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Antecedentes: El diseño de medidas repetidas es uno de los más usados en ciencias sociales y de la salud. Aunque 
hay otras alternativas más avanzadas, el análisis de varianza de medidas repetidas (ANOVA-MR) sigue siendo el 
procedimiento más empleado para analizar las diferencias de medias. El impacto de la violación de la normalidad ha 
sido muy estudiado en el ANOVA intersujeto, pero los estudios son muy escasos en el ANOVA-MR. Por ello, el objetivo 
de este trabajo es realizar dos estudios de simulación Monte Carlo para analizar el error de Tipo I y la potencia cuando 
se incumple este supuesto bajo el cumplimiento de la esfericidad. Método: El estudio 1 incluye 20 distribuciones, tanto 
conocidas como desconocidas, manipulando el número de medidas repetidas (3, 4, 6 y 8) y el tamaño muestral (de 10 a 
300). El estudio 2 incluye diferentes distribuciones en cada medida repetida. Las distribuciones analizadas representan 
desviación leve, moderada y severa de la normalidad. Resultados: En general, los resultados muestran que tanto el error 
Tipo I como la potencia del estadístico F no se alteran con la violación de la normalidad. Conclusiones: El ANOVA-MR 
es generalmente robusto a la no normalidad cuando la esfericidad se satisface.
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RESUMEN 

Background: Repeated measures designs are commonly used in health and social sciences research. Although there 
are other, more advanced, statistical analyses, the F-statistic of repeated measures analysis of variance (RM-ANOVA) 
remains the most widely used procedure for analyzing differences in means. The impact of the violation of normality 
has been extensively studied for between-subjects ANOVA, but this is not the case for RM-ANOVA. Therefore, studies 
that extensively and systematically analyze the robustness of RM-ANOVA under the violation of normality are needed. 
This paper reports the results of two simulation studies aimed at analyzing the Type I error and power of RM-ANOVA 
when the normality assumption is violated but sphericity is fulfilled. Method: Study 1 considered 20 distributions, both 
known and unknown, and we manipulated the number of repeated measures (3, 4, 6, and 8) and sample size (from 10 
to 300). Study 2 involved unequal distributions in each repeated measure. The distributions analyzed represent slight, 
moderate, and severe deviation from normality. Results: Overall, the results show that the Type I error and power of the 
F-statistic are not altered by the violation of normality. Conclusions: RM-ANOVA is generally robust to non-normality 
when the sphericity assumption is met.
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Repeated measures designs are widely used in health and 
social sciences research (Fernández et al., 2010), not only in 
psychology but also in fields such as general medicine (Singh 
et al., 2013), psychiatry (Gueorguieva & Krystal, 2004), 
epidemiology (Gunasekara et al., 2014), pharmacology (Maurissen 
& Vidmar, 2017), neurotoxicology (Tamura & Buelke-Sam, 
1992), anesthesiology (Schober & Vetter, 2018), ophthalmology 
(Armstrong, 2017), pulmonology (De Livera et al., 2014), and 
veterinary science (Zhao et al., 2019). In the methodological 
literature, the analysis of repeated measures data continues to 
generate debate, as illustrated by the considerable number of 
books (e.g., Davis, 2002; Islam & Chowdhury, 2017; Moskowitz 
& Hershberger, 2013; Raghavarao & Padgett, 2014; Verma, 
2016), tutorials, and review articles that have been published since 
2000 (e.g., Armstrong, 2017; Bathke et al., 2009; Blanca, 2004; 
De Livera et al., 2014; Fernández et al., 2007; Gueorguieva & 
Krystal, 2004; Keselman et al., 2001, 2002; Maurissen & Vidmar, 
2017; Schober & Vetter, 2018; Singh et al., 2013; Tippey et al., 
2015; Vallejo & Lozano, 2006). The conventional univariate test 
of significance within the general linear model for the analysis 
of repeated measures is repeated measures analysis of variance 
(RM-ANOVA), which uses the F-statistic to determine statistical 
significance. The model is defined by:

