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Norm aúaining and numerical radius
attaining operators

MARIA D. ACOSTA and RAFAEL PAYA

ABSTRAer. In Ihis note we discusa sorne results oit numerical radius altaining operators par-
alleling carlier results Oit norm attaining operatora.

Eorarbitrary Banach spacesXand Y, the set of (bounded, linear) operatora from Xto Ywhose
adjoints altain [heir norms is norm-dense ita [hespaee of ah operators. This theorem. due toW.
Zizíer, improves an earlier result by J. Lindenstrauss on the denseness ofoperalors whose secotad
adjoints attain Iheir norms, and is also related loa recent result by C. Stegall where it it assumed
thai Ihe dual space r has the Radon-Nikodym property lo obtain a stronger asscrtíon.

Numerical radios attaining operators behave in quite a similar way. It it also true thai the set
of operatora oit ata arbitrary Banach space whose adjoints atlain Iheir numerical radii it norm-
dense ita Ihe space of ah operators. HoweVer no exantple is known of a Banach space X such that
the numenical radius auaining operaíors o,, X are nol dense. Wc can prove thai such an space A’
musí fail tite Radon-Nikodym property.

The eontent of ihís paper it merely expvsitory. Complete proofs wilI be published elsewhere.

1. NORM ATTAINING OPERATORS

Let X and Y be arbitrary Banach spaces over the same sealar ticíd E <Ii
or C). By operalcr ftom X to Y we always mean a bounded linear operator
and the space ofdiese operators will be denoted by L(X, Y). Only tIte norm top-
ology will be considered in L(X, Y). Let us recalí that tite norm of T e L(X, Y)
is given by

171I=Sup{IIT<x)II:xeX,hxII= 1$

and it is said that T auains lis norm when this supremum is actually a maxi-
mum, that is when there is an x0 in tite unU sphere ofXsuch that II T(x0)II = 1171!.
We will denote by P0(X, Y) tite set of norm attaining operators from X to Y.

As a particular case of tite already classical Bishop-Phelps Theorem we
know that P0(X, 1<) is norm-dense in L(X,IK)= X~ for alí Banach spaces X. J.
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Lindenstrauss [II] began to discuss tite general case and sitowed that titis re-
sult is no longer true when we put an arbitrary Banacit space Y in place of 1K.
More concretely, he even gaye an example of a Banacit space X sucit titat
PXXX) is not dense in L<X.X) [II; Proposition 5]. However tite problem be-
comes casier when we go up to itigiter duals. Let T’~ denote the adjoint of an
operator T from X to Y, that is Pc L( Y~, X~) is given by

[P(g)](x) = g( T(x))

for x in X and g in r. We can consider tite set of operators from X to Y

witose adjoints attain titeir norms
P(X,Y)= TcL(X.Y):pcP0<Y*,X~

and, in a second step, we can consider tite set

P,(X, 19=1 Te L(X, 19:P* p(,~* r~

As a simple consequence of tite Hahn-Banacit Theorem we have

P0<X, Y)cP1(X,Y)cJ%(X, Y)
and so on.

J. Lindenstrauss [II; Titeorem 1] proved that P2<X, Y) is always dense in
L(X, Y). Titis result was improved by W. Zizíer in Ihe following way.

Theorem 1.1. [18; Proposition 4]. For arhitrary real or comp/ex Banach
spaces X and Y, P<X. Y) is norm-dense ¡ti L(X, Y).

Tite proof of titis titeorem is a successful modification of Lindenstrauss’s
proof of [II; Titeorem 1]. The following example shows titat tite assertion in
Titeorem 1.1 is stronger titan the one in [11; Theorem 1].

Example 1.2. Let Y be tite (real or complex) space e0 renormed (to be
strictly convex) by

III.V~I = J IyI ¡ + [~ ...J....4.v(n)f 2]/2
Y

witere 11.11 is tite usual norm on e0 and .v(n) denotes the n th term of any se-
quence y in Y.

Let us define Te L<c»Y) by

[T(x)](n)=aAn) e e0)
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witere a, is any sequence of real numbers such titat O <a, < 1 for al! n, and
~a,$ —*1.

It follows from tite proof of [II; Proposition 4] titat T does not attain its
norm. In fact, a careful examination of die dual norm on Y~ sitows titat the
adjoint of T does not attain its norm, witile it is fairly easy to verify titat
Te P,(c0, Y), SO WC have titat Pk, 19!=J%(c0, Y). It follows also from tite proof
of [11; Proposition 4] that P0(c0, Y) is not dense in L(c0, Y), so the assertion of
Theorem 1.1 is tite best we have in titis case.

To conclude our brief survey on norm attaining operators we mention a
result by C. Stegall [¡7; Corollary 22] which is also related to Titeorem 1.1.
Under tite assumption titat Y~ has tite Radon-Nikodym property he proves
titat P<X. Y) contains a G-delta dense subset of L(X, Y). the Banacit space X
being arbitrary. Titus he imposes a severe restriction qn Y but obtains an as-
sertion witicit is stronger than tite mere denseness of P(X. Y).

For funiter information about norm attaining operators, a topic whicit itas
received a great deal of atiention in recent years, we refer tite reader to papers
by J. Bourgain [5], J.R. Partington [13], W. Scitachermayer [14] and tite
aboye mentioned papers by C. Stegall [17], W. Zizíer [18] and .1. Lindenstrauss
[11].

