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Abstract 
 

When datasets present long conditional tails on their response variables, 

algorithms based on Quantile Regression have been widely used to assess 

extreme quantile behaviors. Value at Risk (VaR) and Conditional Tail 

Expectation (CTE) allow the evaluation of extreme events to be easily 

interpretable. The state-of-the-art methodologies to estimate VaR and CTE 

controlled by covariates are mainly based on linear quantile regression, and 

usually do not have in consideration non-crossing conditions across VaRs 

and their associated CTEs. We implement a non-crossing neural network 

that estimates both statistics simultaneously, for several quantile levels and 

ensuring a list of non-crossing conditions. We illustrate our method with a 

household energy consumption dataset from 2015 for quantile levels 0.9, 

0.925, 0.95, 0.975 and 0.99, and show its improvements against a Monotone 

Composite Quantile Regression Neural Network approximation. 
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Non-Crossing Dual Neural Network: Joint Value at Risk and Conditional

Tail Expectation estimations with non-crossing conditions

Xenxo Vidal-Llana∗† Carlos Salort Sánchez∗ Vincenzo Coia‡

Montserrat Guillén∗

Abstract

When datasets present long conditional tails on their response variables, algorithms based on

Quantile Regression have been widely used to assess extreme quantile behaviors. Value at Risk

(VaR) and Conditional Tail Expectation (CTE) allow the evaluation of extreme events to be easily

interpretable. The state-of-the-art methodologies to estimate VaR and CTE controlled by covariates

are mainly based on linear quantile regression, and usually do not have in consideration non-crossing

conditions across VaRs and their associated CTEs. We implement a non-crossing neural network that

estimates both statistics simultaneously, for several quantile levels and ensuring a list of non-crossing

conditions. We illustrate our method with a household energy consumption dataset from 2015 for

quantile levels 0.9, 0.925, 0.95, 0.975 and 0.99, and show its improvements against a Monotone

Composite Quantile Regression Neural Network approximation.

Keywords: risk evaluation, deep learning, extreme quantiles

1 Introduction

Evaluation of heavy tailed distributions is a crucial part of risk assessment. The incorporation of Value at

Risk (VaR) to the analyst toolbox triggered a decisive way to evaluate extreme quantiles from the right

(or left) part of the distribution. Commonly, the quantile levels used are greater than 0.9 (or lower than

0.1 when interested in the left part of the tail). Ever since [Koenker and Bassett Jr, 1978] proposed the
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†Corresponding author: juanjose.vidal@ub.edu
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Quantile Regression specification, the use of extreme estimators became a necessity more than an optional

tool. Despite finance being the main user of VaR for evaluating future risks ([Bodnar et al., 1998]), it

is not the only field that uses quantile regression. Estimation of rainfall curves for storm forecasts

([Cannon, 2018]), car telematics data for price drivers in a pay-as-you-go scheme ([Guillen et al., 2020])

and riverbed widths for predicting floods ([Zhang, 2016]) are some examples outside the financial topic

where the VaR has a powerful role as a statistic to predict future risk.

In recent years, part of the attention of the researchers has moved from the VaR to the Conditional Tail

Expectation (CTE), since the Basel III committee (see [Basel Committee on Banking Supervision, 2016])

motivates its use to evaluate risk on portfolios and reserves. While the VaR focuses on the expected

loss given a certain probability, the CTE prioritizes the expected value over its related VaR, es-

timating the expected cost of an unlikely distress. But moving from the VaR to the CTE adds

a complication: elicitability. The definition of elicitability can be reduced into the existence

of a scoring function that is strictly consistent ([Gneiting, 2011]). While the VaR is elicitable

([Koenker and Bassett Jr, 1978]), the CTE alone is not, and needs the VaR to be estimated jointly in or-

der to be elicitable ([Fissler and Ziegel, 2016]). [Fissler and Ziegel, 2016] also propose a consistent scoring

function for this pair, which is a generalization of the one proposed before by [Acerbi and Szekely, 2014]

(but without opening the discussion of elicitability). [Nolde and Ziegel, 2017] compare traditional

backtesting for high elicitable estimators against a specification of the [Fissler and Ziegel, 2016] scoring

formula, concluding a better performance and flexibility from the latter one. Afterwards, literature

studied and proposed some other specifications of this loss function and evaluate performance across

quantile levels and datasets (e.g. [Taylor, 2019]; [Patton et al., 2019]; [Ziegel et al., 2020]). A review of

specifications of the general loss function and comparison with state-of-the-art-methods for time-series

datasets can be found in [Taylor, 2020].