Yij = μ + αj + πi + εij

where Yij represents the observation for subject i at time j; μ is 
the grand mean of the population means; αj is the fixed effect of 
time j; πi represents the random effect for subject i; and εij is the 
error effect associated with subject i at time j. This error effect is 
a random variable, defined as NID(0, σε

2), and it is independent of 
πi. The RM-ANOVA procedure requires fulfillment of the assump-
tions of normality and sphericity, among others. Although other 
approaches (e.g., mixed model, multivariate analysis, adjusted F 
test, etc.) have been proposed for the analysis of repeated measures 
data when these assumptions are not met, RM-ANOVA remains 
one of the most widely used statistical procedures in various areas 
of knowledge (Armstrong, 2017; Blanca et al., 2018; Goedert et 
al., 2013).

Monte Carlo simulation studies aim to analyze how the 
violation of assumptions affects the robustness of statistical 
procedures. Type I error is defined as the probability of rejecting 
the null hypothesis when it is true. This probability is called the 
significance level or α, with a conventionally preset value of 
.05. In the context of ANOVA, obtaining inflated Type I error 
rates leads to the conclusion that there is a treatment effect, or 
differences in means, when this is not the case. The probability 
of erroneously accepting the null hypothesis is referred to as 
Type II error, labeled β. Power is defined as the probability of 
correctly rejecting the null hypothesis (1 - β), i.e., the probability 
of detecting an effect when it actually exists. Conventionally, a 
power value of .80 is considered adequate (Cooper & Garson, 
2016; Kirk, 2013). Power depends on factors such as significance 
level, sample size, and effect size (Cohen, 1988).

A robust statistical procedure is one that is resistant to devia-
tions from its underlying assumptions (Box, 1953). In terms of 
Type I error, a procedure is robust when the actual probability of 
Type I error is close to the nominal significance level of .05. The 

violation of an assumption does not automatically imply that a test 
is invalidated, but it is essential to be aware of the consequences 
of a violation so as to understand the potential mistakes that could 
occur in the statistical decision-making process. Although the 
impact of the violation of normality has been extensively studied 
for between-subjects ANOVA (e.g., Blanca et al., 2017; Schmider 
et al., 2010), this is not the case for RM-ANOVA; most studies of 
the latter are focused on analyzing the impact of the violation of 
sphericity or of both sphericity and normality simultaneously (e.g., 
Berkovits et al., 2000; Haverkamp & Beauducel, 2017, 2019).

Some methodological books suggest that non-normality may 
increase the Type I error and decrease the power of RM-ANOVA 
(Verma, 2016), with some authors proposing the transformation of 
the dependent variable or the use of a non-parametric procedure as 
analytic alternatives (Tabachnick & Fidell, 2007). In this context, 
Sheskin (2003) states that if one or more of the assumptions 
of a parametric test are violated, data may be transformed into a 
format that makes it compatible for analysis with the appropriate 
non-parametric test. Similarly, Wilcox (2022) has argued that the 
F-statistic has undesirable properties under non-normality, especially 
in situations with outliers and heavy-tailed distributions, and he 
proposes robust statistical procedures to address this problem. By 
contrast, a meta-analysis by Keselman et al. (1996) suggests that 
RM-ANOVA is generally insensitive to non-normality, although 
Type I error may increase slightly when the shape of the distribution 
is asymmetric. More recent studies also show that RM-ANOVA 
tends to be robust to the violation of normality (Berkovits et al., 
2000; Kherad-Pajouh & Renaud, 2015), although these studies were 
aimed at comparing the performance of other statistical procedures 
with that of the F-statistic, especially in small samples. 

