Published

2021-01-01

Effects of swine manure biochar on sorption equilibrium of cadmium and zinc in sandy soils

Efectos del biocarbón hecho a base de estiércol porcino en el equilibrio de sorción de cadmio y zinc en suelos arenosos

DOI:

https://doi.org/10.15446/agron.colomb.v39n1.90918

Keywords:

pyrolized carbon, agricultural wastes, sorption, heavy metals (en)
carbono pirolizado, residuos agropecuarios, sorción, metales pesados (es)

Downloads

Authors

Swine manure is an agricultural waste that can increase soil fertility. However, this residue has a high content of heavy metals, particularly zinc (Zn) and cadmium (Cd), that are not only toxic to plants and soil organisms but they also pose a great threat to human health due to the potential accumulation of these metals through the food chain. Transforming swine manure into biochar and adding it to soils can improve the soil’s capacity to retain heavy metals. The main objective of this research was to study the capacity of sandy soils mixed with different doses of swine manure biochar (SMB) to retain Cd and Zn as well as to evaluate the sorption equilibrium of these metals. Sorption essays were performed by adding solutions of Zn (ZnCl2) or Cd (CdCl2) at different concentrations (0, 2.5, 5, 10, 50 and 100 mg L-1) to soil samples mixed with different doses of SMB (0, 0.25, 0.75, 1.5, and 3.0 % (w/w)). The data were modelled using both Langmuir and Freundlich adsorption isotherm models to describe the adsorption processes. The data were best represented by the Langmuir model (R2>0.97), indicating a mono-layer sorption to the surface. Results showed that sorption capacity of Zn and Cd increased with the dose of SMB, improving metal retention. The Langmuir constant (KL) for soil without SMB for Cd and Zn were 0.01 L mg-1 and 0.05 L mg-1, respectively. With the highest dose of SMB, KL increased to 9.86 L mg-1 and 1.26 L mg-1 for Cd and Zn, respectively. Results suggest that SMB has the potential to mitigate Zn and Cd contamination of sandy soils.

El estiércol de cerdo es un residuo agrícola que puede aumentar la fertilidad del suelo. Sin embargo, este residuo tiene un alto contenido de metales pesados, principalmente zinc (Zn) y cadmio (Cd), los cuales no sólo son tóxicos para las plantas y los
organismos del suelo, sino que también representan una gran amenaza para la salud humana por su potencial acumulación en la cadena alimentaria. Transformar el estiércol en biocarbón y agregarlo al suelo puede mejorar la capacidad del suelo para retener metales pesados. El objetivo principal de este trabajo fue estudiar la capacidad de suelos arenosos mezclados con diferentes dosis de biocarbón de estiércol porcino (BEP) para retener Cd y Zn, y evaluar el equilibrio de sorción de estos metales. Las pruebas de sorción se realizaron agregando soluciones de Zn (ZnCl2) o Cd (CdCl2) en diferentes concentraciones (0, 2.5, 5, 10, 50 y 100 mg L-1) a muestras de suelo mezcladas con diversas dosis de BEP (0, 0.25, 0.75, 1.5, y 3.0% (p/p). Los datos fueron modelados de acuerdo con las isotermas de Freundlich y Langmuir para describir los procesos de adsorción. El modelo de Langmuir representó mejor los datos (R2>0.97), lo que indica una absorción de monocapa a la superficie. Los resultados mostraron que la capacidad de sorción de Zn y Cd aumentó con la dosis de BEP, mejorando la retención de metales. La constante de Langmuir (KL) para el suelo sin BEP para Cd y Zn fue 0.01 L mg-1 y 0.05 L mg-1, respectivamente. Con las dosis más altas de BEP, KL aumentó a 9.86 L mg-1 y 1.26 L mg-1 para Cd y Zn, respectivamente. Los resultados sugieren que el BEP tiene el potencial de mitigar la contaminación por Zn y Cd en suelos arenosos.

References

Abujabhah, I. S., Doyle, R., Bound, S. A., & Bowman, J. P. (2016). The effect of biochar loading rates on soil fertility, soil biomass, potential nitrification, and soil community metabolic profiles in three different soils. Journal of Soils and Sediments, 16, 2211–2222. https://doi.org/10.1007/s11368-016-1411-8

Ajayi, A. E., & Horn, R. (2017). Biochar-induced changes in soil resilience: effects of soil texture and biochar dosage. Pedosphere, 27(2), 236–247. https://doi.org/10.1016/S1002-0160(17)60313-8

Bartoli, M., Giorcelli, M., Jagdale, P., Rovere, M., & Tagliaferro, A. (2020). A review of non-soil biochar applications. Materials, 13(2), Article 261. https://doi.org/10.3390/ma13020261

