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Norm attaining and numerical radius
attaining operators

MARIA D. ACOSTA and RAFAEL Pava

ABSTRACT. In this note we discuss some results on numerical radius altaining operators par-
alleling earlier results on norm attaining operators.

For arbitrary Banach spaces X and Y, the set of (bounded, linear) operators from X to ¥ whose
adjoints attain their norms is norm-dense in the space of all operators. This theorem. due to W.
Zizler, improves an earlier result by J. Lindenstrauss on the denseness of operators whose second
adjoints attain their norms, and is also related to a recent result by C. Stegall where it is assumed
that the dual space Y* has the Radon-Nikodym property to obtain a stronger assertion.

Numerical radius attaining operators behave in quite a similar way. It is also true that the set
of operators on an arbitrary Banach space whose adjoints attain their numerical radii is norm-
dense in the space of all operators. However no example is known of a Banach space X such that
the numerical radius attaining operators on X are not dense. We can prove that such an space X
must fail the Radon-Nikodym property.

The content of this paper is merely expository, Complete proofs will be published elsewhere.

1. NORM ATTAINING QOPERATORS

Let X and Y be arbitrary Banach spaces over the same scalar field K (R
or C). By operafor from X to ¥ we always mean a bounded linear operator
and the space of these operators will be denoted by L(X, ¥). Only the norm top-
ology will be considered in L(X,Y). Let us recall that the norm of T € L(X,Y)
is given by

(171 =Sup{ | T(X):x e X, itxll =1}
and it is said that T attains its norm when this supremum is actually a maxi-
mum, that is when there is an x, in the unit sphere of X such that || T{x,)|| = | 7l.

We will denote by PAX, Y) the set of norm attaining operators from X to Y.

As a particular case of the already classical Bishop-Phelps Theorem we
know that PyX, K) is norm-dense in L(X,K)= X* for all Banach spaces X . J.

1980 Mathematics Subject Classification {1985 revisién): 46B20
Editorial de la Universidad Complutense. Madrid, 1989.



20 M.D. Acosta-R. Paya

Lindenstrauss [11] began 1o discuss the general case and showed that this re-
sult is no longer true when we put an arbitrary Banach space Y in place of K.
More concretely, he even gave an example of a Banach space X such that
P(X.X) is not dense in L(X,X) {11, Proposition 5]. However the problem be-
comes easier when we go up to higher duals. Let T denote the adjoint of an
operator T from X to ¥, that is T* e L(Y*, X*) is given by

[TH()]x)=g(T(x))

for x in X and g in Y* We can consider the set of operators from X to Y
whose adjoints attain their norms

P(X, V)= | Te L(X,Y):T*e P(Y* X*)}
and, in a second step, we can consider the set
PAX. Y)={Te L(X,Y)y:T** c P(X**, Y**)|
As a simple consequence of the Hahn-Banach Theorem we have

P(X.NCPX. N PXY)
and so on.

J. Lindenstrauss [11;, Theorem 1] proved that P,(X,Y) is always dense in
L{X,Y). This result was improved by W. Zizler in the following way.

Theorem 1.1. [18; Proposition 4]. For arbitrary real or complex Banach
spaces X and Y, P(X.Y) is norm-dense in L(X,Y).

The proof of this theorem is a successful modification of Lindenstrauss's
proof of [11; Theorem 1]. The following example shows that the assertion in
Theorem 1.1 is stronger than the one in [11; Theorem 1].

Example 1.2. Let Y be the (real or complex) space ¢, renormed (to be
strictly convex) by

IIIyHi:HyH.{.[f;l Zln y(n)| 2]

where [|.]| is the usual norm on ¢, and y(n) denotes the n th term of any se-
quence yin Y.

Let us define T'e L{c, Y) by

[TCN(mM =a,x(n) (xec)
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where {a,} is any sequence of real numbers such that 0 <a, <1 for all », and
RN

It follows from the proof of [11; Proposition 4] that T does not attain its
norm. In fact, a careful examination of the dual norm on Y* shows that the
adjoint of T does not attain its norm, while it is fairly easy to verify that
T'e Pfc, Y), so we have that P (c,,Y)# Py(c,Y). It follows also from the proof
of [11; Proposition 4] that Pyc, ¥) is not dense in L(c, Y), so the assertion of
Theorem 1.1 is the best we have in this case.

To conclude our brief survey on norm attaining operators we mention a
result by C. Stegall [17; Corollary 22) which is also related to Theorem 1.1.
Under the assumption that Y* has the Radon-Nikodym property he proves
that P,(.X,Y) contains a G-delta dense subset of L(X,Y), the Banach space X
being arbitrary. Thus he imposes a severe restriction gn Y but obtains an as-
sertion which is stronger than the mere denseness of P,(X.Y).