On a different series of events, [He, 1997] and [Yu et al., 2003] created another line of research:

the problem of crossing quantiles when calculating several ones jointly. Namely, for each obser-

vation yi and each pair of quantile levels q1, q2, q1 < q2, this literature seeks models to ensure

that VaRq1(yi) ≤ VaRq2(yi). Well known studies on this matter are [Takeuchi and Furuhashi, 2004,

Dette and Volgushev, 2008, Bondell et al., 2010, Chernozhukov et al., 2010, Liu and Wu, 2011]. More

recent advances propose non-crossing quantile estimation using neural networks, which improve
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computational time and performance in comparison with more classical methods (see [Cannon, 2018]

and [Moon et al., 2021]).

Directly related literature to CTE estimation and non-crossing quantile regression are the experiments

to estimate VaR and CTE without crossing between them. The scoring methods proposed beforehand

do not solve a crucial condition when put into practice: for every observation yi and a quantile q,

VaRq(yi) ≤ CTEq(yi). One successful attempt was made by [Acerbi and Szekely, 2014], in which they

add a constant inside the loss function that theoretically ensures this condition to happen, but in practice,

finding that constant becomes non-trivial. In other literature, a reparametrization of the CTE as a

positive excess of the VaR is commonly used (see [Guillen et al., 2021]), which ensures the desired output

but only one quantile level at a time. Even with its importance as a topic given the numerous available

techniques, there is a clear lack of studies about non-crossing VaR and their respective CTE when several

quantile levels come into play.

We present a neural network that estimates the VaR and the CTE together, that estimates several

quantile levels at the same time, and improves precision against several models, using a significantly lower

amount of computational time. Furthermore, our model holds the non-crossing conditions presented in

Property 1, that have not been studied in literature altogether.

We use an energy consumption dataset for 4,517 U.S. households from 2015 and evaluate quantile

levels 0.9, 0.925, 0.95, 0.975 and 0.99 to simulate an analysis of an energy firm that aims to predict

future consumption peaks with use of VaR and CTE corresponding to such quantile levels, that includes

a weighting variable which use evokes a model that can be extrapolated to the whole U.S.

This paper is organized as follows. Section 2 presents the definitions for Quantile Regression, Value

at Risk, Conditional Tail Expectation, our main contribution, the Non-Crossing Dual Neural Network,

and the model used to compare results. Section 3 provides a description of the dataset and presents

descriptives of the response and covariates used. Section 4 presents the main assessed results, with

comparisons between the estimation methods. Section 5 concludes our work.
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2 Methodology

2.1 Quantile Regression and Value at Risk

The Value at Risk at level q for a random variable Y represents the maximum amount of loss (or profit)

that a variable is expected to reach with probability q. It is joint together with a period so it is defined

for a certain interval, but for our case we will omit the temporality part. Its definition is the following:

VaRq(Y ) = inf{y ∈ R|FY (y) > q} = F−1
Y (1 − q) (1)

where FY is the distribution function of the random continuous variable Y .

We predict the VaR using Quantile Regression, an extension of linear regression whose objective

is to fit the quantile of the response variable using a set of covariates [Koenker and Bassett Jr, 1978,

Koenker, 2017]. Let Y be a random variable with a conditional distribution function FY |X that depends

on k covariates defined in vector X, X ′ = {X1, X2, . . . , Xk}, where the ′ denotes the transposed vector.

