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Abstract

One of the biggest challenges for the application of machine learning (ML) models in 

finance is how to explain their results. In recent years, different interpretability techniques 

have appeared to assist in this task, although their usefulness is still a matter of debate. 

In this article we contribute to the debate by creating a framework to assess the accuracy 

of these interpretability techniques. We start from the generation of synthetic data sets, 

following an approach that allows us to control the importance of each explanatory 

variable (feature) in our target variable. By defining the importance of features ourselves, 

we can then calculate to what extent the explanations given by the interpretability 

techniques match the underlying truth. Therefore, if in our synthetic dataset we define a 

feature as relevant to the target variable, the interpretability technique should also identify 

it as a relevant feature. We run an empirical example in which we generate synthetic 

datasets intended to resemble underwriting and credit rating datasets, where the target 

variable is a binary variable representing applicant default. We then use non-interpretable 

ML models, such as deep learning, to predict default, and then explain their results using 

two popular interpretability techniques, SHAP and permutation Feature Importance (FI). 

Our results using the proposed framework suggest that SHAP is better at interpreting 

relevant features as such, although the results may vary significantly depending on the 

characteristics of the dataset and the ML model used. We conclude that generating 

synthetic datasets shows potential as a useful approach for supervisors and practitioners 

looking for solutions to assess the interpretability tools available for ML models in the 

financial sector.

Keywords: synthetic datasets, artificial intelligence, interpretability, machine learning, 

credit assessment.

JEL classification: C55, C63, G17.



Resumen

Uno de los principales retos en el uso de modelos de aprendizaje automático, o machine 

learning en inglés (ML), en finanzas es cómo explicar sus resultados. Recientemente han 

aparecido técnicas de interpretabilidad con este objetivo, pero existe discusión sobre su 

fiabilidad. En este documento contribuimos al debate proponiendo una metodología para 

evaluar la precisión de estas técnicas de interpretabilidad. Partimos de la generación 

de conjuntos de datos sintéticos, siguiendo un enfoque que nos permite controlar la 

importancia de cada variable explicativa (feature) en nuestra variable objetivo. Al definir 

nosotros la importancia de las features, podemos posteriormente calcular en qué medida 

las explicaciones dadas por las técnicas de interpretabilidad coinciden con la verdad 

subyacente. Por lo tanto, si en nuestro conjunto de datos sintéticos definimos una 

feature como relevante para la variable objetivo, la técnica de interpretabilidad también 

debería identificarla como una feature relevante. Desarrollamos un ejemplo empírico en 

el que generamos conjuntos de datos sintéticos de manera que se parezcan a datos de 

suscripción y calificación crediticia, donde la variable objetivo es una variable binaria que 

representa el incumplimiento del solicitante. Usamos modelos de ML no interpretables, 

como redes neuronales, para predecir el incumplimiento, y luego explicamos sus 

resultados usando dos técnicas populares de interpretabilidad, SHAP y permutation 

Feature Importance (FI). Nuestros resultados usando la metodología propuesta sugieren 

que SHAP identifica mejor las variables relevantes como tales, aunque los resultados 

pueden variar significativamente según las características del conjunto de datos y el 

modelo ML utilizado. Concluimos que el recurso a la generación sintética de bases 

de datos muestra un elevado potencial para supervisores y entidades financieras que 

precisen evaluar la fidelidad de estas técnicas.

Palabras clave: datos sintéticos, inteligencia artificial, interpretabilidad, aprendizaje 

automático, evaluación de crédito.

Códigos JEL: C55, C63, G17.