Regarding power, most studies likewise focus mainly on 
comparing different statistical procedures and do not analyze 
whether there is a loss of power when RM-ANOVA is used with 
non-normal as opposed to normal distributions. For example, 
Bosley (2019) compared the performance of RM-ANOVA with that 
of three non-parametric and two robust procedures, testing three 
and five repeated measures and different distributions (normal, 
uniform, chi-square with 2 degrees of freedom, and Student’s t 
with 3 degrees of freedom). Overall, the results showed higher 
power for RM-ANOVA. Conversely, Meltzer (2001) compared six 
statistical procedures and concluded that in terms of Type I error 
and power there were more effective analyses than RM-ANOVA, 
one of which was the linear mixed model. 

Although the Type I error and power of RM-ANOVA have been 
previously addressed, there are, to the best of our knowledge, no 
studies that extensively and independently analyze the effect of 
non-normality. Consequently, there are no clear guidelines that can 
inform applied researchers in the statistical analysis of repeated 
measures data when normality is violated. Our aim in this paper 
was therefore to analyze the Type I error and statistical power of 
RM-ANOVA in a wide variety of conditions that may be found in 
real research situations. To this end, two studies were carried out. 
In the first, we focus on designs involving 3, 4, 6, and 8 repeated 
measures and consider different sample sizes representing small, 
medium, and large samples, with several distributions of the 
data, including both known and unknown distributions implying 
slight, moderate, and severe deviation from normality. The second 
study considers the case of designs involving 3 and 4 repeated 
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measures with unequal distributions in each repeated measure, a 
condition that has not been studied previously for RM-ANOVA, 
although it has been addressed in relation to between-subjects 
ANOVA (e.g., Blanca et al., 2017). In both studies, data were 
generated with an unstructured (UN) covariance matrix with 
sphericity approximately equal to 1 (ε ≈ .95) in order to analyze 
independently the effect of non-normality. The UN matrix is the 
most general structure (Kowalchuk et al., 2004) and the one most 
typically found in longitudinal behavioral data (Arnau et al., 2014; 
Bono et al., 2010). 

Empirical Type I error rate and statistical power are analyzed 
in both studies. The former was interpreted according to Bradley’s 
(1978) criterion, a widely accepted standard that facilitates the 
comparison of results across similar studies (Arnau et al., 2012; 
Livacic et al., 2010; Vallejo et al., 2010). According to this 
criterion, a procedure is considered robust if the Type I error 
rate is between .025 and .075 for a significance level of .05. This 
simplifies the interpretation of results and allows us to identify 
those procedures that are liberal, conservative, and robust to 
violations. For power, the values of means were set so as to yield 
a power of approximately .80 for the normal distribution for each 
sample size, with this value being used as a reference to compare 
the power obtained with each non-normal distribution.

Study 1. Equal Distributions in the Repeated Measures

The aim here was to analyze empirical Type I error rates and 
power of the F-statistic in one-way RM-ANOVA with non-normal 
distributions and equal distributions in the repeated measures.

Method

Instruments

A Monte Carlo simulation study was performed using the SAS/
IML (interactive matrix language) software and the PROC GLM 
module (SAS 9.4; SAS Institute Inc., 2013). A series of macros 
was created that allowed generation of the data and estimation 
of the general linear model. These macros are available upon 
request from the corresponding author. First, we generated an 
UN covariance matrix with sphericity approximately equal to 1 
(ε ≈ .95). We used this matrix because, as already noted, it is the 
most general structure (Kowalchuk et al., 2004) and the one most 
typically found in longitudinal behavioral data (Arnau et al., 2014; 
Bono et al., 2010). Next, non-normal data were generated using the 
procedure proposed by Fleishman (1978), which uses a polynomial 
transformation to simulate data with specific values of skewness 
and kurtosis. Normal data were generated using the Cholesky 
transformation of the covariance matrix. Finally, simulated data 
were analyzed with the PROC GLM of SAS to obtain probability 
values associated with the F-statistic of RM-ANOVA.