QY |X(q) = VaR(1−q)(Y |X) = β(q)0 + β(q)1X1 + β(q)2X2 + · · · + β(q)kXk = X ′β(q) , (2)

with parameter β(q) = arg min
β

E[ρq(X ′
iβ, Yi)], and ρ corresponds to the scoring function that

[Koenker and Bassett Jr, 1978] also proposed:

ρq(r1, y) = (q − 1{y−r1<0})(y − r1) (3)

where r1 is the quantile prediction, y the observed random variable, and 1{·} is the indicator function,

with a value equal to 1 when the subscript is true and 0 otherwise.

2.2 Conditional Tail Expectation and scoring

The Conditional Tail Expectation (CTE) for a level q is defined as:

CTEq(Y ) = E[Y |Y ≥ VaRq(Y )] . (4)

The CTE, known alternatively as Tail Conditional Expectation (TCE), Expected Shortfall (ES) or Tail

Value at Risk (TVaR), is a risk measure that is the expected loss conditioned on exceeding its related

VaR. Its main motivation comes from the [Basel Committee on Banking Supervision, 2016], in which

they present it as an alternative to VaR to evaluate future risks of a portfolio.

4



In literature, it is common to suppose only negative or positive values for the random variable Y ,

for example, [Fissler and Ziegel, 2016] define the scoring function for the couple (VaR, CTE) for the

negative part of the tail, aiming to low quantile levels, but as we are interested in the positive part, we

will use [Nolde and Ziegel, 2017] specification, which is the following:

Sq(r1, r2, y) = 1{y>r1}
(
−G1(r1) + G1(y) −G2(r2)(r1 − y)

)
+

(1 − q)
(
G1(r1) −G2(r2)(r2 − r1) + G2(r2)

) (5)

For our study, r1 represents the VaRq, and r2 represents the CTEq. G1, G2, G2 : R → R. To ensure

consistency on Equation (5) as a scoring function, [Fissler and Ziegel, 2016] prove that G1 must be an

increasing function, G2 must be increasing and concave, and G′
2 = G2. While those conditions are meet,

Sq serves as a consistent scoring function for the pair (VaRq, CTEq).

There are several options proposed in literature for choosing G1 and G2. [Dimitriadis and Bayer, 2019]

propose two options for G1 and five options for G2 and compare their performance, proving minimal

differences between some of them. [Taylor, 2020] summarizes previously proposed combinations more

in depth. We will use G1(x) = 0 and G2(x) = 1/x because of its simplicity, which renders the following

scoring function:

SAL
q (r1, r2, y) = 1{y>r1}

y − r1
r2

+ (1 − q)
(r1 − r2

r2
+ log(r2)

)
(6)

The scoring function represents the negative log-likelihood of an Asymmetric Laplace, therefore its

superscript AL ([Taylor, 2019]).

Although there is evidence in literature that results are non-similar between all different proposed

choices (see [Dimitriadis and Bayer, 2019]), we introduce the Murphy diagrams in section 4 for comparing

different models, which compares two-point estimations without relying on the scoring function choosing.

2.3 The Non-Crossing Dual Neural Network

Deep learning [LeCun et al., 2015] is a family of machine learning models based on neural networks. They

have been used successfully in a multitude of fields, including computer vision [Voulodimos et al., 2018]

and natural language processing [Vaswani et al., 2017]. In this paper we propose Non-Crossing Dual Neu-

ral Network, a deep learning model that can be used to predict jointly VaR and CTE for several quantile

levels while asserting certain non-crossing conditions. We decided to use neural networks for their flexibil-

ity when creating custom model structures, but other Machine Learning models could be tested for further
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exploration, like Random Forests ([Ho, 1995]) or Gradient Boosting ([Freund and Schapire, 1995]).

