Analysis of two experimental setups to study mode II fracture on fibre-reinforced gypsum notched specimens

Authors

DOI:

https://doi.org/10.3989/mc.2023.325822

Keywords:

Mode II, Shear, Push-off test, Digital image correlation, Fibre-reinforced gypsum

Abstract


The main aim of this work is to study two relevant experimental setups designed for studying shear fracture and see if any of them allows studying the evolution of fracture under Mode II conditions, not only inducing a shear stress state at the onset of fracture. Two tests have been selected, a standardised test described by a Japanese standard, here referred to as the JSCE test, and the push-off test. These tests have been carried out on fibre-reinforced gypsum specimens with increasing proportions of polypropylene fibres and monitored by means of digital image correlation (DIC). The results show that fracture under Mode II conditions is relatively easy to induce with both tests, but once fracture begins, it is extremely difficult to induce a fracture process under Mode II. In general, Mode II has an important role at the onset on fracture, but Mode I predominates afterwards.

Downloads

Download data is not yet available.

References

CNR-DT 204 (2006) Guide for the design and construction of fiber-reinforced concrete structures. Consiglio Nazionale delle Riserche: Roma, Italy, 2006.

EHE-08, Instrucción de hormigón estructural (2008) Ministerio de Fomento, Madrid, España.

Fib model code for concrete structures 2010. (2013) Ernst & Sohn. Wiley: Berlin, Germany. https://doi.org/10.1002/9783433604090

Alberti, M.; Enfedaque, A.; Gálvez, J. (2015) Comparison between polyolefin fibre reinforced vibrated conventional concrete and self-compacting concrete. Constr. Build. Mat. 85 182-194. https://doi.org/10.1016/j.conbuildmat.2015.03.007

Alberti, M.; Enfedaque, A.; Gálvez, J. (2017) Fibre reinforced concrete with a combination of polyolefin and steel-hooked fibres. Compos. Struct. 171, 317-325. https://doi.org/10.1016/j.compstruct.2017.03.033

Alberti, M.; Enfedaque, A.; Gálvez, J. (2016) Fracture mechanics of polyolefin fibre reinforced concrete: Study of the influence of the concrete properties, casting procedures, the fibre length and specimen size. Eng. Fract. Mech. 154, 225-244. https://doi.org/10.1016/j.engfracmech.2015.12.032

Alberti, M.G.; Gálvez, J.C.; Enfedaque, A.; Carmona, A.; Valverde, C.; Pardo, G. (2018) Use of steel and polyolefin fibres in the La Canda tunnels: Applying mives for assessing sustainability evaluation. Sustainability-Basel. 10 [12], 4765. https://doi.org/10.3390/su10124765

Alberti, M.G.; Enfedaque, A.; Gálvez, J.C.; Pinillos, L. (2017) Structural cast-in-place application of polyolefin fiber-reinforced concrete in a water pipeline supporting elements. J. Pipeline Syst. Eng. Pract. 8 [4], 05017002. https://doi.org/10.1061/(ASCE)PS.1949-1204.0000274

A. García Santos (1988) Comportamiento mecánico de yeso reforzado con polı́meros sintéticos, Ph.D. thesis, Arquitectura. https://doi.org/10.3989/ic.1988.v40.i397.1550

Santos, A.G. (2009) Escayola reforzada con fibras de polipropileno y aligerada con perlas de poliestireno expandidoescayola reforzada con fibras de polipropileno y aligerada con perlas de poliestireno expandido. Mater. Construcc. 59 [293], 105-124. https://doi.org/10.3989/mc.2009.41107

Dalmay, P.; Smith, A.; Chotard, T.; Sahay-Turner, P.; Gloaguen, V.; Krausz, P. (2010) Properties of cellulosic fibre reinforced plaster: influence of hemp or flax fibres on the properties of set gypsum. J. Mater. Sci. 45 [3], 793-803. https://doi.org/10.1007/s10853-009-4002-x

Iucolano, F.; Liguori, B.; Aprea, P.; Caputo, D. (2018) Thermo-mechanical behaviour of hemp fibers-reinforced gypsum plasters. Constr. Build. Mat. 185, 256-263. https://doi.org/10.1016/j.conbuildmat.2018.07.036

Iucolano, F.; Boccarusso, L.; Langella, A. (2019) Hemp as eco-friendly substitute of glass fibres for gypsum reinforcement: Impact and flexural behaviour. Compos. Part B-Eng. 175, 107073. https://doi.org/10.1016/j.compositesb.2019.107073

Zhu, C.; Zhang, J.; Peng, J.; Cao, W.; Liu, J. (2018) Physical and mechanical properties of gypsum-based composites reinforced with PVA and PP fibers. Constr. Build. Mat. 163, 695-705. https://doi.org/10.1016/j.conbuildmat.2017.12.168

Suárez, F.; Felipe-Sesé, L.; Díaz, F.; Gálvez, J.; Alberti, M. (2020) On the fracture behaviour of fibre-reinforced gypsum using micro and macro polymer fibres. Constr. Build. Mat. 244, 118347. https://doi.org/10.1016/j.conbuildmat.2020.118347

Barbero-Barrera, M.M.; Flores-Medina, N.; Pérez-Villar, V. (2017) Assessment of thermal performance of gypsum-based composites with revalorized graphite filler. Constr. Build. Mat. 142, 83-91. https://doi.org/10.1016/j.conbuildmat.2017.03.060

(1985) Determination of the fracture energy of mortar and concrete by means of three-point bend tests on notched beams. Mater. Struct. 18, 287-290. https://doi.org/10.1007/BF02472918

Simo, J.C.; Oliver, J.; Armero, F. (1993) An analysis of strong discontinuities induced by strain-softening in rate-independent inelastic solids. Comput. Mech. 12 [5], 277-296. https://doi.org/10.1007/BF00372173

Li, Y.N.; Bažant, Z.P. (1997) Cohesive crack model with rate-dependent opening and viscoelasticity: II. numerical algorithm, behavior and size effect. Int. J. Fracture. 86 [3], 267-288.

