Skip to main content

Fuzzy Logic for the Improvement of Thermal Comfort and Energy Efficiency in Non-residential Buildings

  • Conference paper
  • First Online:
  • 345 Accesses

Part of the book series: Lecture Notes in Management and Industrial Engineering ((LNMIE))

Abstract

The collective concern for global warming is changing the way we behave and we act in our daily life in order to reduce energy consumption and our CO2 footprint. However, since healthier and more comfortable environments are needed, the best solution is a well-balanced relationship between these two issues. The present article exposes a methodology for a multiobjective analysis which takes into account the consumption and energy efficiency as well as the thermal comfort, based on a field study in non-residential buildings and the application of fuzzy logic. As a result, an improvement related to energy saving and lower costs for buildings’ owners without detrimental to occupants’ thermal comfort and productivity is expected.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Aparicio-Ruiz P, Fernández J, Onieva L (2010) Sistema experto basado en la lógica difusa para la detección de configuraciones climáticas asociadas al confort. In: 4th international conference on industrial engineering and industrial management. Donostia-San Sebastián, pp. 545–554

    Google Scholar 

  2. Barbadilla-Martín E, Salmerón Lissén J, Guadix Martín J, Aparicio-Ruiz P, Brotas L (2017) Field study on adaptive thermal comfort in mixed mode office buildings in southwestern area of Spain. Build Environ 123:163–175. https://doi.org/10.1016/j.buildenv.2017.06.042. ISSN 03601323

  3. Castilla M, Álvarez J, Berenguel M, Pérez M, Rodríguez F, Guzmán J (2010) Técnicas de Control del Confort en Edificios. Revista Iberoamericana de Automática e Informática Industrial RIAI 7(3):5–24. ISSN 16977912. https://doi.org/10.1016/s1697-7912(10)70038-8

  4. De Dear R, Akimoto T, Arens EA, Brager G, Candido C, Cheong K, Li B, Nishihara N, Sekhar S, Tanabe S, Toftum J, Zhang H, Zhu Y (2013) Progress in thermal comfort research over the last twenty years. Indoor Air 23(6):442–461. ISSN 09056947. https://doi.org/10.1111/ina.12046

  5. De Dear RJ, Brager GS, Reardon J, Nicol F (1998) Developing an adaptive model of thermal comfort and preference/discussion. ASHRAE Trans 104:145

    Google Scholar 

  6. Directiva 2012/27/UE del parlamento Europeo y del Consejo (2012) Directiva 2012/27/UE del Parlamento Europeo y del Consejo, pp 1–56

    Google Scholar 

  7. Djongyang N, Tchinda R, Njomo D (2010) Thermal comfort: a review paper. Renew Sustain Energy Rev 14:2626–2640. ISSN 13640321. https://doi.org/10.1016/j.rser.2010.07.040

  8. Dounis A, Caraiscos C (2007) Intelligent coordinator of fuzzy controller agents for indoor environment control in buildings using 3-D fuzzy comfort set. In: IEEE international fuzzy systems conferences, London

    Google Scholar 

  9. Fanger PO (1972) Thermal comfort analysis and applications in environment engineering

    Google Scholar 

  10. Hagras H, Callaghan V, Colley M, Clarke G (2003) A hierarchical fuzzy–genetic multi-agent architecture for intelligent buildings online learning, adaptation and control. Inf Sci 150(1–2):33–57

    Article  Google Scholar 

  11. Kolokotsa D, Stavrakakis G, Kalaitzakis K, Agoris D (2002) Genetic algorithms optimized fuzzy controller for the indoor environmental management in buildings implemented using PLC and local operating networks. Eng Appl Artif Intell 15(5):417–428. https://doi.org/10.1016/s0952-1976(02)00090-8. ISSN 09521976

  12. Mccartney KJ, Nicol FJ (2002) Developing an adaptive control algorithm for Europe. Energy Build 34(6):623–635. https://doi.org/10.1016/s0378-7788(02)00013-0. ISSN 03787788

  13. Rutishauser U, Joller J, Douglas R (2005) Control and learning of ambience by an intelligent building. IEEE Trans Syst Man Cybern A Syst Hum 35(1):121–132. https://doi.org/10.1109/tsmca.2004.838459. ISSN 1083-4427

  14. Rupp RF, Vásquez NG, Lamberts R (2015) A review of human thermal comfort in the built environment. Energy Build 105:178–205

    Article  Google Scholar 

  15. Schellen L, Loomans M, de Wit M, Van Marken Lichtenbelt W (2013) The influence of different cooling techniques and gender on thermal perception. Build Res Inform 41(3):330–341

    Article  Google Scholar 

  16. Schweiker M, Brasche S, Bischof W, Hawighorst M, Voss K, Wagner A (2012) Development and validation of a methodology to challenge the adaptive comfort model. Build Environ 49:336–347

    Article  Google Scholar 

  17. Soyguder S, Alli H (2010) Fuzzy adaptive control for the actuators position control and modeling of an expert system. Expert Syst Appl 37(3):2072–2080

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the financial support of project DACAR (Ref. BIA2016-77431-C2-1-R) funded by the Programa Estatal de Investigación, Desarrollo e Innovación Orientada a los Retos de la Sociedad (MINECO) and the project ME4CA (Ref. P11-TEP-7247) funded by the Consejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Barbadilla-Martín .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Barbadilla-Martín, E., Guadix, J., Cortés, P., Rodríguez-Palero, M. (2020). Fuzzy Logic for the Improvement of Thermal Comfort and Energy Efficiency in Non-residential Buildings. In: de Castro, R., Giménez, G. (eds) Advances in Engineering Networks. ICIEOM 2018. Lecture Notes in Management and Industrial Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-44530-0_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-44530-0_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-44529-4

  • Online ISBN: 978-3-030-44530-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics