche de Verticillium albo-atrum, forme à microsclérotes, après son adaptation à une nouvelle plante hôte et retour sur la plante d’origine. Revue de la Faculté des Sciences de Marrakech, (8), 107–118.

Elame, F., Lionboui, H., Wifaya, A., Mokrini, F., Mimouni, A., & Azim, K. (2019). Analyse économique de la compétitivité de la filière tomate dans la région du Souss-Massa (Maroc). Revue Marocaine des Sciences Agronomiques et Vétérinaires, 7(4), 595–599.

El Ghaouth, A., Arul, J., Ponnampalam, R., & Boulet, M. (1991). Chitosan coating effect on storability and quality of fresh strawberries. Journal of Food Science, 56(6), 1618–1620. https://doi.org/10.1111/j.1365-2621.1991.tb08655.x

El Hadrami, A., Adam, L. R., El Hadrami, I., & Daayf, F. (2010). Chitosan in plant protection. Marine Drugs, 8(4), 968–987. https://doi.org/10.3390/md8040968

Elphinstone, J. G. (2005). The current bacterial wilt situation: a global overview. In C. Allen, P. Prior, & A. C. Hayward (Eds.), Bacterial wilt disease and the Ralstonia solanacearum species complex (pp. 9–28). American Phytopathological Society Press.

EPPO. (2018). PM 7/21 (2) Ralstonia solanacearum, R. pseudosolanacearum and R. syzygii (Ralstonia solanacearum species complex). EPPO Bulletin, 48(1), 32–63. https://doi.org/10.1111/epp.12454

Farag, S. M. A., Elhalag, K. M. A., Hagag, M. H., Khairy, A. S. M., Ibrahim, H. M., Saker, M. T., & Messiha, N. A. S. (2017). Potato bacterial wilt suppression and plant health improvement after application of different antioxidants. Journal of Phytopathology, 165(7–8), 522–537. https://doi.org/10.1111/jph.12589

Hassan, O., & Chang, T. (2017). Chitosan for eco-friendly control of plant disease. Asian Journal of Plant Pathology, 11(2), 53–70. https://doi.org/10.3923/ajppaj.2017.53.70

Heikrujam, S. C., Singh, R. I., Laiphrakpam, P. C., & Laishram, S. (2020). Isolation and characterization of Ralstonia solanacearum from infected tomato plants of Bishnupur district of Manipur. The Pharma Innovation Journal, 9(2), 138–141.https://doi.org/10.22271/tpi.2020.v9.i2c.4363

Hoekou, Y. P., Batawila, K., Gbogbo, K. A., Karou, D. S., Ameyapoh, Y., & Souza, C. (2012). Evaluation des propriétés antimicrobiennes de quatre plantes de la flore togolaise utilisées en médecine traditionnelle dans le traitement des diarrhées infantiles. International Journal of Biological and Chemical Sciences, 6(6), 3089–3097. https://doi.org/10.4314/ijbcs.v6i6.10

Hsu, S. C., & Lockwood, J. L. (1975). Powdered chitin agar as a selective medium for enumeration of actinomycetes in water and soil. Applied Microbiology, 29(3), 422–426. https://doi.org/10.1128/am.29.3.422-426.1975

Kelman, A. (1954). The relationship of pathogenicity in Pseudomonas solanacearum to colony appearance on a tetrazolium medium. Phytopathology, 44, 693–695.

Khan, W., Prithiviraj, B., & Smith, D. L. (2003). Chitosan and chitin oligomers increase phenylalanine ammonia-lyase and tyrosine ammonia-lyase activities in soybean leaves. Journal of Plant Physiology, 160(8), 859–863. https://doi.org/10.1078/0176-1617-00905

Kim, G., Dasagrandhi, C., Kang, E. H., Eom, S. H., & Kim, Y. M. (2018). In vitro antibacterial and early stage biofilm inhibitory potential of an edible chitosan and its phenolic conjugates against Pseudomonas aeruginosa and Listeria monocytogenes. 3 Biotech, 8, Article 439. https://doi.org/10.1007/s13205-018-1451-4

Li, B., Liu, B., Su, T., Fang, Y., Xie, G., Wang, G., Wang, Y., & Sun, G. (2010). Effect of chitosan solution on the inhibition of Pseudomonas fluorescens causing bacterial head rot of broccoli. The Plant Pathology Journal, 26(2), 189–193. https://doi.org/10.5423/PPJ.2010.26.2.189

Luna, E., Pastor, V., Robert, J., Flors, V., Mauch-Mani, B., & Ton, J. (2011). Callose deposition: a multifaceted plant defense response. Molecular Plant-Microbe Interactions, 24(2), 183–193. https://doi.org/10.1094/MPMI-07-10-0149

Malerba, M., & Cerana, R. (2018). Recent advances of chitosan application in plants. Polymers, 10(2), Article 118. https://doi.org/10.3390/polym10020118

Mansfield, J., Genin, S., Magori, S., Citovsky, V., Sriariyanum, M., Ronald, P., Dow, M., Verdier, V., Beer, S. V., Machado, M. A., Toth, I., Salmond, G., & Foster, G. D. (2012). Top 10 plant pathogenic bacteria in molecular plant pathology. Molecular Plant Pathology, 13(6), 614–629. https://doi.org/10.1111/j.1364-3703.2012.00804.x

Mohy Eldin, M. S., Soliman, E. A., Hashem, A. I., & Tamer, T. M. (2008). Chitosan modified membranes for wound dressing applications: preparations, characterization and bio-evaluation. Trends in Biomaterials and Artificial Organs, 22(3), 158–168.