BANCO DE ESPAÑA 7 DOCUMENTO DE TRABAJO N.º 2222

3 
 

1. Introduction 
The use of Machine Learning (ML) models is gaining traction in finance due to their 
better predictive capacity compared to traditional statistical techniques (see a 
survey by Königstorfer and Thalmann 2020, or Goodell et al. 2021). One of the use 
cases with greater potential is its application to credit underwriting and scoring, 
since by having better predictive capacity, ML models allow better estimates of the 
probability of default and therefore credit scores could be more accurate (e.g.: Bono 
et al. 2021). But this improvement in predictive performance does not come without 
risk. ML models can potentially be much more complex than traditional econometric 
ones, and this implies new challenges for both users and supervisors in terms of 
new model risk factors like biases, data quality, dependencies on third-party 
providers, etc. (EBA 2020, Dupont et al. 2020, BaFin, 2021). Importantly, one of the 
main challenges for using ML in credit scoring is the interpretability of the outcome 
of the models (IIF 2018, IIF 2019). While traditional statistical techniques are 
inherently interpretable1 and therefore easy to explain their outcome through 
reasoning, the interpretation of the result of complex ML models could be a much 
more difficult task. This is why in recent years a field of study is flourishing in data 
science which brings together different methods and processes capable of 
explaining the influence of the explanatory variables on the outcome of ML models. 
We will focus on a strand of the literature that encompasses what are known as 
post hoc interpretability techniques, or model agnostic techniques, because they 
are applied after the model is trained. While they can represent a valuable tool for 
the challenge of interpretability in the use of ML models for credit decisions, there 
are currently doubts about their reliability (e.g.: Rudin 2019, or Ghorbani et al. 2019). 
Financial supervisors and regulators are currently looking into how to properly 
evaluate the fidelity of these techniques (e.g.: BaFin 2022, Dupont et al. 2020, EBA 
2021), which motivates our work to build a novel approach to fulfill this task. 

We start our study wondering why people ask for explanations. We identify two 
main areas of concern, model risk governance and fair lending, and provide a 
description of the current regulatory framework regarding the need for explanations 
in credit decisions both in USA and Europe. We then propose a framework to 
analyze the accuracy of different post hoc interpretability techniques for binary 
classification problems, such as credit underwriting and scoring. We do so by 
generating synthetic datasets, following an approach that allows us to control the 
importance of each feature on our target variable (default of applicants), while being 
completely agnostic about the underlying data generating process of the 
explanatory variables (features). This way we can generate a wide range of situations 
when choosing the number of features, instances, distribution classes, and 
percentage of zeros and ones in the target variable. As an empirical exercise, we 
apply two non-interpretable ML models to our synthetic datasets: XGBoost, and 
Deep Learning. We perform proper training and cross-validation for both ML 

                                                           
1 Traditional statistical models are inherently interpretable because they rely on the assumption that 
the "data generation process" (DGP) is known at any moment. Therefore, the estimation of the 
parameters of said DGP directly provides us with the interpretability of the model. 3 
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models, to ensure good test performance, since reliable explanations require the 
ML models to perform properly (Blattner et al. 2021). Afterwards, we use two of the 
main global post hoc techniques, SHAP and permutation Feature Importance, 
which provide the relevance of the variables in the outcome of the two ML models. 
Since we have created the dataset ourselves, we can define the ground truth or 
importance between the features and the target, so we can compute the accuracy 
of the explanations given by the interpretability techniques. For this we first use the 
metric Ranking Based Ordering (RBO) which allows to compare how similar two 
rankings are, in this case the real ranking of our generated dataset and the rankings 
obtained from SHAP and permutation Feature Importance. We evaluate as well the 
absolute magnitude of importance obtained from these techniques with our ground 
truth. Our results suggest that the reliability of SHAP and permutation Feature 
Importance could vary significantly depending on the dataset characteristics and 
ML model used. Notwithstanding this, SHAP seems to have a better accuracy than 
permutation Feature Importance, particularly for XGBoost.  We include a sensitivity 
analysis to understand to what extent a higher predictive performance of the original 
ML model can influence how accurate the explanation of an interpretability 
technique can be. 

Our framework contributes to the literature on ML interpretability methods with an 
application to credit risk governance and regulation. To the best of our knowledge, 
this is the first study that proposes a methodology to evaluate how accurate are the 
results of global interpretability techniques. Our methodology allows us to calculate 
the performance of any post hoc interpretability technique, fully controlling the 
importance of the variables by artificially creating our own datasets, being 
completely agnostic about any underlying data generating process. This allows us 
to overcome the limitations of previous comparisons which rely on real data (e.g.: 
Krishna et al. 2022). The results are particularly relevant in credit underwriting, where 
transparency of the algorithms is essential. Our work offers a framework that 
lenders, regulators, and researchers can use to better assess the fidelity of the 
explanations of ML models in accordance with applicable regulatory requirements 
in the context of credit underwriting.  

