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Topological Data Analysis and its usefulness for 
precision medicine studies 
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Bertrand Michel4 and Frédéric Chazal5 

Abstract 

Precision medicine allows the extraction of information from complex datasets to facil-
itate clinical decision-making at the individual level. Topological Data Analysis (TDA) 
offers promising tools that complement current analytical methods in precision medicine 
studies. We introduce the fundamental concepts of the TDA corpus (the simplicial com-
plex, the Mapper graph, the persistence diagram and persistence landscape). We show 
how these can be used to enhance the prediction of clinical outcomes and to identify 
novel subpopulations of interest, particularly applied to understand remission of depres-
sion in data from the GENDEP clinical trial. 

MSC: Statistical aspects of big data and data science (62R07) and Topological data analysis 
(62R40) 

Keywords: Precision medicine, data shape, topology, topological data analysis, persistence dia-
gram, Mapper, persistence landscapes, machine learning. 

1. Precision medicine: what are the current needs? 

The feld of precision medicine is focused on the development of sophisticated algo-
rithms that, by exploiting patient data – on clinical measurements, genomics, proteomics, 
medical imaging, etc. – can guide clinicians to make more accurate diagnoses, prognoses 
and treatment choices tailored to individual patients. The datasets used to develop these 
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models present multiple complexities. They routinely include information for thousands 
of subjects, and the number of included variables can easily exceed millions (i.e., these 
datasets are high-dimensional), variables tend to be highly correlated, and may interact in 
complex ways that may not be immediately obvious. These factors combined often limit 
the utility of classical statistical procedures in the analysis of these data. In recent years, 
machine learning (ML) (Mitchell, 1997, 2006), a set of tools at the interface between 
computer sciences and statistics, has been used in precision medicine to overcome some 
of these limitations. The use of ML has led to the development of interesting predictive 
models built from complex data sets (Ekins et al., 2019; Ho et al., 2019; Rajkomar, 
Dean and Kohane, 2019; Iniesta, Stahl and McGuffn, 2017). However, the success of 
ML for these datasets has varied across medical areas – performing moderately well 
in some diseases but very poorly in others (Adamson and Welch, 2019; Iniesta et al., 
2016, 2017, 2018), leaving considerable room for improvement. Recently, several works 
including studies on COVID-19 research, have emphasised the increasing demand of 
novel methods that can better deal with such complexity (Khan et al., 2019, 2021). 

One of the key challenges in building models that can accurately predict outcomes 
for new patients is correctly identifying sources of heterogeneity among patients (i.e., 
sources that could contribute to observed differences in patient outcomes) and including 
these in the model in the form of predictor variables. When tailoring the choice of med-
ical treatment to patients’ pre-treatment characteristics, methods to identify subgroups 
in terms of treatment effectiveness – for example, where patients respond similarly to 
treatment within the group, and differently between groups – constitute one of the most 
prominent challenges currently for medical statisticians (Sies, Demyttenaere and Meche-
len, 2019). 

In addition to developing predictive models, methods for visualising data in high 
dimensions can facilitate decision-making for diagnosis and treatments targeting. Most 
classical tools, such as scatter plots or heat maps, are often restricted to two dimen-
sions (Qu et al., 2019). Although new technologies have been used to create visualisa-
tion tools applicable to complex data, felds like genomics research are rapidly evolving 
and continuous advancement in visualisation techniques is needed (Nusrat, Harbig and 
Gehlenborg, 2019). 

In recent years a growing literature has highlighted the benefts of applying topologi-
cal techniques in precision medicine studies. For example, to identify genetic infuences 
on patient survival in breast cancer (Nicolau, Levine and Carlsson, 2011), to improve 
treatment targeting for patients with spinal cord or traumatic brain injury by uncover-
ing previously hidden data relationships in 20-year old data (Nielson et al., 2017), or to 
identify disease trajectories in type 2 diabetes data (Dagliati et al., 2020). 

This paper aims to provide a frst introduction to some of the basic topological con-
cepts that form the feld of Topological Data Analysis (TDA): the simplicial complex, 
the Mapper graph, the persistence diagram and the persistence landscape. We show how 
these techniques offer promising tools to reveal data structures not readily accessible us-
ing other statistical techniques, which may subsequently help machine learning models 
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in predicting clinical outcomes. We show an application of these methods to investigate 
remission of depression in data from the GENDEP clinical trial. We also summarise the 
software implementations of these techniques. 

