Análisis de ciclo de vida en bloques de hormigón: comparación del impacto producido entre bloques tradicionales y con subproductos

Autores/as

DOI:

https://doi.org/10.3989/ic.88125

Palabras clave:

análisis de ciclo de vida, bloques de hormigón, subproductos, inventario de ciclo de vida, de la cuna al sitio

Resumen


Reutilizar subproductos para el desarrollo de bloques de hormigón que sean más sostenibles y con mejores propiedades térmicas, para el sector de la edificación es una necesidad y buena alternativa a desarrollar en el sector construcción. Se realizó un análisis del ciclo de vida (ACV) a los bloques con y sin subproductos, a fin de cuantificar los beneficios medioambientales que conllevaría la incorporación de estos subproductos en los bloques. El ACV se realizó de acuerdo con lo establecido en la norma EN-ISO 15804, que establece las reglas de cálculo para el análisis de productos de construcción. Este análisis se ha realizado mediante la herramienta de software “Eco-it”, con un alcance de la cuna a la puerta. Con base a los resultados se puede concluir que, la sustitución parcial del árido fino por las virutas y del cemento por los lodos de cal en la mezcla, es una vía alternativa para obtener bloques más respetuosos con el medio ambiente y a su vez con mejores propiedades térmicas.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

(1) Cetin, M., and Sevik, H. (2016). Change of air quality in Kastamonu city in terms of particulate matter and CO2 amount. Oxidation Communications, 39(4), 3394-3401.

(2) Chalmers, P. (2014). Climate Change: Implications for Buildings. Key Findings from the Intergovernmental Panel on Climate Change Fifth Assessment Report. World Business Council for Sustainable Development, University of Cambridge's Judge Business School, Institute for Sustainability Leadership.

(3) European Environment Agency (2019). Trends and projections in Europe 2019: Tracking progress towards Europe's climate and energy targets. Publications Office of the European Union, Ed. N.15. Luxembourg.

(4) Eurostat EEA (2017). Greenhouse gas emission statistics - emission inventories.

(5) Miller, S.A. (2018). Supplementary cementitious materials to mitigate greenhouse gas emissions from concrete: can there be too much of a good thing?. Journal of Cleaner Production, 178, 587-598. https://doi.org/10.1016/j.jclepro.2018.01.008

(6) Peraita, C. (2020). Así evolucionó la producción de hormigón preparado en 2019. Cemento Hormigón, 999, 13.

(7) Miller, S.A., John, V.M., Pacca, S.A., and Horvath, A. (2018). Carbon dioxide reduction potential in the global cement industry by 2050. Cement and Concrete Research, 114, 115-124. https://doi.org/10.1016/j.cemconres.2017.08.026

(8) Cabrera, S., González, A., and Rotondaro, R. (2020). Resistencia a compresión en bloques de tierra comprimida. Comparación entre diferentes métodos de ensayo. Informes de la Construcción, 72(560), e360. https://doi.org/10.3989/ic.70462

(9) Pešta, J., Pavlů, T., Fořtová, K., and Kočí, V. (2020). Sustainable Masonry Made from Recycled Aggregates: LCA Case Study. Sustainability, 12(4), 1581. https://doi.org/10.3390/su12041581

(10) Martín-Consuegra, F., Hernández-Aja, A., Oteiza, I., and Alonso, C. (2019). Distribución de la pobreza energética en la ciudad de Madrid (España). EURE (Santiago), 45 (135), 133-152. https://doi.org/10.4067/S0250-71612019000200133

(11) Hendry, E.A.W. (2001). Masonry walls: materials and construction. Construction and Building Materials, 15(8), 323-330. https://doi.org/10.1016/S0950-0618(01)00019-8

(12) Como, M. (2017). Statics of historic masonry constructions. Springer, Cham. https://doi.org/10.1007/978-3-319-54738-1

(13) Madrid, M., Orbe, A., Carré, H., and García, Y. (2018). Thermal performance of sawdust and lime-mud concrete masonry units. Construction and Building Materials, 169, 113-123. https://doi.org/10.1016/j.conbuildmat.2018.02.193

(14) Madrid, M., Orbe, A., Rojí, E., and Cuadrado, J. (2017). The effects of by-products incorporated in low-strength concrete for concrete masonry units. Construction and Building Materials, 153, 117-128. https://doi.org/10.1016/j.conbuildmat.2017.07.086

(15) Marceau, M., Nisbet, M.A., and Van Geem, M.G. (2006). Life cycle inventory of portland cement manufacture.