Procedure

In order to examine the Type I error rate, differences between 
repeated measures were set to zero. A one-way repeated measures 
design was considered (no between-subject factor was included), 
manipulating the following variables:

1.	 Within-subject levels (K). The repeated measures were K = 3, 
4, 6, and 8. 

2.	 Total sample size. Keselman et al. (1998) found that more than 
half (55.3%) of the studies with repeated measures reported a 
sample size of 60 or fewer, although the range varied from 6 
to 1000. Accordingly, we considered a wide range of sample 
sizes so as to study small (lower than 30), medium (from 30 to 
75), and large samples (above 75) (Bono et al., 2016): 10, 15, 
20, 25, 30, 40, 50, 60, 70, 80, 90, 100, 120, 150, 180, 210, 240, 
270, and 300.

3.	 Shape of the distribution with equal distributions in the 
repeated measures. The values of skewness (γ1) and kurtosis 
(γ2) for each distribution are shown in Table 1. A total of 
20 distributions were investigated, including the normal 
distribution (distribution 0). Blanca et al. (2013) analyzed 
693 real datasets from psychological variables and found 
that 80% of them presented values of skewness and kurtosis 
ranging between -1.25 and 1.25. In light of these findings, 
we considered the 12 distributions (distributions 1-12) used 
by Blanca et al. (2017), with values of skewness and kurtosis 
within this interval, representing slight and moderate departure 
from the normal distribution. Seven well-known distributions 
(distributions 13-19) were also added so as to consider extreme 
departures from normality, and they are also representative 
of real data (Bono et al., 2017; Micceri, 1989). The latter 
distributions were as follows: a distribution with values of γ1 
and γ2 corresponding to the double exponential; chi-square 
with 8 degrees of freedom; exponential; lognormal (ζ = 1 and 
σ = 0.5); and three gamma distributions with different values 
of the shape parameter α (0.75, 2, and 4).

In order to analyze empirical power, the values of means were 
selected to give a priori a target power value of approximately .80. 
This power was then used as a reference to compare the empirical 
power of RM-ANOVA for each non-normal distribution. Empirical 
power was calculated with the syntax power = 1 - probf(fcrit, 
numdf, dendf, ncp), where probf is the probability function of SAS 
for the F distribution, fcrit represents the theoretical F-statistic, 
numdf and dendf are the degrees of freedom of the numerator and 
denominator, and ncp defines the non-centrality parameter. The 
following variables were manipulated:

1.	 Within-subject levels. The repeated measures were K = 3, 4, 6, 
and 8.

2.	 Sample size. The sample sizes were set to 10, 20, 50, 100, 200, 
and 300.

3.	 Shape of the distribution with equal distributions in the 
measures repeated. The same 20 distributions considered for 
empirical Type I error rates were investigated. 

4.	 Mean pattern. Three mean patterns were included for each K. 
With K = 3, one of the means was different from the means of 
the other repeated measures (e.g., 1, 1, 2; 1, 2, 1). With K = 4, 6, 
and 8, the means were manipulated so that a) one was different 
from the rest (e.g., 1, 1, 1, 2), and b) half were different and 
equal to each other (e.g., 1, 1, 2, 2). For all K, the means were 
also manipulated so that the increase between them was linear 
and proportional (e.g., 1, 1.5, 2, 2.5).
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Ten thousand replications of the 1520 and 1440 conditions for 
Type I error and power, respectively, resulting from the combination 
of the above variables were performed at a significance level of 
.05. This number of replications was chosen to ensure reliable 
results (Bendayan et al., 2014; Robey & Barcikowski, 1992).

Table 1.
Skewness (γ1) and kurtosis (γ2) coefficients for each simulated distribution.