2. Introducing Topological Data Analysis 

TDA is a promising feld that has emerged from different works in applied algebraic 
topology (Edelsbrunner, Letscher and Zomorodian, 2000; Zomorodian and Carlsson, 
2005; Ghrist, 2018). It aims to provide well-founded mathematical, statistical, and al-
gorithmic methods to infer, analyse, visualise and exploit the complex topological and 
geometric structure of data (Chazal, 2016). The feld is based on topology, the branch 
of mathematics born in response to Riemann’s request in 1867 for “a good foundation 
of the concept of space” (Riemann and Clifford, 1998). In contrast with the more fa-
miliar feld of geometry – the study of the shape of the space, that is, what the space 
looks like – topology can be broadly defned as the study of only those shape properties 
that are unaffected by continuous transformations such as stretching, shrinking, bending 
and twisting (examples of non-continuous transformations are cutting or gluing) (Kos-
niowski, 1980). For example, if a torus (a surface like a ring doughnut, as shown in 
Figure 1) is stretched horizontally, it does not change the fact that there is only one 
‘hole’ on the inside; thus, this property is preserved despite transformation. Moreover, 
topological techniques assume coordinate invariance, the property that topological fea-
tures are defned not in terms of their position on a coordinate system, but rather, in terms 
of their shape. Therefore, TDA can identify a torus regardless of whether the torus is 
compressed or stretched; the torus and its transformations are said to be topologically 
equivalent. Topological invariants like the number of holes and cavities are properties 
of a topological space that are shared by the space and all its topological equivalents 
(Henle, 1994). Properties such as these characterise the invariant shape of a space. 

If we now move to the world of data, as Prof Gunnar Carlson reminds in his land-
mark paper (Carlsson, 2009) data have shape and this shape has a meaning. This idea is 
not new: linear regression, for example, is a well-established statistical technique based 
on the idea that the shape of data is linear – a line in two dimensions and a hyperplane in 
higher dimensions. Understanding the linear shape is key to understanding the relation-
ship between dependent and independent variables. However, data may resemble many 

b
a

Figure 1. The torus: has one connected component; two loops, since loops a and b are ‘distinct’ 
i.e. one cannot be transformed to the other along the torus’ surface; and one void, since there is 
one void in the centre of the doughnut. 
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Figure 2. Example of a fare, a single connected component consisting of three distinct groups 
of data 

other shapes which are harder to understand. Imagine, for example, data points that 
split into three distinct lines at a single point, forming a fare, i.e. a Y shape (Figure 2). 
Besides the fare, data may take on more complex shapes and unexpected behaviours, es-
pecially as the number of dimensions increases (e.g., the trefoil knot is knotted in three 
dimensions, but falls apart and becomes a trivial loop in four dimensions; see Figure 3). 

Figure 3. A trefoil knot 
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TDA provides techniques to describe these shapes by listing their topological in-
variants (such as holes or cavities), and to investigate the meaning of these topological 
features in terms of the specifc data problem or clinical context. 

2.1. Using TDA to help understand data structure 

The question to answer is how we can ‘build a bridge’ from the collected patient data to 
a space in which topological invariants can be computed. This can be achieved in three 
steps. 

Consider a dataset with m rows and n columns, where m is the number of obser-
vations in our sample (the number of patients, for example) and n is the number of 
measures collected for each patient. 

1. Firstly, we need to defne a measure to assess the proximity between any two 
data points – that is, to be able to measure how similar two patients are given 
the information we have for them. Interestingly, our data do not necessarily need 
to lie in the Euclidean space. As long as a distance can be computed between 
data points, we will be able to apply TDA tools. For ease of understanding, let 
us consider our data is made of numerical variables and let us represent them in 
a n-dimensional point cloud living in Rd , such that each patient becomes a point 
in the space, with each variable represented on a different coordinate axis. For 
the straightforward example of only two variables, values are drawn on the X and 
Y axes, but this can be extended to any number of dimensions, for three, four or 
more variables. In this way, we convert the patient data into a point cloud. For 
this particular case, we would assume that the point cloud is a fnite sample drawn 
from an existing topological space. In case of a circle (see Figure 4a), we would 
assume that our data are a fnite sample drawn from a 3D representation of a circle. 
In the Euclidean space Rd the natural choice of distance to assess similarity would 
be the Euclidean distance. There are also other distances that can be defned on 
numeric data as for example the Variance Normalised Euclidean or the Minkowski 
distance. When data are categorical rather than numeric, we can also defne many 
different distances as for example the Gower distance. 

