Patrones espaciales de exposición a flujos cargados de sedimento en un abanico aluvial experimental

Autores/as

  • Alessio Blasi Free University of Bozen-Bolzano, Faculty of Science and Technology, Bolzano 39100, Italy.
  • Bruno Mazzorana Universidad Austral de Chile
  • Michael Sturm Department of Water Management, Office of the Tyrolean Regional Government, Imst 6460, Austria.
  • Bernhard Norbert Gems University of Innsbruck, Unit of Hydraulic Engineering, Innsbruck 6020, Austria

DOI:

https://doi.org/10.17735/cyg.v37i1-2.95210

Palabras clave:

abanico aluvial, peligros fluviales, exposición, modelización

Resumen

Los flujos cargados de sedimentos con cantidades significativas de madera de gran tamaño pueden afectar a los abanicos aluviales y dañar seriamente la infraestructura y la propiedad expuesta, lo que hace que un conocimiento profundo de la exposición sea un requisito esencial para la mitigación del riesgo. Para investigar su variabilidad espacial, ejecutamos experimentos en un modelo físico simplificado y evaluamos el proceso espacial observado y los patrones de exposición cuantificando índices sintéticos y analizando geoestadísticamente las probabilidades espaciales de ocurrencia. Variamos sistemáticamente las condiciones de carga, es decir, el volumen de flujo total, la fracción sólida y la potencia de la corriente, y repetimos cada configuración experimental ocho veces. Se consideraron dos diseños de abanicos aluviales, uno equipado con un canal guía y un puente y otro con el canal guía solamente. En primer lugar, contrastamos la hipótesis de que un régimen de mayor potencia de la corriente del flujo cargado de sedimentos está asociado con una mayor exposición y una menor incertidumbre espacial de la exposición en comparación con flujos generados con una menor potencia de la corriente. En segundo lugar, probamos si un mayor volumen de flujo está asociado con una mayor exposición en el abanico aluvial y con una menor incertidumbre espacial. Ninguna de las hipótesis antes mencionadas se verifica para todo el conjunto de condiciones de flujo. La primera hipótesis se rechaza en la mayoría de las condiciones consideradas. La segunda hipótesis se corrobora predominantemente cuando se consideran las áreas expuestas tanto por sedimentos como por agua. En cambio, cuando se consideran sólo las áreas de depósito de sedimentos, esta hipótesis se corrobora predominantemente en el abanico aluvial que presenta el puente. Proporcionamos mapas de probabilidad de exposición para todas las condiciones experimentales y presentamos la variabilidad de la exposición mediante elipses de desviación estándar. Aunque los resultados cuantitativos de este estudio son concluyentes solamente para los diseños de abanicos aluviales adoptados, ellos, en general, indican que una variación de los parámetros de carga conduce a cambios notables en los patrones de probabilidad de exposición y los parámetros de las elipses de desviación estándar. A la luz de los resultados obtenidos, los tomadores de decisiones deberían tomar en cuenta la variabilidad potencial de las respuestas geomórficas en los abanicos aluviales en sus prácticas de gestión de riesgos para evitar subestimar los impactos en el entorno construido.

Citas

Alexander, D. (2000). Confronting Catastrophe. Dunedin Academic Press Ltd, Edinburgh UK, 288 pp.

Bachi, R. (1963). Standard distance measures and related methods for spatial analysis. Papers of the Regional Science Association, 10(1), 83–132. https://doi.org/10.1111/j.1435-5597.1962.tb00872.x

Blair, T.C., McPherson, J.G. (1994). Alluvial Fans and their Natural Distinction from Rivers Based on Morphology, Hydraulic Processes, Sedimentary Processes, and Facies Assemblages. Journal of Sediment Research, 64(3a), 450–489. https://doi.org/10.1306/D4267DDE-2B26-11D7-8648000102C1865D

Blair, T.C., McPherson, J.G. (2009). Processes and Forms of Alluvial Fans. In Parsons, A.J., Abrahams, A.D. (editors). Geomorphology of Desert Environments, (pp. 413–467). Springer Netherlands. https://doi.org/10.1007/978-1-4020-5719-9_14

Bowman, D. (2019). Principles of Alluvial Fan Morphology. Springer, Netherlands, 151 pp. https://doi.org/10.1007/978-94-024-1558-2

Bryant, M., Falk, P., Paola, C. (1995). Experimental study of avulsion frequency and rate of deposition. Geology, 23(4), 365–368. https://doi.org/10.1130/0091-7613(1995)023<0365:ESOAFA>2.3.CO;2

Bubeck, P., Aerts, J.C.J.H., De Moel, H., Kreibich, H. (2016). Preface: Flood-risk analysis and integrated management. Natural Hazards and Earth System Sciences, 16(4), 1005-1010. https://doi.org/10.5194/nhess-16-1005-2016

Bull, W.B. (1977). The alluvial-fan environment. Progress in Physical Geography, 1(2), 222–270. https://doi.org/10.1177/030913337700100202