Distributions γ1 γ2
0 (Normal) 0 0
1 0 0.4
2 0 0.8
3 0 -0.8
4 0.4 0
5 0.8 0
6 -0.8 0
7 0.4 0.4
8 0.4 0.8
9 0.8 0.4
10 0.8 1
11 1 0.8
12 1 1
13 0 3
14 1 3
15 2 6
16 1.75 5.9
17 2.31 8
18 1.41 3
19 1 1.5

Data Analysis

The proportion of rejection of the null hypothesis represented 
the empirical Type I error rates associated with the F-statistic 
of RM-ANOVA. As noted earlier, Bradley’s (1978) criterion 
of robustness was used to interpret the results, according to 
which a procedure is considered robust if the Type I error rate 
is between .025 and .075 for a nominal alpha level of .05. When 
the empirical Type I error rate is above the upper limit, the test 
is considered liberal, and when it is below the lower limit it is 
considered conservative.

For the power analysis, empirical power for each experimental 
condition was recorded. Discrepancy was calculated, defined as 
the difference between the power obtained with the non-normal 
distribution and that obtained with the normal distribution in each 
experimental condition.

Results 

Table 2 shows descriptive statistics for empirical Type I error 
rates for each distribution across all the conditions manipulated. 
The results indicate that Type I error rates were almost always 
within the interval [.025, .075], with means around .05 in all 
conditions (shape of distributions, sample size, and number of 
repeated measures). Only in one case, corresponding to distribution 
17, K = 4 with N = 10, was the Type I error rate greater than .075, 
specifically .078. More detailed results are available upon request 
from the corresponding author.

Table 3 shows descriptive statistics for the empirical power 
and discrepancy. Overall, all minimum values of empirical power 

were around .80, and means of discrepancy were near 0 in all 
conditions studied.

Table 2.
Minimum and maximum values, median, mean, and standard deviation of the 
empirical Type I error rate for each distribution across all conditions (K = 3, 4, 6, and 
8; N ranged from 10 to 300).

Distributions Min Max Md M SD

0 (Normal) .045 .059 .053 .053 .003

1 .046 .060 .053 .053 .003

2 .045 .064 .053 .053 .004

3 .047 .060 .054 .053 .003

4 .045 .061 .053 .053 .003

5 .045 .062 .053 .053 .003

6 .046 .061 .053 .053 .003

7 .044 .061 .053 .053 .004

8 .047 .059 .053 .053 .003

9 .046 .059 .052 .053 .003

10 .046 .060 .053 .053 .003

11 .047 .066 .053 .053 .003

12 .047 .064 .054 .054 .003

13 .045 .060 .051 .052 .003

14 .045 .060 .052 .052 .003

15 .047 .069 .054 .055 .005

16 .046 .064 .054 .054 .004

17 .045 .078 .054 .056 .007

18 .048 .067 .054 .054 .004

19 .044 .059 .053 .057 .003

Table 3.
Minimum and maximum values, mean, and standard deviation of empirical power 
and discrepancy for each distribution across all conditions (K = 3, 4, 6, and 8; N = 10, 
20, 50, 100, 200, and 300; and different mean patterns). (Discrepancy = power of the
respective non-normal distribution – power of the normal distribution).