Sancho, J.M. ; Planas, J.; Cendón, D.A. ; Reyes, E.; Gálvez, J. (2007) An embedded crack model for finite element analysis of concrete fracture. Eng. Fract. Mech. 74 [1-2], 75-86. https://doi.org/10.1016/j.engfracmech.2006.01.015

Jirásek, M. (2011) Damage and smeared crack models, in: Numerical modeling of concrete cracking, Springer, pp. 1-49. https://doi.org/10.1007/978-3-7091-0897-0_1

Alberti, M.; Enfedaque, A.; Gálvez, J.; Reyes, E. (2017) Numerical modelling of the fracture of polyolefin fibre reinforced concrete by using a cohesive fracture approach. Compos. Part B-Engineer. 111, 200-210. https://doi.org/10.1016/j.compositesb.2016.11.052

Havlásek, P.; Kabele, P. (2017) A detailed description of the computer implementation of SHCC material model in OOFEM, CTU in Prague.

Nooru-Mohamed, M.B. (1992) Mixed-mode fracture of concrete: An experimental approach., Ph.D. thesis, Delft University of Technology. Retrieved from http://resolver.tudelft.nl/uuid:a6a773f1-dacd-4598-aa6a-960dddf71117.

Nooru-Mohamed, M.; Schlangen, E.; van Mier, J.G.(1993) Experimental and numerical study on the behavior of concrete subjected to biaxial tension and shear. Adv. Cem. Based Mater. 1 [1], 22-37. https://doi.org/10.1016/1065-7355(93)90005-9

Soetens, T.; Matthys, S. (2017) Shear-stress transfer across a crack in steel fibre-reinforced concrete. Cem. Concr. Comp. 82, 1-13. https://doi.org/10.1016/j.cemconcomp.2017.05.010

JSCE-G 553-1999 (2005) Test method for shear strength of steel fiber reinforced concrete. Standard specifications for concrete structures. Test methods and specifications. Japan Society of Civil Engineers (JSCE), Tokyo.

Navas, F.O.; Navarro-Gregori, J.; Herdocia, G.L.; Serna, P.; Cuenca, E. (2018) An experimental study on the shear behaviour of reinforced concrete beams with macro-synthetic fibres. Constr. Build. Mater. 169, 888-899. https://doi.org/10.1016/j.conbuildmat.2018.02.023

Picazo, A.; Gálvez, J.; Alberti, M.; Enfedaque, A. (2018) Assessment of the shear behaviour of polyolefin fibre reinforced concrete and verification by means of digital image correlation. Constr. Build. Mat. 181, 565-578. https://doi.org/10.1016/j.conbuildmat.2018.05.235

Picazo, A.; Alberti, M.; Gálvez, J.; Enfedaque, A. (2021) Shear slip post-cracking behaviour of polyolefin and steel fibre reinforced concrete. Constr. Build. Mater. 290, 123187. https://doi.org/10.1016/j.conbuildmat.2021.123187

Cendón, D.; Gálvez, J.; Elices, M.; Planas, J. (2000) Modelling the fracture of concrete under mixed loading. Int. J. Fracture. 103 [3], 293-310. https://doi.org/10.1023/A:1007687025575

García-Álvarez, V.O.; Gettu, R.; Carol, I. (2000) Numerical analysis of mixed mode fracture in concrete using interface elements, in: Proceedings of the european congress on computational methods in applied sciences and engineering. Barcelona, Spain, pp. 11-14.

Suárez, F.; Gálvez, J.; Cendón, D. (2019) A material model to reproduce mixed-mode fracture in concrete. Fatigue Fract. Eng. M. 42 [1], 223-238. https://doi.org/10.1111/ffe.12898

ASTM, C. 496-96 (1996) Standard test method for splitting tensile strength of cylindrical concrete specimens.

UNE-EN 13279-2. (2014) Gypsum binders and gypsum plasters - Part 2: Test methods.

UNE-EN 13279-1. (2009) Gypsum binders and gypsum plasters - Part 1: Definitions and requirements.

Suárez Guerra, F.; Felipe-Sesé, L.; Dı́az, F.; Gálvez Ruiz, J.; García Alberti, M. (2019) Comportamiento en fractura de yeso con adición de fibras poliméricas. Secretaría del grupo español de la fractura. Anal. Mecán. Fract. 36, 114-119.

Mayo-Corrochano, C.; Sánchez-Aparicio, L.J.; Aira, J.R., Sanz-Arauz, D.; Moreno, E.; Pinilla Melo, J. (2022) Assessment of the elastic properties of high-fired gypsum using the digital image correlation method. Constr. Build. Mat. 317, 125945. https://doi.org/10.1016/j.conbuildmat.2021.125945

C.S. Vic-2D. (2009) Reference manual.

Bocca, P.; Carpinteri, A.; Valente, S. (1991) Mixed mode fracture of concrete. Int. J. Solids Struct. 27 [9], 1139-1153. https://doi.org/10.1016/0020-7683(91)90115-V

Published

2023-08-28

How to Cite

Suárez, F., Fernández-Aceituno, J., & Donaire-Ávila, J. (2023). Analysis of two experimental setups to study mode II fracture on fibre-reinforced gypsum notched specimens. Materiales De Construcción, 73(351), e322. https://doi.org/10.3989/mc.2023.325822

Issue

Section

Research Articles