(16) Herranz García, S., and García Navarro, J. (2017). Análisis de ciclo de vida de los paneles de lana mineral de vidrio para la construcción de conductos de climatización. Verificación externa. Informes de la Construcción, 69(548), e232. https://doi.org/10.3989/id.55602

(17) Ros García, J.M., and Sanglier Contreras, G. (2017). Análisis del ciclo de vida de una unidad prototipo de vivienda de emergencia. La búsqueda del impacto nulo. Informes de la Construcción, 69(547), e211. https://doi.org/10.3989/ic.16.035

(18) Vidal, R., Sánchez-Pantoja, N., and Martínez, G. (2019). Análisis del ciclo de vida de un edificio con estructura de madera contralaminada en Granada-España. Informes de la Construcción, 71(554), e289. https://doi.org/10.3989/ic.60982

(19) Calama-González, C.M., and Cañas Palop, C. (2019). Evaluación comparativa del ciclo de vida de cuatro soluciones constructivas diferentes para la rehabilitación de pisos de viguetas de madera con valor patrimonial. Informes de la Construcción, 71(556), e316. https://doi.org/10.3989/ic.66752

(20) Xia, B., Ding, T., and Xiao, J. (2020). Life cycle assessment of concrete structures with reuse and recycling strategies: A novel framework and case study. Waste Management, 105: 268-278. https://doi.org/10.1016/j.wasman.2020.02.015 PMid:32088573

(21) Zhang, Y., Luo, W., Wang, J., Wang, Y., Xu, Y., and Xiao, J. (2019). A review of life cycle assessment of recycled aggregate concrete. Construction and Building Materials, 209, 115-125. https://doi.org/10.1016/j.conbuildmat.2019.03.078

(22) Kurda, R., Silvestre, J.D., and de Brito, J. (2018). Life cycle assessment of concrete made with high volume of recycled concrete aggregates and fly ash. Resources, Conservation and Recycling, 139, 407-417. https://doi.org/10.1016/j.resconrec.2018.07.004

(23) Salgado, R.A., Apul, D., and Guner, S. (2020). Life cycle assessment of seismic retrofit alternatives for reinforced concrete frame buildings. Journal of Building Engineering, 28, 101064. https://doi.org/10.1016/j.jobe.2019.101064

(24) Visintin, P., Xie, T., and Bennett, B. (2020). A large-scale life-cycle assessment of recycled aggregate concrete: The influence of functional unit, emissions allocation and carbon dioxide uptake. Journal of Cleaner Production, 248, 119243. https://doi.org/10.1016/j.jclepro.2019.119243

(25) Huang, H., Wang, T., Kolosz, B., Andresen, J., Garcia, S., Fang, M., and Maroto-Valer, M.M. (2019). Life-cycle assessment of emerging CO2 mineral carbonation-cured concrete blocks: Comparative analysis of CO2 reduction potential and optimization of environmental impacts. Journal of Cleaner Production, 241, 118359. https://doi.org/10.1016/j.jclepro.2019.118359

(26) ECO-it 1.4. (2001) Guía de utilización de ECO-it 1.4.

(27) Goedkoop, M., Heijungs, R., Huijbregts, M., De Schryver, A., Struijs, J., and Van Zelm, R. (2009). A life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level. The Hague, Ministry of VROM. ReCiPe.

(28) Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M., and Troxler, T.G. (2014). 2013 supplement to the 2006 IPCC guidelines for national greenhouse gas inventories: Wetlands. IPCC, Switzerland.

(29) Bhatty, J.I., Miller, F.M., Kosmatka, S.H., and Bohan, R. (2004). Innovations in Portland cement manufacturing. Portland Cement Association Washington eDC DC.