2. Second, to highlight the underlying topology of the data we consider the construc-
tion of continuous shapes on top of the point cloud. These continuous shapes very 
commonly will be graphs. A graph is a fnite, discrete representation of the set of 
points that encodes a one (or higher) dimensional skeleton of the data (Chartrand, 
1985). Graphs are used in many data analysis applications and are much easier to 
visualise than the high-dimensional data used to construct them (see Figure 2). 

3. Lastly, having built graphs based on the point cloud, we are able to compute the 
persistence diagram (and the extended-persistence diagram). These are topolog-
ical signatures representing our data shape summary (Edelsbrunner et al., 2000; 
Zomorodian and Carlsson, 2005; Cohen-Steiner, Edelsbrunner and Harer, 2007; 
Carrière and Oudot, 2018). 
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Starting with a fnite point cloud (Step 1), the following sections will introduce two 
approaches to constructing graphs on top of the point cloud (Step 2): the simplicial com-
plex1 and the Mapper graph. We will present the concept of persistence diagram, and 
will see (Step 3) how a persistence diagram can be derived from a family of simpli-
cial complexes, and how a extended-persistence diagram can be derived from a single 
Mapper graph. 

2.2. The simplicial complex 

One way to construct a graph on top of point cloud data is by drawing a circle of radius 
ρ around each point in the cloud (Figure 4). If the corresponding circles for two points 
intersect, we connect the points with a line. If three circles intersect, we connect the 
three points to form a triangle, and so on. This particular graph is called a C̆ech com-
plex and is a type of simplicial complex. A simplicial complex is a graph formed by a 
set of points, lines, triangles, etc. Simplicial complexes generalise the concept of one-
dimensional graphs (formed only of edges and nodes) to allow other dimensional blocks 
like triangles (dimension 2), tetrahedrons (dimension 3) and so on. Besides the C̆ech 
complex, there are other types of simplicial complexes that can be constructed on top 
of point cloud data such as the Vietoris-Rips and the Alpha complex. In a Vietoris-Rips 
complex (Zomorodian, 2010) when 3 balls intersect (it can be a pairwise intersection, 
not all balls need to intersect), a triangle of dimension 2 is built. When 4 balls have a 
none empty intersection, a tetrahedron of dimension 3 is build, and so on. An Alpha 
complex is a simplicial complex constructed from the fnite cells of a Delaunay Trian-
gulation (Devillers, Hornus and Jamin, 2022). In terms of the topology of the Alpha 
complex (and its relationship with persistence theory) the Alpha complex is equivalent 
to the C̆ech complex and much smaller if one does not bound the radii. 

2.3. The Mapper graph 

A second approach to constructing a graph on top of a point cloud is by using the Mapper 
algorithm (Singh, Mémoli and Carlsson, 2007). The Mapper algorithm reduces complex 
data to produce a one-dimensional graph – the Mapper graph. This consists of nodes 
(sets of clustered subjects) and edges connecting those nodes and edges connecting those 
nodes with non-empty intersections (that is, subjects can appear in more than one node). 

The Mapper graph is built as follows. Suppose we have a fnite point cloud and can 
compute all distances between pairs of points within the cloud. Suppose also, that we 
have a function called the flter that assigns a real value to each point in the data set. 
Then, the Mapper algorithm proceeds in the following steps (Figure 5): 

1. Find the range of the flter function (i.e., the interval of all values that the function 
takes); 

1As simplicial complexes can be seen as higher dimensional generalizations of neighbouring graphs, we 
will make an abuse of notation and we will refer them as “graphs” throughout the paper 
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(a) A point cloud sampled from a circle 

(b) The sampled circle, now with smaller circles of an increasing radius ρ on top of each point 

(c) The resulting persistence diagram, for a single topological feature in dimension 1. 