The main component of our architecture are fully connected (FC) layers. Each layer l is represented

as a non-linear function, defined as

Yl(xl) = σ(Wl · xl−1 + bl) (7)

where xl is a vector, Wl is a weights matrix, bl is the bias vector, and σ is a non-linear function. The

architecture of the neural network is composed by stacking several layers and uses as input the vector

of covariates. The model learning process can be roughly explained in two steps. 1) Forward step: The

input data passes through the layers where, at each layer, the Equation (7) is evaluated, i.e. the output

of the previous layer is the input for the current one. 2) Backward step: The scoring function is evaluated

on the neural network’s output and an update of the weights is performed by computing a conjugate

gradient variation (backpropagation).

In regards of our main problem, we define non-crossing conditions in Property 1.

Property 1. For each observation yi, i ∈ {1, . . . , N}, and a pair of consecutive quantile levels from a

succession {qj}Jj=0, J > 0, 0 < qj < 1 ∀i, j, the (VaR, CTE) predictions ensure non-crossing properties

if:

1. VaRqj (yi) ≤ VaRqj+1(yi)

2. VaRqj (yi) ≤ CTEqj (yi)

3. CTEqj (yi) ≤ CTEqj+1
(yi).

Our proposed network can calculate multiple VaR and CTE simultaneously, while maintaining a series

of non-crossing conditions (Property 1)1. To achieve this goal, we follow a model architecture that consists

of two almost identical feed-forward neural networks, one for calculating VaR and one for calculating

CTE. We aim to calculate VaR and CTE as exceedances of previous predictions, following the intuition

from Figure 1. In this figure we present the distribution of an observed variable, and predictions of VaR

and CTE for two quantile levels. We also present two possible scenarios that motivate the definition

of the model. We estimate the VaR for the first quantile level (VaRq0), and we calculate the second

VaR (VaRq1) and the first CTE (CTEq0) separately as exceedances of this first VaR. Two possibilities

1A repository with code and documentation will be available soon for download and testing.
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arise before calculating the next CTE (CTEq1), VaRq1 < CTEq0 or the contrary. Both possibilities are

represented in both panels of Figure 1. To fulfill non-crossing conditions, we calculate the second CTE

(CTEq1) as an excess of the maximum between its correspondent VaR (VaRq1) and the previous CTE

(CTEq0). Following this scheme, the non-crossing property will be fulfilled for a grid of quantile levels.

Figure 1: Theoretical representation of our model for motivation purposes.

We omit in the notation the random variable, but every calculation is done elementwise, so it will be

ensured to all observations. We name δqj and γqj the outputs of the neural networks, which represent the

exceedances from previous values after having applied a sigmoid activation function to assure positive

values. The architectural representation of the model is found in Figure 2.

Figure 2: Architectural diagrams of NCDNN. The last layer is composed of as many FC layers as quantiles

are calculated simultaneously. FC corresponds to a fully connected layer.

We use the outputs of the NCDNN to predict VaRqj and CTEqj , ∀j. We will prove that using our

definition, Property 1 is held.
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Theorem 1. Given {qj}Jj=0 an ordered set of quantile levels, J > 0, 0 < qj < 1 ∀i, j, and δqj , γqj > 0

the outputs of a neural network with structure similar to Figure 2. We define:

VaRqj+1
:= VaRqj + δqj+1

CTEqj+1
:= VaRqj+1

+ max(0,CTEqj −VaRqj+1
) + γqj+1

Then the predictions for VaR and CTE are non-crossing, i.e. they meet Property 1.

Proof.

1.) VaRqj (yi) ≤ VaRqj+1(yi)

VaRqj+1 = VaRqj + δqj+1
≥ VaRqj + 0

2.) VaRqj (yi) ≤ CTEqj (yi)

CTEqj+1
= VaRqj+1

+ max(0,CTEqj − VaRqj+1
) + γqj+1

≥ VaRqj+1
+ 0 + 0

3.) CTEqj (yi) ≤ CTEqj+1
(yi)

Case 1: VaRqj+1
> CTEqj

CTEqj+1
= VaRqj+1

+ 0 + γqj+1

Case 1 condition︷︸︸︷
> CTEqj + γqj+1

≥ CTEqj + 0

Case 2: VaRqj+1
< CTEqj

CTEqj+1 =����VaRqj+1 + CTEqj�����−VaRqj+1 + γqj+1 = CTEqj + γqj+1 ≥ CTEqj + 0

2.4 Monotone Composite Quantile Regression Neural Network and other

tested models

Our main objective is to find a model which can predict several quantiles and their correspondent CTE

together while ensuring non-crossing conditions of Property 1. We tested other models like linear and

generalized linear regression for VaR and CTE separately and simultaneously, predicting a linear quantile

regression and the average exceedances with a Machine Learning model, like Random Forest or Gradient

Boosting, and finally the Monotone Composite Quantile Regression Neural Network (MCQRNN). This

latter model is the one on which we will focus the discussion, as it is the only model we found that

satisfies all required non-crossing conditions (Property 1).
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We discarded models used in part of the literature based on time series like GARCH or CAViaR as

our database is cross-sectional and not temporal, although our model could be improved with recursive

layers to catch momentum trends, and we plan to add those in future research.

The MCQRNN, proposed by [Cannon, 2018], is an expansion of the Quantile Regression Neural

Networks initially proposed by [White, 1992] with several improvements, like the non-crossing quantile

estimation and optional monotonicity and sign constraints for the model. We use the MCQRNN to

predict an extensive grid of quantile levels of the right part of the tail, which correspond to the different

VaR. Afterwards, we estimate each CTE by averaging the greater or equal quantile predictions to their

correspondent VaR. As the model ensures non-crossing quantile estimation, the CTE estimated will

inherit this property and be also consecutive, fulfilling the non-crossing Property 1.

3 Data

We apply the proposed methodology to the Residential Energy Consumption Survey (RECS) [EIA, 2015],

which is an American poll that collects information related to energy consumption, expenditure and

characteristics of housing units occupied as a primary residence and the households that live in them.

More precisely, we use the 2015 recollection for this analysis, which constitutes a sample of 4,517 US

households, selected randomly based on an area-probability design. The dataset presents a weighting

factor, whose application to the loss in the training phase of a model, can extend its results to the total

population of the 118.2 million US households.

The variables used in the study are the following. DOLLAREL is the response variable, which

represents the total cost of the electricity of the household in 2015. The covariates used are: SWIMPOOL

is a dummy variable with value equal to one if there is pool in the property. SOLAR is a dummy factor

with value one if the household has on-site electricity generation from solar, and zero otherwise. The

TOTSQFT EN, TOTCSQFT and TOTHSQFT stand for the total, cooled and heated total square

footage. BEDROOMS indicate the number of bedrooms. TVCOLOR means the number of televisions

used in the household. NUMSMPHONE refers to the number of smart phones. NUMFLOORFAN

denote the number of floor, window or table fans used. Finally, NHSLDMEM represents the number of

household members.

In Figure 3 we show the distribution of the variables used in the analysis. We observe how the
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Figure 3: Distributions of the response (DOLLAREL) and covariates of the RECS dataset used in the

study.

response variable (DOLLAREL) is strictly positive, with a heavy right tail. The dummy variables

SWIMPOOL and SOLAR are zero almost everywhere, meaning that not a big number of households have

swimming pools (10%) and solar electricity generation (2%). The square feet footage (TOTSQFT EN)

and the heated and cooled parts have the same distribution as the response, positive and high tail

to the right. For the cooled and heated indicators, the variables are not strictly positive, as 0-valued

observations appear represented. For the remaining covariates, we want to remark their median, which

can provide an “average” representation of the U.S. population: households with 3 bedrooms, 2 television,

2 smartphones, 0 fans and 2 household members.

4 Results

We present the results obtained from our proposed model, the Non-Crossing Dual Neural Network

(NCDNN), and compare it against the Monotone Composite Quantile Regression Neural Network (MC-

QRNN) for quantile levels 0.9, 0.925, 0.95, 0.975 and 0.99.