For further information about norm attaining operators, a topic which has
received a great deal of attention in recent years, we refer the reader to papers
by J. Bourgain [5}, J.R. Partington [13], W. Schachermayer [14] and the
above mentioned papers by C. Stegall {17], W. Zizler [18] and J. Lindenstrauss

[11].

2, NUMERICAL RADIUS ATTAINING OPERATORS

Recall that the numerical range, W(T), of an operator T from a Hilbert
space X into itself is defined by

W ={(T(x)| x)xe X, |xll=1}
where (-1 ) is the inner product. This useful concept has a natural extension

to operators from an arbitrary Banach space into itself (we will denote by
L(X), instead of L(X,X), the space of these operators). The definition is

WD ={ATx)):xe Xfe X%, Ixll=|f |=fgx)=1}.
The numerical radius of T e L(X) is then given by
w(T)=Supfl Al :A e W(T)
In [3,4] the reader will find a wide discussion of numerical ranges of op-

erators on Banach spaces. We only point out the fact, essentially due to G. Lu-
mer [12], that
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w(T)=w(T™)
for all T in L(X) [3; Corollary 9.6] (see also [4; Corollary 17.3]).

We are concerned here with numerical radius attaining operators. Let us
say that an operator T e L(X) attains its numerical radius if there are x, € X,
foe X* such that

Ixoll = IVoll =iy =1 and | (T 0= w(T),

that is if the supremum defining w(7) is actually a maximum. Let R (X) de-
note the set of numerical radius attaining operators on a Banach space X. As
we did for the norm, we can consider the sets

R(X)={Te L(X):T* € R(X*)} and
RAX)=|Te L(X): T e R{X*™)!.

From the above mentioned equality between the numerical radii of an oper-
ator and its adjoint, through an obvious application of the Hahn-Banach The-
orem, we cbtain

R(X) = R(X)C R(X)

The authors have proved [1] that R,(X) is dense in L{.X) for any Banach space
X. This result can be improved in the following way.

Theorem 2.1. For any real or complex Banach space X, R(X) is norm-dense

in L(X).

The proof of this theorem is close to the one of Theorem 1.1, although it
is a bit more laborious. Both theorems give us a nice similarity between norm
attaining and numerical radius attaining operators. The answer to the fol-
lowing open question, posed by B. Sims [15], could become a striking
difference.

Problem 2.2. Is it true that R(X) is dense in L{(X) for all Banach spaces X?

I. Berg and B. Sims [2] gave an affirmative answer to this question for uni-
formly convex spaces. As an easy consequence, the same result is true for uni-
formly smooth spaces. This observation is due to C. Cardassi [7], who
showed also that the answer is affirmative for several classical Banach spaces,
namely ¢,, C{K) and L () [8,9,10]. From Theorem 2.1 {or even from the re-
sult in [1]) we deduce the following consequence which extends the results in
[2.7].
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Corollary 2.3. If X is a reflexive Banach space. then R(X) is norm-dense in

L(X).

However we want to discuss here a more general result which requires
more sophisticated tools. The crucial one is the following nonlinear optimi-
zation theorem by C. Stegall. We refer to [6] for a survey on Radon-Nikodym
sets.

Theorem 2.4. (Stegall [16,17]). Let X be a real Banach space, D a Radon-Ni-
kodym set in X and ©:D—R a (norm) upper-semicontinuous, bounded above
function. Then the set

|fe X*:D+f strongly exposes D}

is a dense G-delta subset of X*.
In order to take advantage of the above theorem in our context, given a

Banach space X and T e L(X), we consider the real function @, defined on the
unit sphere of X by

@(x)=Max{[ATCN: If Il =Ax)=1}
It is plain that
w(T)=Sup{® (x).xe X, llxl]=1},

so T attains its numerical radius if and only if ®; attains its supremum on the
unit sphere,

The function @, can be extended to the unit ball of X by defining

O (x)=|xllP{_X ), for O<lix|]| <1, and
X

@ {0) = 0. In this way we have

Lemma 2.5. Let X be a Banach space and Te L(X). Then ®, is upper-
semicontinuous (and bounded above) in the unit ball of X.

Now, if X is a Banach space with the Radon-Nikodym property, and
Te L(X), Stegall's Theorem gives us an arbitrarily small continuous linear
functional fon X such that ®, + Re fattains it supremum on the unit ball.
After some computations we get the following result.

Theorem 2.6. Let X be a Banach space satisfying the Radon-Nikodym property.
For every Te L(X) and €> 0 there is a rank-one operaror S on X such that
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ISli<e and T + S attains its numerical radius. In particular, R(X) is norm-
dense in L{X).

The second author wants to express his gratitude to the organizing corn-
mittee of the Functional Analysis Meeting (E! Escorial, June 13-18, 1988) for
inviting him to the meeting and giving him a nice opportunity to expose the
results in this paper.
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