Figure 4. Constructing the C̆ech complex of points sampled from a circle 
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Figure 5. The mapper graph: This shows the point cloud separated into intervals with diameter 
set by ‘resolution’ and overlap by ‘gain’. Figure adapted from Munch (2017) 

2. Divide the range into smaller, overlapping intervals; 

3. For each interval, fnd the set of data points whose values assigned by the flter 
function lie in the interval; 

4. Decompose each of these sets into clusters based on a chosen clustering algo-
rithm2; 

5. Represent each cluster by a node and connect nodes by an edge if the clusters 
intersect non-trivially, that is, they share data points. 

The algorithm leaves various important choices to the user: the choice of the flter, 
the number of intervals and their percentage of overlap, and the clustering algorithm. 
See Chazal (2016) and Carrière, Michel and Oudot (2018) for a formal and complete 
discussion on parameter selection for Mapper. Several past studies have suggested the 
approach of selecting Mapper parameters based on exploration of a grid of possible val-
ues — selecting values that produce interesting or stable graphs (Carrière et al., 2018). 
However, as emphasised by Carrière et al. (2019), while useful for a data-driven ex-
ploratory phase, in many situations this approach may produce sub-optimal results, es-
pecially for non-trivial datasets. An alternative approach (Carrière, 2019) is to perform 
automatic tuning of Mapper parameters based on the rate of convergence of the Mapper 
graph to its continuous analogue, the Reeb graph. We return to this below. 

2Any suitable clustering algorithm can be used; Refned analysis on the infuence of the clustering 
method on the Mapper has been recently investigated (Belchı́ et al., 2019). 
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2.4. The persistence diagram 

Recall our original goal is to obtain topological summaries that can describe complex 
structure in our data. Having constructed graphs based on the point cloud as described 
above, we can now use these graphs to compute topological invariants in our data (Chazal 
and Michel, 2021). One way to extract topological information is considering a family of 
simplicial complexes and coding the topological invariants in a two-dimensional diagram 
called the persistence diagram (Edelsbrunner et al., 2000). One can also identify the 
topological variants in a Mapper graph and represent them by means of the extended-
persistence diagram (Carrière, 2019). Let us introduce both approaches below. 

2.5. Persistence diagram for simplicial complexes 

Let us consider a family of complexes constructed over an increasing range of values 
of the radius ρ (see Figure 4). This gives a fltered complex, a sequence of complexes 
such that each one is contained in the next. For each complex, we can deduce its topo-
logical invariants and trace them through the fltration as ρ increases, thus identifying 
their ‘birth’ (the radius at which they frst appear) and ‘death’ (the radius at which they 
disappear). In Figure 4, the initial ˘ = 0.3 and 0.8 shows noCech complex for radius ρ 
hole. A hole appears at ρ = 1.5 (the birth time of the hole) but disappears at ρ = 5.0 
(the death time of the hole). So birth and death times represent radiuses at which the 
hole appears and disappears across the range of ρ values. The persistence diagram is a 
two dimensional plot where the X axis represents the birth time of a topological feature 
(a hole, in the example) and the Y axis represents its death time. The diagram includes 
a diagonal that represents the features that are born and die at equal time. The closer a 
point in the diagram is from the diagonal, the shorter was the life of that feature across 
the range of ρ values, i.e. the less persistent was the feature. 

Intuitively, persistent homology captures how topological features of a space persist 
through the fltration, for some given time-span. The term homology refers to a mathe-
matical (vector) space that represent the topological invariants in different dimensions. 
The homology group in dimension 0 represents the connectedness of the data space – a 
topological space is connected if it cannot be represented as the union of two or more 
disjoint non-empty open subsets. In dimension 1 the homology group represents the 
space of holes. In dimension 2 it represents the space of cavities, like the one we see in 
the torus or the ‘bubble’ inside the sphere, and so on (See Hatcher (2002) for a compre-
hensible introduction to homology). By identifying persistent features across a range of 
radiuses one avoids the need to choose a single radius ρ that would reveal the ‘essential’ 
topological features of the space. This ρ exists, and is mathematically proven, thanks to 
the combination of the nerve theorem and the reconstruction theorem (see Chazal and 
Michel (2021) for a formal formulation of both theorems). From a practical perspective, 
computing ρ rises many practical issues; a multiscale strategy has been introduced in 
(Chazal and Oudot, 2008). 