Blair, G. J., Lefroy, R. D. B., & Lisle, L. (1995). Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems. Australian Journal of Agricultural Research, 46(7), 1459–1466. https://doi.org/10.1071/AR9951459

Bolster, C. H., & Hornberger, G. M. (2007). On the use of linearized Langmuir equations. Soil Science Society of America Journal, 71(6), Article 1796. https://doi.org/10.213/sssaj2006.0304

Chen, R., Zhao, X., Jiao, J., Li, Y., & Wei, M. (2019). Surface-modified biochar with polydentate binding sites for the removal of cadmium. International Journal of Molecular Sciences, 20(7), Article 1775. https://doi.org/10.3390/ijms20071775

De Vrieze, J., Colica, G., Pintucci, C., Sarli, J., Pedizzi, C., Willeghems, G., Bral, A., Varga, S., Prat, D., Peng, L., Spiller, M., Buysse, J., Colsen, J., Benito, O., Carballa, M., & Vlaeminck, S. E. (2019). Resource recovery from pig manure via an integrated approach: a technical and economic assessment for full-scale applications. Bioresource Technology, 272, 582–593. https://doi.org/10.1016/j.biortech.2018.10.024

Ding, Y., Liu, Y., Liu, S., Li, Z., Tan, X., Huang, X., Zeng, G., Zhou, L., & Zheng, B. (2016). Biochar to improve soil fertility. A review. Agronomy for Sustainable Development, 36, Article 36. https://doi.org/10.1007/s13593-016-0372-z

Glaser, B., Wiedner, K., Seelig, S., Schmidt, H. P., & Gerber, H. (2015). Biochar organic fertilizers from natural resources as substitute for mineral fertilizers. Agronomy for Sustainable Development, 35, 667–678. https://doi.org/10.1007/s13593-014-0251-4

Harter, R. D., & Naidu, R. (2001). An assessment of environmental and solution parameter impact on trace-metal sorption by soils. Soil Science Society of America Journal, 65(3), 597–612. https://doi.org/10.2136/sssaj2001.653597x

He, Z. L., Yang, X. E., & Stoffella, P. J. (2005). Trace elements in agroecosystems and impacts on the environment. Journal of Trace Elements in Medicine and Biology, 19(2–3), 125–140. https://doi.org/10.1016/j.jtemb.2005.02.010

Ho, Y. S., & McKay, G. (1998). A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents. Process Safety and Environmental Protection, 76(4), 332–340. https://doi.org/10.1205/095758298529696

Houben, D., Evrard, L., & Sonnet, P. (2013). Mobility, bioavailability and pH-dependent leaching of cadmium, zinc and lead in a contaminated soil amended with biochar. Chemosphere, 92(11), 1450–1457. https://doi.org/10.1016/j.chemosphere.2013.03.055

IBGE. (2017). Levantamento sistemático da produção agrícola. Instituto Brasileiro de Geografia e Estatística. https://www.ibge.gov.br/estatisticas/economicas/agricultura-e-pecuaria/9201-levantamento-sistematico-da-producao-agricola.html?=&t=resultados

Kołodyńska, D., Wnętrzak, R., Leahy, J. J., Hayes, M. H. B., Kwapiński, W., & Hubicki, Z. (2012). Kinetic and adsorptive characterization of biochar in metal ions removal. Chemical Engineering Journal, 197, 295–305. https://doi.org/10.1016/j.cej.2012.05.025

Komkiene, J., & Baltrenaite, E. (2016). Biochar as adsorbent for removal of heavy metal ions [Cadmium(II), Copper(II), Lead(II), Zinc(II)] from aqueous phase. International Journal of Environmental Science and Technology, 13, 471–482. https://doi.org/10.1007/s13762-015-0873-3

Kuzyakov, Y., Bogomolova, I., & Glaser, B. (2014). Biochar stability in soil: decomposition during eight years and transformation as assessed by compound-specific 14C analysis. Soil Biology and Biochemistry, 70, 229–236. https://doi.org/10.1016/j.soilbio.2013.12.021

Liu, C. L., Chang, T. W., Wang, M. K., & Huang, C. H. (2006). Transport of cadmium, nickel, and zinc in Taoyuan red soil using one-dimensional convective-dispersive model. Geoderma, 131(1–2), 181–189. https://doi.org/10.1016/j.geoderma.2005.03.020

Liu, L., Li, W., Song, W., & Guo, M. (2018). Remediation techniques for heavy metal-contaminated soils: principles and applicability. Science of the Total Environment, 633, 206–219. https://doi.org/10.1016/j.scitotenv.2018.03.161

MAPA. (2017). Manual de métodos analíticos oficiais para fertilizantes minerais, orgânicos, organominerais e corretivos. Ministério da Agricultura, Pecuária e Abastecimento.

Martinsen, V., Mulder, J., Shitumbanuma, V., Sparrevik, M., Børresen, T., & Cornelissen, G. (2014). Farmer-led maize biochar trials: effect on crop yield and soil nutrients under conservation farming. Journal of Plant Nutrition and Soil Science, 177(5), 681–695. https://doi.org/10.1002/jpln.201300590

Mohamed, I., Ali, M., Ahmed, N., Abbas, M. H. H., Abdelsalam, M., Azab, A., Raleve, D., & Fang, C. (2018). Cow manureloaded biochar changes Cd fractionation and phytotoxicity potential for wheat in a natural acidic contaminated soil. Ecotoxicology and Environmental Safety, 162, 348–353. https://doi.org/10.1016/j.ecoenv.2018.06.065

Park, J. H., Cho, J. S., Ok, Y. S., Kim, S. H., Kang, S. W., Choi, I. W., Heo, J. S., DeLaune, R. D., & Seo, D. C. (2015). Competitive adsorption and selectivity sequence of heavy metals by chicken bone-derived biochar: batch and column experiment. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 50(11), 1194–1204. https://doi.org/10.1080/10934529.2015.1047680

Paz-Ferreiro, J., Lu, H., Fu, S., Méndez, A., & Gascó, G. (2014). Use of phytoremediation and biochar to remediate heavy metal polluted soils: a review. Solid Earth, 5, 65–75. https://doi.org/10.5194/se-5-65-2014

Pierangeli, M. A. P., Nóbrega, J. C. A., Lima, J. M., Guilherme L. R. G., & Arantes, S. A. C. M. (2009). Sorção de cádmio e chumbo em Latossolo Vermelho Distrófico sob efeito de calcário e fosfato. Revista Brasileira de Ciências Agrárias, 4(1), 42–47. https://doi.org/10.5039/agraria.v4i1a7

Puls, R. W., & Bohn, H. L. (1988). Sorption of cadmium, nickel, and zinc by kaolinite and montmorillonite suspensions. Soil Science Society of America Journal, 52(5), 1289–1292. https://doi.org/10.2136/sssaj1988.03615995005200050013x

Purakayastha, T. J., Bera, T., Bhaduri, D., Sarkar, B., Mandal, S., Wade, P., Kumari, S., Biswas, S., Menon, M., Pathak, H., & Tsang, D. C. W. (2019). A review on biochar modulated soil condition improvements and nutrient dynamics concerning crop yields: pathways to climate change mitigation and global food security. Chemosphere, 227, 345–365. https://doi.org/10.1016/j.chemosphere.2019.03.170

Rees, F., Simonnot, M. O., & Morel, J. L. (2014). Short-term effects of biochar on soil heavy metal mobility are controlled by intraparticle diffusion and soil pH increase. European Journal of Soil Science, 65(1), 149–161. https://doi.org/10.1111/ejss.12107

Rondon, M. A., Molina, D., Hurtado, M., Ramirez, J., Lehmann, J., Major, J., & Amezquita, E. (2006, July 9–15). Enhancing the productivity of crops and grasses while reducing greenhouse gas emissions through bio-char amendments to unfertile tropical soils [Conference presentation]. Eighteenth world congress of soil science, Philadelphia, PA, United States.

Scherer, E. E., Nesi, C. N., & Massotti, Z. (2010). Atributos químicos do solo influenciados por sucessivas aplicações de dejetos suínos em áreas agrícolas de Santa Catarina. Revista Brasileira de Ciência do Solo, 34, 1375–1383. https://doi.org/10.1590/s0100-06832010000400034

Shang, C., & Tiessen, H. (1997). Organic matter lability in a tropical oxisol: evidence from shifting cultivation, chemical oxidation, particle size, density, and magnetic fractionations. Soil Science, 162(11), 795–807. https://doi.org/10.1097/00010694-199711000-00004

Shen, X., Zeng, J., Zhang, D., Wang, F., Li, Y., & Yi, W. (2020). Effect of pyrolysis temperature on characteristics, chemical speciation and environmental risk of Cr, Mn, Cu, and Zn in biochars derived from pig manure. Science of the Total Environment, 704, Article 135283. https://doi.org/10.1016/j.scitotenv.2019.135283

Soil Survey Staff. (2014). Keys to soil taxonomy (12th ed.). United States Department of Agriculture, Natural Resources Conservation Service.

Souza, R. S., Chaves, L. H. G., & Fernandes, J. D. (2007). Isotermas de Langmuir e de Freundlich na descrição da adsorção de zinco em solos do Estado da Paraíba. Revista Brasileira de Ciências Agrárias, 2(2), 123–127. https://doi.org/10.5039/agraria.v2i2a785

Speratti, A. B., Johnson, M. S., Sousa, H. M., Torres, G. N., & Couto, E. G. (2017). Impact of different agricultural waste biochars on maize biomass and soil water content in a Brazilian Cerrado Arenosol. Agronomy, 7(3), Article 49. https://doi.org/10.3390/agronomy7030049

Steenari, B. M., Schelander, S., & Lindqvist, O. (1999). Chemical and leaching characteristics of ash from combustion of coal, peat and wood in a 12 MW CFB – a comparative study. Fuel, 78(2), 249–258. https://doi.org/10.1016/S0016-2361(98)00137-9

Subedi, R., Taupe, N., Ikoyi, I., Bertora, C., Zavattaro, L., Schmalenberger, A., Leahy, J. J., & Grignani, C. (2016). Chemically and biologically-mediated fertilizing value of manure-derived biochar. Science of the Total Environment, 550, 924–933. https://doi.org/10.1016/j.scitotenv.2016.01.160

Sud, D., Mahajan, G., & Kaur, M. P. (2008). Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions – a review. Bioresource Technology, 99(14), 6017–6027. https://doi.org/10.1016/j.biortech.2007.11.064

Teixeira, P. C., Donagemma, G. K., Fontana, A., & Teixeira, W. G. (Eds.). (2017). Manual de métodos de análise de solo. Embrapa.

Tian, R., Li, C., Xie, S., You, F., Cao, Z., Xu, Z., Yu, G., & Wang, Y. (2019). Preparation of biochar via pyrolysis at laboratory and pilot scales to remove antibiotics and immobilize heavy metals in livestock feces. Journal of Soils and Sediments, 19, 2891–2902. https://doi.org/10.1007/s11368-019-02350-2

Tsai, W. T., Liu, S. C., & Hsieh, C. H. (2012). Preparation and fuel properties of biochars from the pyrolysis of exhausted coffee residue. Journal of Analytical and Applied Pyrolysis, 93, 63–67. https://doi.org/10.1016/j.jaap.2011.09.010

Wang, S., Kwak, J. H., Islam, M. S., Naeth, M. A., Gamal El-Din, M., & Chang, S. X. (2020). Biochar surface complexation and Ni(II), Cu(II), and Cd(II) adsorption in aqueous solutions depend on feedstock type. Science of the Total Environment, 712, Article 136538. https://doi.org/10.1016/j.scitotenv.2020.136538

Woolf, D., & Lehmann, J. (2012). Modelling the long-term response to positive and negative priming of soil organic carbon by black carbon. Biogeochemistry, 111, 83–95. https://doi.org/10.1007/s10533-012-9764-6

Wu, W., Yang, M., Feng, Q., McGrouther, K., Wang, H., Lu, H., & Chen, Y. (2012). Chemical characterization of rice strawderived biochar for soil amendment. Biomass and Bioenergy, 47, 268–276. https://doi.org/10.1016/j.biombioe.2012.09.034

Wuana, R. A., & Okieimen, F. E. (2011). Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. International Scholarly Research Notices Ecology, 2011, Article 402647. https://doi.org/10.5402/2011/402647

Xu, Y., Qi, F., Bai, T., Yan, Y., Wu, C., An, Z., Luo, S., Huang, Z., & Xie, P. (2019). A further inquiry into co-pyrolysis of straws with manures for heavy metal immobilization in manure-derived biochars. Journal of Hazardous Materials, 380, Article 120870. https://doi.org/10.1016/j.jhazmat.2019.120870

Yao, Z., Li, J., Xie, H., & Yu, C. (2012). Review on remediation technologies of soil contaminated by heavy metals. Procedia Environmental Sciences, 16, 722–729. https://doi.org/10.1016/j.proenv.2012.10.099

Yeomans, J. C., & Bremner, J. M. (1988). A rapid and precise method for routine determination of organic carbon in soil. Communications in Soil Science and Plant Analysis, 19(13), 1467–1476. https://doi.org/10.1080/00103628809368027

Zhang, M., He, Z., Calvert, D. V., Stoffella, P. J., & Yang, X. (2003). Surface runoff losses of copper and zinc in sandy soils. Journal of Environmental Quality, 32(3), 909–915. https://doi.org/10.2134/jeq2003.9090

