SciELO - Scientific Electronic Library Online

 
vol.24 número2Perfect matchings in inhomogeneous random bipartite graphs in random environmentGraded weakly 1-absorbing prime ideals índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • En proceso de indezaciónCitado por Google
  • No hay articulos similaresSimilares en SciELO
  • En proceso de indezaciónSimilares en Google

Compartir


Cubo (Temuco)

versión On-line ISSN 0719-0646

Cubo vol.24 no.2 Temuco ago. 2022

http://dx.doi.org/10.56754/0719-0646.2402.0273 

Articles

On existence results for hybrid ψ−Caputo multi-fractional differential equations with hybrid conditions

1Mathematics and Applied Sciences Laboratory, Ghardaia University, Ghardaia 47000, Algeria. fouadfredj05@gmail.com fredj.fouad@univ-ghardaia.dz

2Mathematics and Applied Sciences Laboratory, Ghardaia University, Ghardaia 47000, Algeria. h.hammouche@yahoo.fr

ABSTRACT

In this paper, we study the existence and uniqueness results of a fractional hybrid boundary value problem with multi-ple fractional derivatives of ψ −Caputo with different orders. Using a useful generalization of Krasnoselskii’s fixed point theorem, we have established results of at least one solution, while the uniqueness of solution is derived by Banach’s fixed point. The last section is devoted to an example that illustrates the applicability of our results.

Keywords and Phrases: −fractional derivative; fractional differential equation; hybrid conditions; fixed point; existence; uniqueness

RESUMEN

En este artículo, estudiamos los resultados de existencia y unicidad de un problema de valor en la frontera fraccional híbrido con múltiples derivadas fraccionarias de ψ -Caputo con diferentes órdenes. Usando una generalización útil del teorema del punto fijo de Krasnoselskii, establecemos resultados de al menos una solución, mientras que la unicidad de dicha solución se obtiene a partir del punto fijo de Banach. La última sección está dedicada a un ejemplo que ilustra la aplicabilidad de nuestros resultados.

Texto completo disponible sólo en PDF

Full text available only in PDF format.

References

[1] R. Almeida, “A Caputo fractional derivative of a function with respect to another function”, Commun. Nonlinear Sci. Numer. Simul., vol. 44, pp. 460-481, 2017. [ Links ]

[2] R. Almeida, A. B. Malinowska and M. T. T. Monteiro, “Fractional differential equations with a Caputo derivative with respect to a kernel function and their applications”, Math. Methods Appl. Sci., vol. 41, no. 1, pp. 336-352, 2018. [ Links ]

[3] J. Battaglia, L. Le Lay, J. C. Batsale, A. Oustaloup and O. Cois, “Utilisation de modèles d’identification non entiers pour la résolution de problèmes inverses en conduction”, Int. J. Therm. Sci., vol. 39, pp. 374-389, 2000. [ Links ]

[4] R. Darling and J. Newmann, “On the short-time behavior of porous intercalation electrodes”, J. Eletrochem. Soc., vol. 144, no. 9, pp. 3057-3063, 1997. [ Links ]

[5] B.C. Dhage, “A nonlinear alternative with applications to nonlinear perturbed differential equations”, Nonlinear Stud., vol. 13, no. 4, pp. 343-354, 2006. [ Links ]

[6] B. C. Dhage and V. Lakshmikantham, “Basic results on hybrid differential equations”, Non-linear Anal. Hybrid Syst., vol. 4, no. 3, pp. 414-424, 2010. [ Links ]

[7] C. Derbazi and Z. Baitiche, “Coupled systems of ψ -Caputo differential equations with initial conditions in Banach spaces”, Mediterr. J. Math., vol. 17, no. 5, Paper No. 169, 13 pages, 2020. [ Links ]

[8] C. Derbazi , H. Hammouche, M. Benchohra and Y. Zhou, “Fractional hybrid differential equations with three-point boundary hybrid conditions”, Adv. Difference Equ., Paper No. 125, 11 pages, 2019. [ Links ]

[9] J. Dong, Y. Feng and J. Jiang, “A note on implicit fractional differential equations”, Mathematica Aeterna, vol. 7, no. 3, pp. 261-267, 2017. [ Links ]

[10] M. Javidi and B. Ahmad, “Dynamic analysis of time fractional order phytoplankton-toxic phytoplankton-zooplankton system”, Ecological Modelling, vol. 318, pp. 8-18, 2015. [ Links ]

[11] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies, vol. 204, Amsterdam: Elsevier, 2006. [ Links ]

[12] J. G. Liu, X. J. Yang, Y. Y. Feng, P. Cui and L. L. Geng, “On integrability of the higher dimensional time fractional KdV-type equation”, J. Geom. Phys., vol. 160, Paper No. 104000, 15 pages, 2021. [ Links ]

[13] H. Mohammadi, S. Rezapour and S. Etemad, “On a hybrid fractional Caputo-Hadamard boundary value problem with hybrid Hadamard integral boundary value conditions”, Adv. Difference Equ. , Paper No. 455, 20 pages, 2020. [ Links ]

[14] I. Podlubny, Fractional differential equations, Mathematics in Science and Engineering, San Diego: Academic press, 1999. [ Links ]

[15] S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional integrals and derivatives: Theory and applications, Yverdon: Gordon and Breach Science Publishers, 1993. [ Links ]

[16] C. Ramus-Serment, Synthèse d’un isolateur vibratoire d’ordre non entier fondée sur une architecture arborescente d’éléments viscoélastiques quasi-identiques, PhD thesis. Université Bordeaux 1, France, 2001. [ Links ]

[17] S. Sitho, S. K. Ntouyas and J. Tariboon, “Existence results for hybrid fractional integro-differential equations”, Bound. Value Probl., 13 pages, 2015. [ Links ]

[18] D. R. Smart, Fixed point theorems, Cambridge Tracts in Mathematics, No. 66, Cambridge University Press: London-New York, 1974. [ Links ]

[19] J. V. da C. Sousa and E. C. de Oliveira, “Two new fractional derivatives of variable order with non-singular kernel and fractional differential equation”, Comput. Appl. Math., vol. 37, no. 4, pp. 5375-5394, 2018. [ Links ]

[20] V. V. Tarasova and V. E. Tarasov, “Logistic map with memory from economic model”, Chaos Solitons Fractals, vol. 95, pp. 84-91, 2017. [ Links ]

[21] K. G. Wang and G. D. Wang, “Variational principle and approximate solution for the fractal generalized Benjamin-Bona-Mahony-Burgers equation in fluid mechanics”, Fractals., vol. 29, no. 3, 2021. [ Links ]

[22] X. J. Yang and J. T. Machado, “A new fractional operator of variable order: application in the description of anomalous diffusion”, Phys. A, vol. 481, pp. 276-283, 2017. [ Links ]

[23] Y. Zhao, S. Sun, Z. Han and Q. Li, “Theory of fractional hybrid differential equations”, Comput. Math. Appl., vol. 62, no. 3, pp. 1312-1324, 2011 [ Links ]

Accepted: May 24, 2022; Received: October 14, 2021

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License