Persistence diagrams of fltrations built on top of datasets are very stable with re-
spect to some perturbations of the data. Thus, even for a dataset with some noise, the 
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persistence diagram obtained from this data is approximately correct because it is close 
to the diagram we would have obtained from the noise-free data (because the Gromov-
Hausdorff distance between both datasets is assumed to be small, see Chazal and Michel, 
2021). 

2.6. Persistence diagram for the Mapper graph 

The Mapper graph built under an optimal selection of the parameters involved in the 
algorithm (i.e. the flter function, intervals covering the range of the image of the flter 
function, and their overlap) is a discrete and computable optimal estimator of its contin-
uous counterpart, the Reeb graph (the Mapper graph is said to ‘converge’ onto the Reeb 
graph) (Carrière and Oudot, 2018). A Reeb graph is a mathematical object refecting the 
evolution of the level sets of a real-valued function on a topological space that locally 
resembles Euclidean space (see a Reeb graph in Figure 6 (iii)). From the Mapper graph, 
we can derive the extended persistence diagram (Figure 6) by tracing up and down the 
Reeb graph to identify pairs of critical points that mark the beginning (‘birth’ time) and 
the end (‘death’ time) of a topological feature in the associated Reeb graph. For example, 
Figure 6 shows the birth and death times for trunks, branches, and holes. 

2.7. Statistical stability of points in the persistence diagram 

As mentioned above, points on a persistence diagram with very short time spans, i.e. 
those points located close to the diagonal (the line representing points with equal birth 
and death), indicate features that appear and disappear quickly and which are more likely 
to be noise. We therefore may wish to discard ‘non-signifcant’ points that are close to 
the diagonal. One approach to assessing ‘closeness’ is to use the bootstrap to estimate 
and draw confdence bands on the persistence diagram, along the diagonal. Signifcant 
topological features will lie outside the confdence bands, whilst non-signifcant features 
will lie close to the diagonal, within the confdence bands, helping to distinguish between 
signal and noise (see Figure 7b) (Chazal, 2016). The bootstrap is a popular re-sampling 
method to quantify uncertainty around sample statistics (e.g. to estimate confdence in-
tervals around a mean). To derive the confdence interval for a persistence diagram we: 

1. Generate B bootstrap samples by re-sampling with replacement from the original 
source data, and construct a persistence diagram for each sample. 

2. We then derive the ‘distance’ between the original persistence diagram (built using 
the source data) and each bootstrapped persistence diagram using the Bottleneck 
distance: two persistence diagrams are superimposed and each dot in the frst dia-
gram is assigned to its closest counterpart on the second. The Bottleneck distance 
is then defned as the maximum distance between any pair of matching dots. This 
way we get a distribution of distances for which a central 95% of values can be 
computed and a confdence interval (D) derived. 
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3. Finally, this confdence interval is drawn on the graph as a band spreading away 
from the diagonal (in both directions, each with width D), or as boxes around each 
point (of radius D). 

The points outside the confdence band are considered as signifcant topological 
structures in the data, whereas those lying within the band’s limits around the diagonal 
represent insignifcant structures in the data set, and therefore are considered as noise 
and should not be interpreted nor processed for further analysis. This is a developing 
feld, and while the validity of the use of the bottleneck bootstrap has been proven for 
the persistence diagram computed for a fltration of simplicial complexes, its use still re-
mains as an open problem for the extended persistence diagrams computed for Mapper 
graphs (Carrière et al., 2018). 

2.8. Use of Persistence Landscapes for outcomes prediction 

Persistence Landscapes (Bubenik, 2015) can be used to convert a persistence diagram 
(built from a fltration of simplicial complexes) into a vector space suitable for inclusion 
in ML models. Suppose we have a persistence diagram where each point represents the 
birth and death of a hole in our data. The corresponding persistence landscapes are con-
structed by ‘tenting’ each point in the diagram as shown in Figure 7c, to produce a col-
lection of continuous piecewise linear functions, i.e. functions whose graph is composed 
of straight-line sections. Discretising the landscapes in a number of points produce a 
set of variables that encode the topological structure of data and can be included as pre-
dictors in a ML model. Interestingly, persistence landscapes share the same stability 
properties as persistence diagrams, described above. 