Zheng, H., Wang, Z., Zhao, J., Herbert, S., & Xing, B. (2013). Sorption of antibiotic sulfamethoxazole varies with biochars produced at different temperatures. Environmental Pollution, 181, 60–67. https://doi.org/10.1016/j.envpol.2013.05.056

How to Cite

APA

Assis, W. S. de, Nascimento, E. C. do, D’Acunha, B., Weber, O. L. dos S., Dores, E. F. G. and Couto, E. G. . (2021). Effects of swine manure biochar on sorption equilibrium of cadmium and zinc in sandy soils. Agronomía Colombiana, 39(1), 37–46. https://doi.org/10.15446/agron.colomb.v39n1.90918

ACM

[1]
Assis, W.S. de, Nascimento, E.C. do, D’Acunha, B., Weber, O.L. dos S., Dores, E.F.G. and Couto, E.G. 2021. Effects of swine manure biochar on sorption equilibrium of cadmium and zinc in sandy soils. Agronomía Colombiana. 39, 1 (Jan. 2021), 37–46. DOI:https://doi.org/10.15446/agron.colomb.v39n1.90918.

ACS

(1)
Assis, W. S. de; Nascimento, E. C. do; D’Acunha, B.; Weber, O. L. dos S.; Dores, E. F. G.; Couto, E. G. . Effects of swine manure biochar on sorption equilibrium of cadmium and zinc in sandy soils. Agron. Colomb. 2021, 39, 37-46.

ABNT

ASSIS, W. S. de; NASCIMENTO, E. C. do; D’ACUNHA, B.; WEBER, O. L. dos S.; DORES, E. F. G.; COUTO, E. G. . Effects of swine manure biochar on sorption equilibrium of cadmium and zinc in sandy soils. Agronomía Colombiana, [S. l.], v. 39, n. 1, p. 37–46, 2021. DOI: 10.15446/agron.colomb.v39n1.90918. Disponível em: https://revistas.unal.edu.co/index.php/agrocol/article/view/90918. Acesso em: 14 may. 2024.

Chicago

Assis, Wellyton Santos de, Elisamara Caldeira do Nascimento, Brenda D’Acunha, Oscarlina Lúcia dos Santos Weber, Eliana Freire Gaspar Dores, and Eduardo Guimarães Couto. 2021. “Effects of swine manure biochar on sorption equilibrium of cadmium and zinc in sandy soils”. Agronomía Colombiana 39 (1):37-46. https://doi.org/10.15446/agron.colomb.v39n1.90918.

Harvard

Assis, W. S. de, Nascimento, E. C. do, D’Acunha, B., Weber, O. L. dos S., Dores, E. F. G. and Couto, E. G. . (2021) “Effects of swine manure biochar on sorption equilibrium of cadmium and zinc in sandy soils”, Agronomía Colombiana, 39(1), pp. 37–46. doi: 10.15446/agron.colomb.v39n1.90918.

IEEE

[1]
W. S. de Assis, E. C. do Nascimento, B. D’Acunha, O. L. dos S. Weber, E. F. G. Dores, and E. G. . Couto, “Effects of swine manure biochar on sorption equilibrium of cadmium and zinc in sandy soils”, Agron. Colomb., vol. 39, no. 1, pp. 37–46, Jan. 2021.

MLA

Assis, W. S. de, E. C. do Nascimento, B. D’Acunha, O. L. dos S. Weber, E. F. G. Dores, and E. G. . Couto. “Effects of swine manure biochar on sorption equilibrium of cadmium and zinc in sandy soils”. Agronomía Colombiana, vol. 39, no. 1, Jan. 2021, pp. 37-46, doi:10.15446/agron.colomb.v39n1.90918.

Turabian

Assis, Wellyton Santos de, Elisamara Caldeira do Nascimento, Brenda D’Acunha, Oscarlina Lúcia dos Santos Weber, Eliana Freire Gaspar Dores, and Eduardo Guimarães Couto. “Effects of swine manure biochar on sorption equilibrium of cadmium and zinc in sandy soils”. Agronomía Colombiana 39, no. 1 (January 1, 2021): 37–46. Accessed May 14, 2024. https://revistas.unal.edu.co/index.php/agrocol/article/view/90918.

Vancouver

1.
Assis WS de, Nascimento EC do, D’Acunha B, Weber OL dos S, Dores EFG, Couto EG. Effects of swine manure biochar on sorption equilibrium of cadmium and zinc in sandy soils. Agron. Colomb. [Internet]. 2021 Jan. 1 [cited 2024 May 14];39(1):37-46. Available from: https://revistas.unal.edu.co/index.php/agrocol/article/view/90918

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

410

Downloads

Download data is not yet available.