(30) Huntzinger, D.N., and Eatmon, T.D. (2009). A life-cycle assessment of Portland cement manufacturing: comparing the traditional process with alternative technologies. Journal of Cleaner Production, 17(7), 668-675. https://doi.org/10.1016/j.jclepro.2008.04.007

(31) Van den Heede, P., and De Belie, N. (2012). Environmental impact and life cycle assessment (LCA) of traditional and 'green' concretes: Literature review and theoretical calculations. Cement and Concrete Composites, 34(4), 431-442. https://doi.org/10.1016/j.cemconcomp.2012.01.004

(32) Petek Gursel, A., Masanet, E., Horvath, A., and Stadel, A. (2014). Life-cycle inventory analysis of concrete production: A critical review. Cement and Concrete Composites, 51, 38-48. https://doi.org/10.1016/j.cemconcomp.2014.03.005

(33) Cardim de Carvalho Filho, A. (2001). Análisis del ciclo de vida de productos derivados del cemento-Aportaciones al análisis de los inventarios del ciclo de vida del cemento. Universitat Politècnica de Catalunya. http://hdl.handle.net/2117/93218

(34) Prusty, J.K., Patro, S.K., and Basarkar, S.S. (2016). Concrete using agro-waste as fine aggregate for sustainable built environment - A review. International Journal of Sustainable Built Environment, 5(2), 312-333. https://doi.org/10.1016/j.ijsbe.2016.06.003

(35) Adebakin, I.H., Adeyemi, A.A., Adu, J.T., Ajayi, F.A., Lawal, A.A., and Ogunrinola, O.B. (2012). Uses of sawdust as admixture in production of low-cost and lightweight hollow sandcrete blocks. American journal of scientific and industrial research, 3(6), 458-463. https://doi.org/10.5251/ajsir.2012.3.6.458.463

(36) United States Environmental Protection Agency (EPA). (1994). Emission factor documentation for AP-42, section 11.6: Portland cement manufacturing, final report, EPA Contract 68-D2-0159, MRI Project No. 4601-01.

(37) Kenny, M., and Oates, T. (2007). Lime and limestone. Kirk-Othmer Encyclopedia of Chemical Technology. https://doi.org/10.1002/14356007.a15_317.pub2

(38) Blankendaal, T., Schuur, P., and Voordijk, H. (2014). Reducing the environmental impact of concrete and asphalt: a scenario approach. Journal of Cleaner Production, 66, 27-36. https://doi.org/10.1016/j.jclepro.2013.10.012

(39) Habert, G., Arribe, D., Dehove, T., Espinasse, L., and Le Roy, R. (2012). Reducing environmental impact by increasing the strength of concrete: quantification of the improvement to concrete bridges. Journal of Cleaner Production, 35, 250-262. https://doi.org/10.1016/j.jclepro.2012.05.028

(40) Molle, F., Wester, P., and Hirsch, P. (2010). River basin closure: Processes, implications and responses. Agricultural Water Management, 97(4), 569-577. https://doi.org/10.1016/j.agwat.2009.01.004

(41) Smakhtin, V. (2008). Basin closure and environmental flow requirements. International Journal of Water Resources Development, 24(2), 227-233. https://doi.org/10.1080/07900620701723729

(42) INTRON, onmental C. (2006). Environmental declaration Superplasticizing admixtures.

(43) El Reguil S.L. (2008). Impacto ambiental de una planta de hormigón.

(44) Babor, D., Plian, D., and Judele, L. (2009). Environmental impact of concrete. Buletinul Institutului Politehnic din lasi. Sectia Constructii, Arhitectura, 55(4), 27.

(45) Turk, J., Cotič, Z., Mladenovič, A., and Šajna, A. (2015). Environmental evaluation of green concretes versus conventional concrete by means of LCA. Waste Management, 45, 194-205. https://doi.org/10.1016/j.wasman.2015.06.035 PMid:26143535

(46) Hossain, M.U., Poon, C.S., Lo, I.M.C., and Cheng, J.C.P. (2016). Evaluation of environmental friendliness of concrete paving eco-blocks using LCA approach. The International Journal of Life Cycle Assessment, 21(1), 70-84. https://doi.org/10.1007/s11367-015-0988-2

(47) Blanco, J. M., García Frómeta, Y., Madrid, M., and Cuadrado, J. (2021). Thermal performance assessment of walls made of three types of sustainable concrete blocks by means of FEM and validated through an extensive measurement campaign. Sustainability, 13(1). https://doi.org/10.3390/su13010386 PMCid:PMC8156085

Publicado

2022-05-19

Cómo citar

Madrid, M. ., García Frómeta, Y. ., Cuadrado, J. ., & Blanco, J. M. . (2022). Análisis de ciclo de vida en bloques de hormigón: comparación del impacto producido entre bloques tradicionales y con subproductos. Informes De La Construcción, 74(566), e438. https://doi.org/10.3989/ic.88125

Número

Sección

Artículos