Notably, the use of synthetic data is still a developing field, and we acknowledge 
that our approach for generating the datasets does not cover all possible scenarios. 
For instance, due to the agnostic way in which we have generated our data at 
inception, the resulting correlation between variables is low. Similarly, both SHAP 
and permutation Feature Importance undertake permutations of features’ values 
assuming that they are independent of each other, so their performance will vary in 
the presence of more correlated data (Kumar et al. 2020, Hall et al. 2021, Aas et al. 
2021, Jullum et al. 2021). We assume that practitioners usually perform feature 
engineering to raw datasets. For instance, “grouping” involves treating a group of 
correlated features (with strong correlations between features in the group and 
weak correlations with features outside of the group) as a single feature from an 
explanation standpoint. Reducing the number of input features through “grouping” 
would result in lower correlation in empirical data sets, so this could help produce 
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better explanations when the original data set has high dependencies. In any case, 
we are aware of these shortcomings, but our work reinforces the potential of using 
synthetic data to get a true benchmark2 to assess the accuracy of the explanations 
of machine learning models. The fact that ML interpretability has become a priority 
research area for supervisors (see Blattner et al. 2021, or Akinwumi et al. 2021) 
motivates our work to investigate the potential of synthetic data sets as a tool for 
professionals and supervisors to examine the reliability of machine learning 
explanations. 

While it is true that both SHAP and FI have limitations, we have chosen them to test 
our framework because they remain among the most popular at the moment for 
global interpretability and they are currently under the scrutiny of financial regulators 
(see for instance the discussion paper by EBA, 2021, on ML for IRB models, where 
they refer to Shapley values as a widely used technique). Additionally, they are also 
used in the industry (FinRegLab, 2022) and its use is extending as well in academic 
work related to the use of machine learning for credit scoring, like for example: 
Albanesi and Vamossy (2019), Ariza-Garzon (2021), Misheva et al (2021), Cascarino 
et al (2022), or Bücker et al (2022). Therefore, due to their popularity and widespread 
use, we believe that, as of today, they are good benchmarks to put under test. Last 
but not least, as there exist public open-source implementations of these tools, it 
makes our exercise more transparent. 

The paper is organized as follows. Section 2 provides a literature review on the 
interpretability of ML techniques. Section 3 explains the need for explanations in 
credit decisions. Section 4 explains the two interpretability techniques that we will 
evaluate: SHAP and permutation Feature Importance. Section 5 dives into the data 
generation and ML models, and in Section 6 we show our results on the accuracy 
of explanations. Section 7 concludes. 

 

2. Literature review 
There is an extensive and growing literature on the applications of ML in finance. 
Königstorfer and Thalmann (2020) and Goodell et al. (2021) provide an overview of 
AI and ML research and note that credit risk is one of the key topics studied (e.g. 
Liu and Schumann, 2005 who look into feature selection for credit scoring using 
several ML methods, Shen et al. 2019 who use neural networks in imbalanced credit 
risk evaluation, or Xia et al. 2020 who propose a novel tree-based ensemble model 
applied to credit scoring). The list of topics is heterogeneous, including asset pricing 
(as in Gu et al. 2020 whose auto-encoder asset pricing model delivers out-of-
sample pricing errors that are far smaller compared to other leading factor models, 
or Avramov et al. 2021 show that investments based on deep learning signals 
extract profitability from difficult-to-arbitrage stocks), market risk management 
(Arimond et al. 2020 investigate if ML can advance the process of estimating Value 

                                                           
2  We propose one particular way to control the importance of the data, but there could be others, 
for instance, assuming a causal model. 
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at Risk), corporate failure prediction (both Sheng et al. 2019, and Lee et al. 2020 
propose a graph convolutional network based credit default prediction model), 
derivative pricing (Ye and Zhang 2019 combine techniques of ML with regression 
analysis and apply the new methodologies on financial derivatives), forecasting 
foreign exchange rates (Nag and Mitra, 2002 use genetically optimized neural 
networks), or volatility forecasting (Arroyo et al., 2011 study different approaches, 
including ML, to forecast interval financial time series). 

Focusing on Explainable AI (xAI) in general, and interpretability of ML in particular, it 
is noted that this field is advancing as ML models get more popular. Leaving apart 
efforts on building replicable, white-box models, the main approach to interpret 
complex ML models is to rely on model agnostic techniques, or post hoc evaluation 
techniques, that aim to explain the outcome of any non-interpretable model. These 
techniques area designed for local (explaining at an individual level) or global 
explainability (explaining the whole dataset)3. LIME (Ribeiro et al. 2016) is probably 
the most popular local technique (recently “upgraded” to Anchors in Ribeiro et al. 
2018). The main global post hoc interpretation techniques are permutation Feature 
Importance (Breinman 2001, Fisher et al. 2019) and SHAP (Lundberg and Lee, 
2017, Lundberg  et al. 2020), which can be also used as local interpretability4. 