Poussier, S., Trigalet-Demery, D., Vandewalle, P., Goffinet, B., Luisetti, J., & Trigalet, A. (2000). Genetic diversity of Ralstonia solanacearum as assessed by PCR-RFLP of the hrp gene region, AFLP and 16S rRNA sequence analysis, and identification of an African subdivision. Microbiology, 146(7), 1679–1692. https://doi.org/10.1099/00221287-146-7-1679

Rahman, M. F., Islam, M. R., Rahman, T., & Meah, M. B. (2010). Biochemical characterization of Ralstonia solanacerum causing bacterial wilt of brinjal in Bangladesh. Progressive Agriculture, 21(1–2), 9–19. https://doi.org/10.3329/pa.v21i1-2.16744

Ramkissoon, A., Francis, J., Bowrin, V., Ramjegathesh, R., Ramsubhag, A., & Jayaraman, J. (2016). Bio‐efficacy of a chitosan based elicitor on Alternaria solani and Xanthomonas vesicatoria infections in tomato under tropical conditions. Annals of Applied Biology, 169(2), 274–283. https://doi.org/10.1111/aab.12299

Ravelomanantsoa, S., Vernière, C., Rieux, A., Costet, L., Chiroleu, F., Arribat, S., Cellier, G., Pruvost, O., Poussier, S., Robène, I., Guérin, F., & Prior, P. (2018). Molecular epidemiology of bacterial wilt in the Madagascar highlands caused by Andean (Phylotype IIB-1) and African (Phylotype III) brown rot strains of the Ralstonia solanacearum species complex. Frontiers in Plant Science, 8, Article 2258. https://doi.org/10.3389/fpls.2017.02258

Razia, S., Chowdhury, M. S. M., Aminuzzaman, F. M., Sultana, N., & Islam, M. (2021). Morphological, pathological, biochemical and molecular characterization of Ralstonia solanacearum isolates in Bangladesh. American Journal of Molecular Biology, 11(4), 142–164. https://doi.org/10.4236/ajmb.2021.114012

Rkhaila, A., & Ounine, K. (2018). Shrimp shells, chitin and chitosan powders effect on growth of Lycopersicon esculentum and their ability to induce resistance against Fusarium oxysporum f. sp. radicis-lycopersici attack. Indian Journal of Agricultural Research, 52(5), 512–517. https://doi.org/10.18805/IJARe.A-305

Rodrigues, L. M. R., Destéfano, S. A. L., Diniz, M. C. T., Comparoni, R., & Neto, J. R. (2011). Pathogenicity of Brazilian strains of Ralstonia solanacearum in Strelitzia reginae seedlings. Tropical Plant Pathology, 36(6), 409–413. https://doi.org/10.1590/S1982-56762011000600011

Sadi, S. M., Saidou, A. K., Boube, M., & Aune, J. B. (2020). Effets de la fertilisation à base de la biomasse du Sida cordifolia L. sur les performances agronomiques et la rentabilité économique de la tomate (Lycopersicum esculentum Mill.) en culture irriguée. European Scientific Journal, 16(3), 127–150. https://doi.org/10.19044/esj.2020.v16n3p127

Schaad, N. W., Jones, J. B., & Chun, W. (Eds.). (2001). Laboratory guide for identification of plant pathogenic bacteria (3rd ed.). American Phytopathological Society Press.

Sikirou, R., Beed, F., Ezin, V., Hoteigni, J., & Miller, S. A. (2017). Distribution, pathological and biochemical characterization of Ralstonia solanacearum in Benin. Annals of Agricultural Sciences, 62(1), 83–88. https://doi.org/10.1016/j.aoas.2017.05.003

Siri, M. I., Sanabria, A., & Pianzzola, M. J. (2011). Genetic diversity and aggressiveness of Ralstonia solanacearum strains causing bacterial wilt of potato in Uruguay. Plant Disease, 95(10), 1292–1301. https://doi.org/10.1094/PDIS-09-10-0626

Ting, S., Guiyue, W., & Guanlin, X. (2013). Effects of chitosan against Ralstonia solanacearum and its biofilm formation. Plant Protection, 39(1), 89–92.