2.9. Use of Mapper for subgroups detection, variable selection and data 
visualisation 

The Mapper graph can be useful to identify homogeneous subgroups of patients with 
regards of a characteristic of interest (Carr et al., 2021). The Mapper algorithm can 
highlight interesting clusters in data that might not be recoverable with traditional statis-
tical clustering methods. Consider a data-based Mapper graph following the fare shape 
(the Y shape mentioned earlier; Figure 2). This could be interpreted as a single cluster 
of data. However, each arm could potentially represent a distinct data sub-population. 
The characterisation of topological features in a graph, like particular fares or loops, 
can help identify clinically relevant groups of nodes comprising subjects that experience 
particular prognostic outcomes or levels of treatment response. 
Mapper can also be used to perform variable selection. One can build a Mapper graph 
from data, identify interesting structures as fares, loops or distinguished groups of 
coloured nodes, and then select the variables that best discriminate the data in these 
structures. Variables can then be assessed one-by-one for their ability to discriminate the 
potential sub-populations from the rest of the data using classical tests, as Kolmogorov-
Smirnov. Interestingly, one can also consider a multivariate feature selection for which 
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(a) The persistence diagram for a single point (b) Persistence diagram, showing the bootstrapped 
cloud confdence interval. Points outside the interval are 

considered statistically signifcant. 

(c) The computed persistence landscape, formed by ‘tenting’ the signifcant points on the persistence dia-
gram. The frst landscape is in blue, the second in green, and the last in orange. 

(d) ‘Discretising’ each landscape on a number of points, by selecting a discrete grid of values on the X-axis, 
and computing their corresponding Y -value on each persistence landscape. 

Figure 7. Constructing the persistence landscape based on signifcant topological features 
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Mapper can be used in conjunction with ML. Those detected fares and loops are given 
class labels, and a ML model including the desired set of predictors is tuned to solve 
the classifcation task of distinguishing one class from the other. This way, Mapper 
achieves two goals: identifying new sub-populations and selecting the combination of 
features that best differentiate them. We have implemented this ML based procedure to 
identify interesting subgroups and features in a pipeline that we will use below (https: 
//github.com/kcl-bhi/mapper-pipeline). 

The Mapper graph is also useful as a visualisation tool. If we select a set of intervals 
where no more than two intervals can intersect at once, Mapper becomes a visualisation 
tool that refects the topology of the data. Mapper has a multi-resolution structure, i.e. 
by choosing the number of intervals and the percentage overlap between them, the user 
can adjust the level of the detail at which to view their data. 

3. Application to a data case: using TDA to characterise depression 
remission in the GENDEP study 

The Genome-based Therapeutic Drugs for Depression (GENDEP) is a pharmacogenetic 
study of antidepressant treatment response (Uher et al., 2010a). The GENDEP study 
aims to fnd a way to use clinical and genetic information about patients to help doctors 
decide which antidepressant treatment will work best for each patient, and with the least 
side-effects. A total of 220 patients were randomly allocated to be treated with escitalo-
pram drug, a standard drug that is commonly prescribed to treat depressive symptoms. 
Over 12 weeks the study collected sociodemographic and clinical data including depres-
sive symptoms. For each participant there were available sociodemographic variables 
(at baseline only) as age, age at onset, gender, smoking (yes/no), occupation (yes/no), 
partner (yes/no), years of education, number of children and body mass index. There 
were also available weekly repeated measures (from baseline to week 12) of depression 
severity by means of several standard scales: MADRS (Montgomery and Åsberg, 1979), 
Hamilton-17 (Hamilton, 1967), BDI (Beck et al., 1961), SCAN (Wing et al., 1990) and 
suicidal ideation (Perroud et al., 2012). Each scale assessed several individual items and 
was coded as a number (between 4 and 6, depending on the scale) of possible answers 
to a statement or question that allows respondents to indicate their positive-to-negative 
strength of agreement or strength of feeling regarding the question or statement. For 
example, the MADRS included 10 items assessing aspects such (1) apparent sadness; 
(2) reported sadness; (3) inner tension; (4) reduced sleep; (5) reduced appetite; (6) con-
centration diffculties; (7) lassitude; (8) inability to feel; (9) pessimistic thoughts; and 
(10) suicidal thoughts. Then each of these items was measured following a numerical 
codifcation ranging from 0 to 6 depending on the patient’s strength of agreement. The 
ten resulting scores were then added to build a total numerical score. The rest of the 
scales were defned similarly. Data also included six symptoms dimensions (mood, anx-
iety, pessimism, interest-activity, sleep, appetite) from a published factor analysis (Uher 
et al., 2008, 2012). Remission was assessed for each patient at the last available mea-

https://github.com/kcl-bhi/mapper-pipeline
https://github.com/kcl-bhi/mapper-pipeline
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surement after 4 – 12 weeks of treatment. Remission was defned as scoring ⩽ 7 on 
the Hamilton-17 scale (Hamilton, 1967), a commonly used defnition for remission of 
depressive symptoms. A total of 94 patients remitted. 