We took some decisions for the technical implementation: We implemented an early stopping criteria

based on the gradient evaluation of the second part of the structure, the CTE calculation, as we are not
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using a train-test environment. Secondly, we weighted the loss evaluation of our model, making the use

of a weighting factor available for our model too. We also trained 50 different seeds for the NCDNN

to show consistency across random initial values (more detail in Section 4.3). The choosing of the best

model was done by averaging normalized losses across quantile levels and taking the best performing

one.

4.1 Murphy diagrams for model comparison

Selecting a fair scoring function is a critical decision for model comparison, as different choices will affect

the ranking of different models ([Patton, 2020]). For solving this issue, [Ehm et al., 2016] presented

the Murphy diagrams to compare model predictions without relying into the scoring function. The

Murphy diagrams represent an evaluation of each point estimation across the space of consistent scoring

loss functions, making possible a comparison between models that do not rely on the scoring structure

chosen. The parameter θ present in the x axis of those plots represent a threshold of the comparison of

both predictions and the response variable. For a more detailed explanation, see [Ehm et al., 2016].
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Figure 4: Murphy diagrams for estimated CTE associated with quantile levels 0.9, 0.925, 0.95, 0.975

and 0.99 to compare both models MCQRNN and NCDNN. Lower values of the distribution mean better

approximation.
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Figure 4 presents the Murphy diagrams for the calculated quantile levels. A lower value states a

better prediction. We observe that for all quantile levels, the NCDNN appears below the MCQRNN,

which indicates that, consistently, our model predicts more accurately the CTE of the observed data.

4.2 Comparison of losses

Despite the usefulness of the Murphy diagrams for model choosing, we cannot quantify the amount of

improvement on performance of using the NCDNN against the MCQRNN, as the Murphy diagram is

only used as a graphical tool for determine a better model. For solving this issue, we evaluate the loss

functions (3) and (6) over both model predictions and aggregate adding their loss. It is important to

remember that, for both scoring functions, a lower value represents a better approximation.

Figure 5: Percentage difference of overall loss calculated across the whole dataset between both models

MCQRNN and NCDNN, for predicted VaR and CTE and for quantile levels 0.9, 0.925, 0.95, 0.975 and

0.99. Negative values mean NCDNN reduces loss against MCQRNN.

Figure 5 shows the percentage difference between models of the aggregated loss over the whole dataset

for each calculated quantile level. More precisely, the values plotted are:

{ ∑
i ρq(VaRNCDNN

q , yi)∑
i ρq(VaRMCQRNN

q , yi)
− 1

}
q

,

{ ∑
i S

AL
q (VaRNCDNN

q ,CTENCDNN
q , yi)∑

i S
AL
q (VaRMCQRNN

q ,CTEMCQRNN
q , yi)

− 1

}
q

We plot the difference on percentage values on Figure 5. Negative results represent that NCDNN has

a lower loss value across the dataset in comparison with the MCQRNN, meaning a better approximation.
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It is shown that NCDNN improves between a 2.5% and a 10% the loss for the VaR and around a 2% the

CTE calculated in comparison with the MCQRNN. Is also of note that, for the VaR, the improvement

of using the NCDNN against the MCQRNN is reduced when reaching higher quantile levels, starting

from an improvement of 10% for quantile level 0.9 and reaching a point of stability improvement on the

two latter quantile levels of around a 2.5%. On the opposite, the CTE improvement of the NCDNN gets

greater for bigger quantile levels, reaching from a 1% of improvement on quantile level 0.9 to a 3% of

improvement on quantile level 0.99.

It is also important to remark the computational time spent for the calculation of all quantile levels.

For the MCQRNN, calculating the grid of quantile levels 0.5, 0.6 ,0.7, 0.8, 0.9, 0.905, 0.91, . . . , 0.985,

0.99 (23 quantile levels) lasts around 1 hour and 3 minutes to run, with the standard parameters that

[Cannon, 2018] use relying on previous literature, most specifically [Xu et al., 2017], which propose a

structure of two hidden layers with 4 nodes each one for Composite Quantile Regression with neural

networks. Our proposed model improves computational time to the point of about two and a half

minutes per model, for calculating the grid of quantile levels 0.5, 0.6 ,0.7, 0.8, 0.9, 0.925, 0.95, 0.975

and 0.99 (9 quantile levels). The difference on grids is not relevant as we tested that the convergence

time does not depend on the number of quantile levels for grids with five or more quantile levels. The

CTE calculation for MCQRNN depends on the VaR predictions. To compare with MCQRNN in ideal

conditions, we duplicated the number of estimations for quantile levels over 0.9, which should result in

better CTE predictions coming from the MCQRNN.