Van Loon, L. C., Rep, M., & Pieterse, C. M. J. (2006). Significance of inducible defense-related proteins in infected plants. Annual Review of Phytopathology, 44, 135–162. https://doi.org/10.1146/annurev.phyto.44.070505.143425

Yuliar, Nion, Y. A., & Toyota, K. (2015). Recent trends in control methods for bacterial wilt diseases caused by Ralstonia solanacearum. Microbes and Environments, 30(1), 1–11. https://doi.org/10.1264/jsme2.ME14144

How to Cite

APA

Rkhaila, A., Saga, M. ., Grohs, S. G. and Ounine, K. (2021). In vitro inhibition attempts and bio-elicitation of Solanum lycopersicum L. by chitin and chitosan against Ralstonia solanacearum, the causal agent of bacterial wilt. Agronomía Colombiana, 39(3), 355–363. https://doi.org/10.15446/agron.colomb.v39n3.97746

ACM

[1]
Rkhaila, A., Saga, M. , Grohs, S.G. and Ounine, K. 2021. In vitro inhibition attempts and bio-elicitation of Solanum lycopersicum L. by chitin and chitosan against Ralstonia solanacearum, the causal agent of bacterial wilt. Agronomía Colombiana. 39, 3 (Sep. 2021), 355–363. DOI:https://doi.org/10.15446/agron.colomb.v39n3.97746.

ACS

(1)
Rkhaila, A.; Saga, M. .; Grohs, S. G.; Ounine, K. In vitro inhibition attempts and bio-elicitation of Solanum lycopersicum L. by chitin and chitosan against Ralstonia solanacearum, the causal agent of bacterial wilt. Agron. Colomb. 2021, 39, 355-363.

ABNT

RKHAILA, A.; SAGA, M. .; GROHS, S. G.; OUNINE, K. In vitro inhibition attempts and bio-elicitation of Solanum lycopersicum L. by chitin and chitosan against Ralstonia solanacearum, the causal agent of bacterial wilt. Agronomía Colombiana, [S. l.], v. 39, n. 3, p. 355–363, 2021. DOI: 10.15446/agron.colomb.v39n3.97746. Disponível em: https://revistas.unal.edu.co/index.php/agrocol/article/view/97746. Acesso em: 3 jun. 2024.

Chicago

Rkhaila, Amine, Mouhatti Saga, Sofia Ghizlan Grohs, and Khadija Ounine. 2021. “In vitro inhibition attempts and bio-elicitation of Solanum lycopersicum L. by chitin and chitosan against Ralstonia solanacearum, the causal agent of bacterial wilt”. Agronomía Colombiana 39 (3):355-63. https://doi.org/10.15446/agron.colomb.v39n3.97746.

Harvard

Rkhaila, A., Saga, M. ., Grohs, S. G. and Ounine, K. (2021) “In vitro inhibition attempts and bio-elicitation of Solanum lycopersicum L. by chitin and chitosan against Ralstonia solanacearum, the causal agent of bacterial wilt”, Agronomía Colombiana, 39(3), pp. 355–363. doi: 10.15446/agron.colomb.v39n3.97746.

IEEE

[1]
A. Rkhaila, M. . Saga, S. G. Grohs, and K. Ounine, “In vitro inhibition attempts and bio-elicitation of Solanum lycopersicum L. by chitin and chitosan against Ralstonia solanacearum, the causal agent of bacterial wilt”, Agron. Colomb., vol. 39, no. 3, pp. 355–363, Sep. 2021.

MLA

Rkhaila, A., M. . Saga, S. G. Grohs, and K. Ounine. “In vitro inhibition attempts and bio-elicitation of Solanum lycopersicum L. by chitin and chitosan against Ralstonia solanacearum, the causal agent of bacterial wilt”. Agronomía Colombiana, vol. 39, no. 3, Sept. 2021, pp. 355-63, doi:10.15446/agron.colomb.v39n3.97746.

Turabian

Rkhaila, Amine, Mouhatti Saga, Sofia Ghizlan Grohs, and Khadija Ounine. “In vitro inhibition attempts and bio-elicitation of Solanum lycopersicum L. by chitin and chitosan against Ralstonia solanacearum, the causal agent of bacterial wilt”. Agronomía Colombiana 39, no. 3 (September 1, 2021): 355–363. Accessed June 3, 2024. https://revistas.unal.edu.co/index.php/agrocol/article/view/97746.

Vancouver

1.
Rkhaila A, Saga M, Grohs SG, Ounine K. In vitro inhibition attempts and bio-elicitation of Solanum lycopersicum L. by chitin and chitosan against Ralstonia solanacearum, the causal agent of bacterial wilt. Agron. Colomb. [Internet]. 2021 Sep. 1 [cited 2024 Jun. 3];39(3):355-63. Available from: https://revistas.unal.edu.co/index.php/agrocol/article/view/97746

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

336

Downloads

Download data is not yet available.