The importance of xAI in credit underwriting is represented by recent work on 
explainability in credit risk management (see Misheva et al. 2021), and focused on 
fair lending, or racial discrimination, like Barlett et al. (2022) who find that racial 
discrimination between Fintech and non-Fintech lenders in the US mortgage 
market, or Fuster et al. (2022) who find that ML increases disparity in rates between 
and within protected groups, with these changes attributable primarily to greater 
flexibility of better statistical technology. 

There is a recent strand of the literature that tries to understand the suitability and 
reliability of post hoc evaluation techniques. Despite their initial success and 
popularity in the industry and in academia, there are several papers that highlight 
the shortcomings of these techniques. Rudin (2019) says that post hoc explanations 
are not reliable because they provide correlations with no informative content, and 
therefore they are not truly representative of the model they try to interpret. Ghorbani 
et al. (2019) focus on the application of LIME and SHAP for interpretation of neural 
networks and they claim that the output of the explanation techniques is highly 
sensible to small perturbations in the data, even when those perturbations do not 
change the predictions of the classifier that these techniques try to explain. 

                                                           
3 For example, imagine we have a credit default dataset and we apply a ML model, where the target variable is 
binary (default or not), and the features are the person's income, loan size, and loan type. A local interpretability 
technique will show us how the different features contributed to the predicted probability of default for a 
particular individual. In this way, the local interpretability of the models allows us to know the reason why the 
ML model predicts that a person repays their loan or not. Global interpretability, on the other hand, refers to 
how features affect the predictions of ML models in general.  Following the example above, global interpretation 
techniques could help us to understand which of the three features of the data set (income, loan size, loan type) 
most influences the prediction in the entire data set, and therefore we could determine which is the most 
important feature globally. 
4 We will explain in Section 4 all these techniques in detail. 
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Importance (Breinman 2001, Fisher et al. 2019) and SHAP (Lundberg and Lee, 
2017, Lundberg  et al. 2020), which can be also used as local interpretability4. 

The importance of xAI in credit underwriting is represented by recent work on 
explainability in credit risk management (see Misheva et al. 2021), and focused on 
fair lending, or racial discrimination, like Barlett et al. (2022) who find that racial 
discrimination between Fintech and non-Fintech lenders in the US mortgage 
market, or Fuster et al. (2022) who find that ML increases disparity in rates between 
and within protected groups, with these changes attributable primarily to greater 
flexibility of better statistical technology. 

There is a recent strand of the literature that tries to understand the suitability and 
reliability of post hoc evaluation techniques. Despite their initial success and 
popularity in the industry and in academia, there are several papers that highlight 
the shortcomings of these techniques. Rudin (2019) says that post hoc explanations 
are not reliable because they provide correlations with no informative content, and 
therefore they are not truly representative of the model they try to interpret. Ghorbani 
et al. (2019) focus on the application of LIME and SHAP for interpretation of neural 
networks and they claim that the output of the explanation techniques is highly 
sensible to small perturbations in the data, even when those perturbations do not 
change the predictions of the classifier that these techniques try to explain. 

                                                           
3 For example, imagine we have a credit default dataset and we apply a ML model, where the target variable is 
binary (default or not), and the features are the person's income, loan size, and loan type. A local interpretability 
technique will show us how the different features contributed to the predicted probability of default for a 
particular individual. In this way, the local interpretability of the models allows us to know the reason why the 
ML model predicts that a person repays their loan or not. Global interpretability, on the other hand, refers to 
how features affect the predictions of ML models in general.  Following the example above, global interpretation 
techniques could help us to understand which of the three features of the data set (income, loan size, loan type) 
most influences the prediction in the entire data set, and therefore we could determine which is the most 
important feature globally. 
4 We will explain in Section 4 all these techniques in detail. 
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Mittelstadt et al. (2020) also focus on the application of LIME and SHAP and argue 
that perturbation points created by these methods are not at all intuitive, especially 
for structured data. Slack et al. (2020) also criticize LIME and SHAP because 
according to them is relatively easy to deceive techniques like SHAP even when 
using biased (racist) classifiers, although Vres et al (2020) proved that this statement 
might be too pessimistic. Other papers that look at the lack of stability of LIME are: 
Alvarez Melis and Jaakkola (2020), Visani et al. (2020), and Gosiewka and Biecek 
(2019), and all found that LIME can give very unstable post hoc evaluations. 