4.3 Robustness across quantiles: Distribution of exceedances

As a test of calibration of the models, we calculated the number of observed values for the VaR that

surpassed its prediction. Beforehand, we expect (1− q) ·100% observations to surpass its predicted VaR,

in other words, predicting a quantile level q implies that (1−q) ·100% of the predictions will be expected

to be below its observed value. We show the results in Figure 6.

In Figure 6 we observe that, while MCQRNN % of exceedances are below the expected value for quan-

tile levels 0.9, 0.925 and 0.95, NCDNN % of exceedances are above the expected number of exceedances

for all calculated quantiles, but no model seems to be closer to the expected value of exceedances. For lat-

ter quantile levels, MCQRNN starts to increment the proportion of exceedances to the point of crossing
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Figure 6: Percentage of exceedances (% of observed values that surpassed its predicted VaR) for models

MCQRNN and NCDNN and for quantile levels 0.9, 0.925, 0.95, 0.975 and 0.99. In dotted line appears

the expected value 1 − q.

the NCDNN on quantile level 0.99. While both models appear rational on their quantile calculations, we

want to point out that NCDNN shows greater stability than the MCQRNN across quantile levels, as the

number of exceedances maintain invariable in comparison of the expected value. We added to the figure

confidence intervals indicating the 0.25 and 0.75 quantile levels of the exceedances obtained across the

50 models trained for the NCDNN. While for quantile levels 0.9 and 0.925, the best performing NCDNN

model is inside the confidence interval, for the following quantile levels it is above. We can extract two

bullets from this result. 1) A random training of the NCDNN will give a consistent result when talking

about exceedances of the VaR, as the intervals are near the expected value and get smaller as long as

we predict greater quantile levels, and 2) As the NCDNN is optimizing both VaR and CTE, selecting

the best performing model can result into a variation from the expected value of the exceedances of the

VaR in order to improve the performance of the CTE, as we show in Figure 5, in which the CTE loss

improvement against the MCQRNN gets bigger for greater quantile levels.
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5 Conclusions

We define non-crossing properties involving several quantile levels for Value at Risk (VaR) and Condi-

tional Tail Expectation (CTE) that have not been approached in literature. Also, to calculate them, we

tried several models, linear and generalized linear VaR and CTE separately and jointly and exceedances

with Machine Learning Models, like Random Forest and Gradient Boosting. But, the only model that

asserts the abovementioned non-crossing conditions is the Monotone Composite Quantile Regression

Neural Network (MCQRNN). As the MCQRNN does not directly model the CTE, we propose the Non-

Crossing Dual Neural Network (NCDNN), a neural network model that is capable of estimating VaR

and CTE for several quantile levels while asserting the non-crossing conditions. We used the MCQRNN

and the NCDNN models for predicting VaR and CTE for quantile levels 0.9, 0.925, 0.95, 0.975 and 0.99

for a dataset of energy consumption of U.S. households from 2015.

NCDNN has some advantages when comparing it with the MCQRNN approach to VaR and CTE

specification, like the ability to pick different loss functions for the CTE specification, a very reduced

computational time, and an improvement in precision for large quantile levels. It should be remarked

that MCQRNN was not initially created for calculating CTE and, to the best of our knowledge, there

are no models that fulfill all non-crossing conditions and have a joint prediction of VaR and CTE.

We believe that the NCDNN can be useful for different disciplines, like forecasting extreme values

of a firm’s stock return, predicting a driver’s future behavior to create a pay-as-you-go scheme with

telematics data, or calculating possible floods on nearby cities by calculating riverbed widths.
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