Clarke, L.E. (2015). Experimental alluvial fans: Advances in understanding of fan dynamics and processes. Geomorphology, 244, 135–145. https://doi.org/10.1016/j.geomorph.2015.04.013

Clarke, L.E., Quine, T.A., Nicholas, A. (2010). An experimental investigation of autogenic behaviour during alluvial fan evolution. Geomorphology, 115(3–4), 278–285. doi: 10.1016/j.geomorph.2009.06.033

Church, M., Dudill, A., Venditti, J.G., Frey, P. (2020). Are results in geomorphology reproducible? Journal of Geophysical Research: Earth Surface, 125(8), e2020JF005553. https://doi.org/10.1029/2020JF005553

D’Agostino, V., Cesca, M., Marchi, L. (2010). Field and laboratory investigations of runout distances of debris flows in the Dolomites (Eastern Italian Alps). Geomorphology, 115(3–4), 294–304. https://doi.org/10.1016/j.geomorph.2009.06.032

Davies, T.R.H., McSaveney, M.J., Clarkson, P.J. (2003). Anthropic aggradation of the Waiho River, Westland, New Zealand: microscale modelling. Earth Surface Processes Landforms, 28(2), 209–218. https://doi.org/10.1002/esp.449

De Haas, T., Densmore, A.L., Stoffel, M., Suwa, H., Imaizumi, F., Ballesteros-Cánovas, J.A., Wasklewicz, T. (2018). Avulsions and the spatio-temporal evolution of debris-flow fans. Earth-Science Reviews, 177, 53-75. https://doi.org/10.1016/j.earscirev.2017.11.007

Diaz, H., Mazzorana, B., Gems, B., Rojas, I., Santibañez, N., Iribarren, P., Pino, M., Iroumé, A. (2022). What do biphasic flow experiments reveal on the variability of exposure on alluvial fans and which implications for risk assessment result from this? Natural Hazards, 111, 3099–3120. https://doi.org/10.1007/s11069-021-05169-8

Florin, R. (2022). Explorando el alcance de la independencia de escala en la modelación física de la dinámica distributiva en un abanico aluvial. Diploma Thesis, School of Geology, UACh. 92 pp.

Fuchs, S. (2009). Susceptibility versus resilience to mountain hazards in Austria - Paradigms of vulnerability revisited. Natural Hazards and Earth System Sciences, 9(2), 337–352. https://doi.org/10.5194/nhess-9-337-2009

Furlan, P., Pfister, M., Matos, J., Amado, C., Schleiss, A.J. (2019). Experimental repetitions and blockage of large stems at ogee crested spillways with piers. Journal of Hydraulic Research, 57(2), 250-262. https://doi.org/10.1080/00221686.2018.1478897

Galloway, W.E., Hobday, D.K. (1996). Terrigenous Clastic Depositional Systems. Springer, Berlin Heidelberg Germany, 423 pp. https://doi.org/10.1007/978-3-642-61018-9

Gschnitzer, T., Gems, B., Mazzorana, B., Aufleger, M. (2017). Towards a robust assessment of bridge clogging processes in flood risk management. Geomorphology, 279, 128–140. https://doi.org/10.1016/j.geomorph.2016.11.002

Guerit, L., Métivier, F., Devauchelle, O., Lajeunesse, E., Barrier, L. (2014). Laboratory alluvial fans in one dimension. Physical Review E, 90, 022203. https://doi.org/10.1103/PhysRevE.90.022203

Hartmann, K., Krois, J., Waske, B. (2018). E- Learning Project SOGA: Statistics and Geospatial Data Analysis. Department of Earth Sciences, Freie Universität Berlin. https://www.geo.fu-berlin.de/en/v/soga/index.html

Hooke, R.L. (1968). Model Geology: Prototype and Laboratory Streams: Discussion. Geological Society of America Bulletin, 79(3), 391–394. https://doi.org/10.1130/0016-7606(1968)79[391:MGPALS]2.0.CO;2

Kienholz, H., Krummenacher, B., Kipfer, A., Perret, S. (2004). Aspects of integral risk management in practice: Considerations with respect to mountain hazards in Switzerland. Österreichische Wasser- und Abfallwirtschaft, 56(3), 43–50.