3.1. An analytical pipeline to predict remission depression 

We aimed to use sociodemographic and clinical repeated measures in GENDEP to pre-
dict remission of depression. We implemented an analytical pipeline to compute per-
sistence landscapes (and thus summaries of topological features) of our data, and in-
cluding them in a ML model to predict remission. The pipeline requires Python 3.6 or 
higher (van Rossum, 1995) and R 4.1.2 or higher (R Core Team, 2020). It uses Sci-
kit learn (Pedregosa et al., 2011) and Gudhi (The GUDHI Project, 2015) Python pack-
ages to derive the topological features based on the construction of persistence land-
scapes, and caret (Kuhn, 2008) and glmnet (Friedman, Hastie and Tibshirani, 2010) 
R packages to ft an elastic net logistic regression model that includes the topological 
features as predictors of a binary outcome. The pipeline can be freely downloaded at 
http://github.com/kcl-bhi/topological-review. 

We used the pipeline to compute topological summaries on longitudinal measures of 
depression severity from baseline up to week 4 (a total of 5 time points). We included 
weekly total scores for MADRS, Hamilton-17, BDI and suicidal ideation, and a com-
posite score for suicidal ideation3. We additionally included observed mood, cognitive 
and neurovegetative symptoms measured by means of the SCAN interview and the six 
symptoms dimensions from Uher et al. (2008, 2012) giving a total of 14 items measured 
on 5 occasions (a 14 × 5 matrix for each participant). 

The detailed analytical pipeline we used was: 

1. For each patient, compute the persistence diagram for a complex fltration based 
on the available data matrix (Figure 7a). For this case we computed an Alpha 
Complex fltration based on a 14 × 5 matrix (14 points in dimension 5). We con-
sidered the connected components and holes from the complex and created the 
associated persistence diagrams. 

2. Compute the persistence landscape for each persistence diagram (Figure 7c). For 
this example, we computed the frst three landscapes. The choice of how many 
landscapes to include can be guided by the predictive performance of the model 
(i.e. select the number of landscapes that maximises the predictive ability). 

3. Discretise each landscape on a number of points (i.e. consider a discrete grid of 
values on the X-axis, and their corresponding Y -value on each persistence land-
scapes) (see Figure 7d). In our example, we considered the values of each per-
sistence landscape on a grid of 1000 equidistant points, so that each patient was 

3Composite scores are combinations of items that are highly related. They are computed from data in 
multiple variables in order to form reliable and valid measures of latent, theoretical constructs. These can 
be tested through factor analysis and reliability analysis (Ioannidis, Klavans and Boyack, 2016). 

http://github.com/kcl-bhi/topological-review
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described by 6000 topological variables (3 landscapes × 1000 points × 2 dimen-
sions). As one increases the number of discretisation points, the discretisation er-
ror will decrease but the resulting number of variables will increase. This decision 
should be based on the sample size available, although variable selection can help. 

4. Include the topological variables together with the baseline variables as predictors 
in an elastic net logistic regression model to predict remission (yes or not). We 
chose a regularised regression model as this is effcient in preventing the risk of 
overftting in complex data (i.e., when the model predicts well in known data, but 
generalises poorly to new cases) and performs variable selection, which helps to 
remove from the model topological variables that are not adding relevant informa-
tion. 

Parameter tuning for the elastic net regression model was performed with repeated (100 
repetitions) 10-fold cross-validation. We compared (1) a model including sociodemo-
graphic and clinical variables only at baseline, and (2) a model including baseline so-
ciodemographic and clinical variables and the topological variables derived from longi-
tudinal measures on depression severity up to week 4, as described in the pipeline. 