Empirical power Discrepancy

Distributions Min Max M SD Min Max M SD

0 (Normal) .801 .842 .811 .009 - - - -

1 .799 .847 .811 .010 -.009 .011 .000 .004

2 .796 .844 .811 .010 -.012 .013 .000 .004

3 .796 .846 .810 .010 -.010 .008 -.001 .004

4 .798 .845 .812 .010 -.008 .010 .001 .004

5 .796 .845 .814 .011 -.008 .020 .003 .006

6 .790 .848 .809 .011 -.021 .006 -.002 .005

7 .797 .848 .812 .010 -.011 .013 .001 .004

8 .795 .845 .813 .010 -.007 .013 .002 .004

9 .796 .850 .814 .011 -.010 .020 .002 .006

10 .799 .844 .814 .011 -.009 .024 .003 .006

11 .797 .844 .815 .011 -.006 .030 .004 .007

12 .798 .849 .816 .012 -.009 .026 .004 .007

13 .799 .845 .813 .010 -.007 .013 .002 .004

14 .799 .850 .817 .011 -.006 .027 .006 .007

15 .799 .867 .822 .015 -.006 .055 .011 .014

16 .798 .861 .821 .014 -.008 .047 .010 .012

17 .795 .872 .824 .018 -.006 .064 .013 .016

18 .798 .854 .818 .013 -.007 .039 .007 .010

19 .801 .849 .816 .012 -.009 .027 .005 .007



25

Non-normal Data in Repeated Measures ANOVA

Study 2. Unequal Distributions in each Repeated Measure

The aim here was to analyze empirical Type I error rates 
and power of the F-statistic in RM-ANOVA with non-normal 
distributions and unequal distributions in each repeated measure.

Method

Instruments

A Monte Carlo simulation study was performed using the same 
program and data generation procedure as in Study 1.

Procedure

A one-way repeated measures design was considered (no 
between-subject factor was included). The following variables 
were manipulated for empirical Type I error rates: 

1.	 Within-subject levels. The repeated measures were K = 3 and 4. 
2.	 Sample size. The sample sizes were the same as in Study 1: 10, 

15, 20, 25, 30, 40, 50, 60, 70, 80, 90, 100, 120, 150, 180, 210, 
240, 270, and 300.

3.	 Shape of the distribution with unequal distributions in the 
repeated measures. Seven distributions were considered for 
each K. The values of γ1 and γ2 for each repeated measure are 
shown in Table 4. Distributions 20-25 and 27-32 correspond 
to slight and moderate departures from normality, whereas 
distributions 26 and 33 reflect severe departure. For K = 3 
and severe departure, we used the well-known distributions 
corresponding to the double exponential, chi-square with 8 
degrees of freedom, and exponential. For K = 4 and severe 
departure, we added the gamma distribution (α = 0.75) at the 
last repeated measure.

With respect to empirical power, the manipulated variables 
were the same as in Study 1 in terms of sample size (6 conditions) 
and patterns of means (3 conditions) for K = 3 and 4. The shapes 
of the distribution were the same as for Type I error with unequal 
distributions in the repeated measures (7 conditions for each K). 

Ten thousand replications of the 266 and 252 conditions for Type 
I error and power, respectively, resulting from the combination of 
the above variables were performed at a significance level of .05.

Data Analysis

Empirical Type I error rates and power were recorded and 
analyzed as in Study 1.

Results

Table 5 shows descriptive statistics for empirical Type I error 
rates for each distribution across all sample sizes. Overall, the 
results indicated that Type I error rates were within the interval 
[.025, .075], with means around .05 in all conditions. More detailed 
results are available upon request from the corresponding author.

Table 4.
Values of skewness (γ1) and kurtosis (γ2) for distributions of each repeated measure.

Distributions Repeated 
measures

γ1 γ2

20 1 0 0.2

2 0 0.4

3 0 0.6

21 1 0 0.2

2 0 0.4

3 0 -0.6

22 1 0.2 0

2 0.4 0

3 0.6 0

23 1 0.2 0

2 0.4 0

3 -0.6 0

24 1 0.2 0.4

2 0.4 0.6

3 0.6 0.8

25 1 0.2 0.4

2 0.6 0.8

3 1 1.2

26 1 0 3

2 1 3

3 2 6

27 1 0 0.2

2 0 0.4

3 0 0.6

4 0 0.8

28 1 0 0.2

2 0 0.4

3 0 -0.6

4 0 -0.8

29 1 0.2 0

2 0.4 0

3 0.6 0

4 0.8 0

30 1 0.2 0

2 0.4 0

3 -0.6 0

4 -0.8 0

31 1 0.2 0.4

2 0.4 0.6

3 0.6 0.8

4 0.8 1

32 1 0.2 0.4

2 0.6 0.8

3 1 1.2

4 1.2 1.4

33 1 0 3

2 1 3

3 2 6

4 2.31 8
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Table 6 shows the empirical power and discrepancy with 
respect to the power of the normal distribution for 3 and 4 repeated 
measures across all sample sizes and mean patterns. Overall, as in 
Study 1, all minimum values of empirical power were around .80 
and means of discrepancy were near 0. 