Lefever, D.W. (1926). Measuring Geographic Concentration by means of the Standard Deviational Ellipse. American Journal of Sociology, 32(1), 88–94. https://doi.org/10.1086/214027

Mazzorana, B., Simoni, S., Scherer, C., Gems, B., Fuchs, S., Keiler, M. (2014). A physical approach on flood risk vulnerability of buildings. Hydrology and Earth System Sciences, 18(9), 3817–3836. https://doi.org/10.5194/hess-18-3817-2014

Mazzorana, B., Ruiz-Villanueva, V., Marchi, L., Cavalli, M., Gems, B., Gschnitzer, T., Mao, L., Iroumé, A., Valdebenito, G. (2018). Assessing and mitigating large wood-related hazards in mountain streams: recent approaches. Journal of Flood Risk Management, 11(2), 207–222. https://doi.org/10.1111/jfr3.12316

Mazzorana, B., Ghiandoni, E., Picco, L. (2020). How do stream processes affect hazard exposure on alluvial fans? Insights from an experimental study. Journal of Mountain Science, 17(4), 753–772. https://doi.org/10.1007/s11629-019-5788-x

Moser, M. (2018). Physikalische Modellversuche zur Frage der Reproduzierbarkeit von Geschiebetransportprozessen am Schwemmkegel eines Wildbaches. Mater thesis. Unit of Hydraulic Engineering, University of Innsbruck, 185 pp.

Muto, T., Steel, R.J., Swenson, J.B. (2007). Autostratigraphy: A framework norm for genetic stratigraphy. Journal of Sedimentary Research, 77(1–2), 2–12. https://doi.org/10.2110/jsr.2007.005

National Research Council (1996). Alluvial Fan Flooding. The National Academies Press, Washington, DC United States of America, 1-182. https://doi.org/10.17226/5364.

Nguyen, N.T., He, W., Zhu, Y., Lü, H. (2020). Influence of Calibration Parameter Selection on Flash Flood Simulation for Small to Medium Catchments with MISDc-2L Model. Water, 12(11), 3255. https://doi.org/10.3390/w12113255

Paola, C., Straub, K., Mohrig, D., Reinhardt, L. (2009). The “unreasonable effectiveness” of stratigraphic and geomorphic experiments. Earth-Science Reviews, 97, 1-43. https://doi.org/10.1016/j.earscirev.2009.05.003

Reitz, M.D., Jerolmack, D.J. (2012). Experimental alluvial fan evolution: Channel dynamics, slope controls, and shoreline growth. Journal of Geophysical Research - Earth Surface, 117, F02021, https://doi.org/10.1029/2011JF002261.

Röthlisberger, V., Zischg, A.P., Keiler, M. (2017). Identifying spatial clusters of flood exposure to support decision making in risk management. Science of the Total Environment, 598, 593–603. https://doi.org/10.1016/j.scitotenv.2017.03.216

Santibañez, N., Mazzorana, B., Iribarren, P., Rojas, I., Mao, L. (2021). Dinámica distributiva de flujos bifásicos con carga de madera en un abanico aluvial experimental. Ingenieria del Agua, 25(2), 145-168. https://doi.org/10.4995/ia.2021.14703

Schalko, I. (2017). Large wood accumulation probability at a single bridge pier. In Ghani (Editor), Proceedings of the 37th IAHR world congress. Kuala Lumpur, Malaysia: IAHR and Usains Holding SDN BHD, 1704-1713.

Sturm, M., Gems, B., Keller, F., Mazzorana, B., Fuchs, S., Papathoma-Köhle, M., Aufleger, M. (2018a). Experimental analyses of impact forces on buildings exposed to fluvial hazards. Journal of Hydrology, 565, 1–13. https://doi.org/10.1016/j.jhydrol.2018.07.070

Sturm, M., Gems, B., Keller, F., Mazzorana, B., Fuchs, S., Papathoma-Köhle, M., Aufleger, M. (2018b). Understanding impact dynamics on buildings caused by fluviatile sediment transport. Geomorphology, 321, 45–59. https://doi.org/10.1016/j.geomorph.2018.08.016

Van Dijk, M., Postma, G., Kleinhans, M.G. (2009). Autocyclic behaviour of fan deltas: an analogue experimental study. Sedimentology, 56(5), 1569–1589. https://doi.org/10.1111/j.1365-3091.2008.01047.x

Van Dijk, M., Postma, G., Kleinhans, M.G., Kraal, E. (2012). Contrasting morphodynamics in alluvial fans and fan deltas: effect of the downstream boundary. Sedimentology, 59(7), 2125–2145. https://doi.org/10.1111/j.1365-3091.2012.01337.x

Wagenaar, D.J., De Bruijn, K.M., Bouwer, L.M., De Moel, H. (2016). Uncertainty in flood damage estimates and its potential effect on investment decisions. Natural Hazards and Earth System Sciences, 16(1), 1–14. https://doi.org/10.5194/nhess-16-1-2016

Whipple, K.X., Parker, G., Paola, C., Mohrig, D. (1998). Channel dynamics, sediment transport, and the slope of alluvial fans: Experimental study. Journal of Geology, 106(6), 677–693. https://doi.org/10.1086/516053

Yuill, R.S. (1971). The Standard Deviational Ellipse; An Updated Tool for Spatial Description. Geografiska Annaler: Series B, Human Geography, 53(1), 28–39. https://doi.org/10.1080/04353684.1971.11879353

Descargas

Publicado

2023-06-20

Número

Sección

Artículos de Investigación