3.2. Results 

In this preliminary analysis, the area under the ROC curve (AUC) for predicting remis-
sion was 0.746 for the model only including baseline measurements, which compared to 
an AUC of 0.799 when topological variables were added. This represented a promising 
improvement in predictive performance resulting from the inclusion of topological vari-
ables. Interestingly, the automated feature selection by the elastic net selected topologi-
cal variables for both dimensions, that is, connected components and holes, as relevant 
variables for the prediction. The frst landscapes tended to capture the most topological 
information, with subsequent landscapes bringing diminishing returns. 

3.3. Using Mapper for subgroups detection in GENDEP 

We used the Mapper algorithm to derive interesting clusters of patients in GENDEP 
based on their clinical and genetic baseline characteristics (full results are presented at 
Carr et al., 2021). We implemented a pipeline to tune the parameters of the Mapper 
graph seeking to maximise the purity of a given outcome variable within derived clus-
ters of patients. A cluster of patients was defned as those patients with data belonging 
to a topological feature identifed in the Mapper graph (i.e., a fare, a loop...). Mapper 
parameters were tuned to maximise the within clusters’ level of purity with regards of de-
pression remission (purity was computed by means of the Gini coeffcient). Our pipeline 
allows predicting membership to a cluster using gradient boosted trees (XGBoost). This 
way it allows selecting the combination of variables that best differentiate a cluster of 
patients. The protocol also allows to consider both categorical and continuous variables 
(recent research in COVID-19 indicated high demand of such type of algorithms that are 
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suitable for mixed data types, see Khan et al., 2021). The pipeline can be freely down-
loaded under the GNU GPLv3 license at https://github.com/kcl-bhi/mapper-pipeline. 

As it is shown in detail in Carr et al. (2021) when we applied our pipeline to the 
GENDEP dataset remission purity increased in the resulting clusters in comparison with 
the whole sample. We ranked the resulting clusters according to their remission purity, 
and, interestingly, the top fve clusters from our pipeline outperformed the fve-cluster 
solution from k-means clustering in terms of remission purity. Gini index in our clusters 
ranged from 0.30 to 0.38, whilst in clusters from k-means ranged from 0.33 to 0.50. 
A combination of clinical and genetic baseline measurements was able to discriminate 
patients in one of our top clusters with excellent discrimination. 

4. TDA software 

In practice, there are various algorithms implementing methods to produce simplicial 
complexes (the C̆ech complex and others) and compute topological invariants such as 
persistence diagrams and persistence landscapes. A good summary of software to im-
plement persistent homology is given in Otter et al. (2017). There exist several general 
purpose libraries for topological data analysis including GUDHI (The GUDHI Project, 
2020), Dionysus (Morozov, 2007), and PHAT (Bauer et al., 2017). All are written in C++ 
and provide fast and effcient implementations of common topological invariants, with 
interfaces available for R and Python. Several packages have built upon these libraries 
to facilitate the application of common topological algorithms. The TDA package for 
R (Fasy et al., 2014) provides a user-friendly interface for R users. The statmapper 
(Carrière, 2020) Python package functions to derive extended persistence diagrams, to 
compute topological features in a Mapper graph and evaluate their statistical signif-
cance, using the bootstrap. 

We have presented a pipeline that allows including summaries of topological fea-
tures in a ML predictive model using persistence landscapes (http://github.com/kcl-bhi/ 
topological-review) and a pipeline to identify sub-populations and perform multivariable 
selection using Mapper (https://github.com/kcl-bhi/mapper-pipeline). 

5. Conclusion 

TDA is a rapidly growing feld that offers a unique set of tools with considerable poten-
tial for precision medicine. Topological summaries derived from persistence diagrams 
and landscapes have shown promising results in specifc examples when included in ma-
chine learning predictive models, resulting in improved model performance, as we show 
in an application to a clinical trial on major depression. The Mapper algorithm makes it 
possible to identify homogeneous sub-populations of interest in complex data and deriv-
ing features that can be used to discriminate these groups. This paper provides a basis 
for the promising role that TDA can play in precision medicine using large biomedical 
datasets. 

https://github.com/kcl-bhi/mapper-pipeline
http://github.com/kcl-bhi/topological-review
http://github.com/kcl-bhi/topological-review
https://github.com/kcl-bhi/mapper-pipeline
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