Table 5.
Minimum and maximum values, median, mean, and standard deviation of Type I error 
rates for 3 and 4 repeated measures as a function of distribution across all conditions 
of N (which ranged from 10 to 300).

K Distributions Min Max Md M SD

3 20 .047 .053 .050 .050 .002

21 .047 .055 .051 .051 .002

22 .045 .053 .052 .051 .002

23 .048 .053 .050 .050 .002

24 .046 .053 .050 .049 .002

25 .047 .055 .050 .050 .002

26 .046 .053 .049 .049 .002

4 27 .045 .055 .050 .050 .003

28 .045 .055 .050 .050 .002

29 .046 .053 .051 .051 .002

30 .047 .053 .050 .050 .002

31 .046 .055 .051 .051 .002

32 .045 .056 .049 .050 .003

33 .045 .057 .050 .050 .003

Table 6.
Minimum and maximum values, mean, and standard deviation of empirical power and 
discrepancy for each distribution across all conditions (K = 3 and 4; N = 10, 20, 50, 
100, 200, and 300; and different mean patterns).

Empirical power Discrepancy

K Distributions Min Max M SD Min Max M SD

3 20 .799 .830 .814 .007 -.005 .008 .001 .004

21 .797 .826 .813 .008 -.007 .008 .000 .004

22 .805 .826 .815 .006 -.005 .006 .002 .004

23 .796 .830 .813 .008 -.008 .014 .000 .006

24 .803 .828 .814 .007 -.004 .007 .001 .003

25 .805 .828 .816 .006 -.004 .009 .003 .004

26 .808 .831 .821 .007 .001 .020 .008 .007

4 27 .801 .831 .814 .009 -.005 .006 .002 .003

28 .801 .829 .813 .009 -.010 .006 .001 .004

29 .799 .830 .815 .009 -.006 .009 .003 .004

30 .795 .827 .812 .009 -.012 .011 .000 .006

31 .799 .832 .815 .009 -.005 .011 .003 .004

32 .804 .834 .816 .009 -.006 .011 .003 .005

33 .804 .835 .820 .008 -.002 .022 .008 .007

Note: Discrepancy = power obtained in the respective non-normal distribution – power 
obtained with the normal distribution.

Discussion

The aim of this paper was to analyze the Type I error and 
statistical power of RM-ANOVA in a wide variety of conditions 
that may be encountered in real research situations. To this end, 
two studies were carried out. In the first, we focused on designs 

with 3, 4, 6, and 8 repeated measures and considered different 
sample sizes representing small, medium, and large samples with 
different distribution shapes, including both known and unknown 
distributions reflecting slight, moderate, and severe deviation 
from the normal distribution. The second study considered the 
case of designs involving 3 and 4 repeated measures with unequal 
distributions in each repeated measure. In both studies we analyzed 
empirical Type I error and power. The former was interpreted 
using Bradley’s (1978) criterion, while for the latter we compared 
the power obtained with each non-normal distribution with that 
obtained with the normal distribution. The value of means was 
set so as to yield a power of approximately .80 for the normal 
distribution for each sample size.

Regarding Type I error, the results of Study 1 with equal 
distribution in the repeated measures indicated, overall, that Type 
I error rates are within the bounds for considering a statistical 
procedure as robust according to Bradley’s (1978) criterion. Only 
one Type I error rate was greater than .075, specifically .078, 
and this corresponded to a design with four repeated measures, a 
gamma distribution with α = 0.75, and γ1 = 2.31, γ2 = 8 with N = 
10, that is to say, with severe departure from normality and a very 
small sample size. The results of Study 2, with unequal distribution 
in the repeated measures, supported the robustness of RM-ANOVA 
under non-normality; all Type I error rates were within the interval 
[.025, .075] and means were around .05 in all conditions. 