2. NUMERICAL RADIUS ATTAINING OPERATORS

Recail titat tite numerical range, W(T), of an operator T from a Hilbert
space X into itself is defined by

where (.1 .) is tbe inner product. Titis useful concept itas a natural extension
to operators from an arbitrary Banacit space into itself (we will denote by
L(X), instead of L(X,X), the space of titese operators). Tite definition is

W(T)=~J<T(x)):xcXfeX*, iIxli=I[f¡I=J(x)= 1$.

Tite numerical radlus of Te L(29 is then given hy

w(fl=Sup$I ?d :Xc W(7~

In [3,4] tite reader will find a wide discussion of numerical ranges of op-
erators on Banacit spaces. We only point out the fact, essentially due to G. Lu-
mer [12], that
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w(7)= sv(7t)

for alí Tin L(X) [3; Corollary 9.6] (see also [4; Corollary 17.3])

We are concerned here with numerleal radlus attain¡ng operators. Let us
say that an operator TcL(X) attains its numerical radius if titere are ir, e

= ¡VP =fjx,) = 1 and ,f
0(T(x0))~ =

titat is if tite supremum defxning w(fl is actually a maximum. Let R0(X) de-
note tite set of numerical radius attaining operators on a Banach space X. As
we did for tite norm, we can consider the sets

R(M={Tc L(A}reR,(r)} and

R4X) = Te L%: ~ ~
From tite aboye mentioned equality between tite numerical radii of an oper-
ator and its adjoint, througit an obvious application of tite Haitn-Banacit Tite-
orem, we obtain

a R(X)cz R2(X)

Tite autitors have proyed [1] tbat R}X) is dense in L(’X) for any Banach space
X. Titis result can be improved in tite following way.

Theorem 2.1. For any real or comp/ex Banach space X, RGX) Is norm-dense
in L(X).

Tite proof of titis titeorem is clase to tite one of Titeorem 1.1, althougit it
is a bit more laborious. Both titeorems give us a fice similarity between norm
attaining aud numerical radius attaining operators. Tite answer to tite fol-
lowing open question, posed by B. Sims [15], could become a striking
difference.

Problem 2.2. Is it lrue tlzat R0(X) is dense in L(X) for ah Ranach spaces 2<?

1. Berg and B. Sims [2] gaye an affirmatiye answer to titis question for uni-
formly conyex spaces. As an easy consequence, tite same result is true for uni-
forntly smooth spaces. Titis obserx’ation is due to C. Cardassi [7], wito
sitowed also that tite answer is alfirmative for several classical Banacit spaces,
namely c~, C(K) and L(>i) [8,9,10]. From Theorem 2.1 <or even from tite re-
sult in [1]) we deduce tite following consequence whicit extends tite resulis in
[2,7].
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Corollary 2.3. 112< is a reflexlve Banach space, ¡ten R0(X) Ls norm-dense in
L(X).

However we want to discuss itere a more general result witicit requires
more sophisticated tools. Tite crucial one is tite following nonlinear optimi-
zation titeorem by C. Stegall. Wc refer to [6] for a survey on Radon-Nikodym
sets.

Tbeorem 24. (Stegall [16,17]).Leí 2< tea real Banach space, Da Radon-N¡-
kodvm set iii 2< and C:D—*R a (norm) upper-semicontinuous, bounded aboye
fundan. Then 11w set

fe r:~F+fs¡rongly exposes

a dense G-deha subse¡ ofX~.

In order to take advantage of tite aboye titeorem in our context, given a
Banach space 2< and Te L(X), we consider tite real function C~ defined on tite
unit spitere of 2< by

tF,(x)=Max$fr(T(x))~: LfII=J(x)= l}

It is plain titat

w(JD=SupI4),<x):x eX, hin] = 11,

so Tattains its numerical radius ifand only ifÁD; attains its supremum on tite
unit spitere.

Tite function ~ can be extended to tite unit hall of 2< by defining

~D,<x)=hIxIIF,(ir ), forO<!]x[¡<l, and
liii!

c13<O) = O. In titis way we itave

Lemma 2.5. Leí 2< be a Banach space and Te L(X). Then <Fr is upper-
sem¡continuous (and bounded aboye) In ¡he unlí bali of2<.

Now, if 2< is a Banacit space with tite Radon-Nikodym property, and
Te L(X), Stegall’s Titeorem gives us an arbitrarily small continuous linear
functional fon 2< sucit titat <Fr + Refattains it supremurn on tite unit hall.
After sorne computations we get tite following result.

Theorem 2.6. Leí 2< he a Banach space sat¡sfying ¡he Radon-N¡kodym properly.
For every Te L<X) and 8> 0 itere Ls a rank-one operator S on 2< such thai



24 MD. Acosta-R. Faya

IISII <s and T + S aua¡ns lis numerical radius. in particular, R5(X) Ls
dense in L(X).

Tite second autitor wants to express itis gratitude to tite organizing com-
mittee of tite Functional Analysis Meeting (El Escorial, June 13-18, 1988) for
inviting itim to tite meeting and giving hm a nice opportunity to expose tite
results in titis paper.
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