When interpreting these results it is important to consider the 
large number of conditions that have been simulated. The two 
studies included 33 types of distribution (with equal and unequal 
distributions in the repeated measures), sample sizes between 10 
and 300, and designs involving 3, 4, 6, and 8 repeated measures. 
Across the two studies and a total of 1786 simulated conditions, 
the Type I error rate was only greater than .075 in one case. In other 
words, RM-ANOVA is liberal at a rate of 0.05%, whereas it is 
robust in 99.95% of the conditions studied here. More specifically, 
the procedure may be considered robust under non-normality with 
distributions with skewness and kurtosis as large as 2.31 and 8, 
respectively. These results extend knowledge about the robustness 
of this parametric procedure to a larger number of conditions than 
have been considered in previous studies (Berkovits et al., 2000; 
Kherad-Pajouh & Renaud, 2015).

Regarding the power of RM-ANOVA, the results show that 
this does not decrease with the violations of normality considered 
in the present study. Empirical power was around .80, and the 
discrepancy between the power obtained with each non-normal 
distribution and that obtained with normal distribution was near 
0. This finding held for all conditions, with equal and unequal 
distributions in the repeated measures, different sample sizes, and 
different mean patterns, including a linear pattern. 

 Considering Type I error and power together, we can conclude 
that departure from normality, at least in the conditions studied 
here, does not affect the F-statistic when sphericity is fulfilled. This 
conclusion is in line with Keselman et al. (1996), who suggested, 
based on the results of a meta-analysis, that the procedure is 
generally insensitive to non-normality. In contrast to their study, 
however, we did not detect an increase in Type I error with 
asymmetric distributions.

The present findings are useful for applied research insofar as 
they show that RM-ANOVA is a valid statistical procedure under 
non-normality in a variety of conditions, provided that the sphericity 
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assumption is met. Therefore, and in contrast to what is recommended 
in some texts (Tabachnick & Fidell, 2007), transformation of the 
dependent variable or the use of non-parametric procedures may 
not be necessary even in the absence of normality. As Blanca et al. 
(2017) pointed out, these procedures entail a loss of information 
and pose problems in the interpretation of the results obtained. Our 
results notwithstanding, researchers are still encouraged to analyze 
the distribution underlying their repeated measures data and to 
assess the assumption of sphericity, which is more relevant in the 
case of RM-ANOVA (Davis, 2002; Kirk, 2013). 

This study has a number of limitations that need to be 
acknowledged. First, Bradley’s criterion was used for the 
interpretation of results. Although this is the established criterion 
for the interpretation of robustness in the majority of simulation 
studies, it is not widely known among applied researchers. In this 
respect, it is important to clarify the implications of this criterion 
for research: given a nominal significance level of .05, the actual 
value of Type I error may be different from this value but with 
a maximum deviation that is considered acceptable (i.e., not 
exceeding .075 and not dropping below .025). Second, we used a 
covariance matrix with an approximate sphericity of 1 that may not 
represent some real research situations. However, we did aim to 
analyze the effect of non-normality extensively and independently 
of the effect of violation of sphericity. Future studies are warranted 
to address the impact of deviations from sphericity and normality 
by also considering different covariance matrix structures. Third, 
we have not considered the presence of missing values that may 
be frequent in data with repeated measures (Davis, 2002; Graham, 
2009; Keselman et al., 2001; Vallejo et al., 2011). The general linear 
model eliminates non-complete cases from the analysis, so it would 
be interesting in future studies to analyze the behavior of different 
imputation procedures for these missing values. Finally, the results 
are limited to distributions with skewness and kurtosis as large as 
2.31 and 8, respectively, and more extreme departures have not 
been analyzed. Researchers may also consult Wilcox (2022) for 
alternative procedures to RM-ANOVA based on robust methods 
for dealing with non-normal distributions, such as comparison of 
means based on trimmed means and bootstrap methods.
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