Another set of the literature analyzes the reliability of post hoc explanations methods 
using synthetic data. Since the truth about the data generation process cannot be 
known when using real data, the use of simulated data can help to understand the 
reliability of these techniques. Barr et al. (2020) created datasets using copulas, and 
showed that the correlation of redundant variables can affect the explanation given 
by SHAP. In a similar fashion, Aas et al. (2021) showed that correlation of the 
features could affect the explanations of SHAP. Zhang et al. (2019) also used 
synthetic generated data and showed that there are several sources of uncertainty 
and instability for LIME.  In fact, (Hall et al. 2021) share the concern on inconsistent 
explanations, as different configurations of the same ML model, or refreshing the 
same ML model with new data can result in different explanations for the same 
consumer, if not controlled. On top of that, the success of an explainable ML model 
will rely on the human comprehension of model behavior by less technical audiences 
(Kumar et al. 2020).  

While certainly most of these papers find limitations and shortcomings to post hoc 
evaluation techniques like LIME and SHAP, on the other hand there is an ongoing 
effort in xAI literature that tries to improve these methods. Papers like Frye et al. 
(2019), Heskes et al. (2020) and Janzig et al. (2020) are incorporating new elements 
to the SHAP methodology in order to incorporate notions like causality. Also 
Miroshnikov et al. (2021) propose a feature grouping technique to design 
appropriate groups explainers offering consistency guarantees and more stability of 
the results, working in the same direction as Jullum et al. (2021), who propose a 
new method called groupShapley, while Aas et al. (2021) try to extend the kernel 
SHAP (Lundberg and Lee, 2017) to account for features’ dependencies. This shows 
a promising future path to include more sophisticated elements to evaluate these 
techniques. In the context of adverse action notices, grouping features can assist 
on the usability of these techniques to produce information that is valuable to a 
rejected applicant looking for a feasible path to credit acceptance within a time 
period, as usually an isolated change in just one feature (or a limited set of) does not 
produce significant changes in the estimated probability of default. We leave for 
further research to assess the impact of features’ grouping on the accuracy of the 
explanations in our framework. 

As stated in the introduction, we contribute to the literature by proposing a 
methodology to evaluate how accurate are the results of global interpretability 
techniques, using synthetic datasets. Despite the existence of extensions of SHAP 
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and new interpretability techniques that could handle the presence of correlation in 
datasets (Aas et al. 2021) or define richer objective outcomes to explain (Giudici and 
Raffinetti 2021), we prefer to test the basic versions of SHAP and FI, since their 
used is widespread. At this stage, the purpose of our article is not to determine 
which of the existing interpretability techniques is better overall, but rather to outline 
a practical framework on how to test the accuracy of these techniques using a novel 
approach that complements prior work on this field by creating a highly curated and 
fully controlled experiment to evaluate the real accuracy of these tools. This includes 
potential mis-prediction sources, and is broader than previous analysis that only 
compared these tools in relative terms. 

 

3. Why people ask for explanations 
Curiosity is an element intrinsic to human nature. People tend to ask questions 
about events or observations that they consider abnormal or unexpected from their 
own point of view. This way, a primary function of explanation is to facilitate learning.  
In fact, a good explanation will create a shared understanding, and therefore a sense 
of trustworthiness (Miller, 2018). This is key in decision making and human-machine 
interaction. It is therefore not surprising that there is a desire to explain the results 
of so called black-box ML models, particularly on such important issues as credit 
decisions. But in addition to curiosity, there are legal requirements that demand, to 
greater or lesser degree, the explanation of the results of the use of ML for credit 
concession. Mainly, lenders must detail to the borrower in writing the main reasons 
for taking an adverse action on a loan application, following consumer law 
requirements. Additionally, regulators will oversight any potential discrimination of 
protected classes (like gender or race), and supervisors will analyze the sustainability 
and transparency of the models aiming to mitigate potential operational risks. 

In this section we will revise the prudential expectations in two main domains: model 
risk governance and fair lending, addressing current doctrines both in US and EU. 

 

3.1 Model risk management 
US regulators have issued extensive guidance outlining their expectations for steps 
that banks should take in developing, monitoring, and validating models throughout 
the lifecycle (Blatter and Spiess, 2021). This broadly applies to all use cases that 
might lead to unexpected losses, or other negative outcomes and requires risk 
management processes and controls5. Banks subject to prudential oversight are 
generally required to conduct a comprehensive review and monitoring of credit 
models, especially those engaged in retail banking, due to consumer protection 
laws. The prudential model risk management expectations emphasize various 
aspects of model transparency, some of which can prove to be challenging in the 

                                                           
5  The Federal Reserve Board’s Supervisory & Regulation Letter 11-7 is often used to refer to all 
three US agencies’ guidance. 
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context of ML underwriting models. At a broad level, the guidance requires 
documenting on a transparent way how the learning algorithm produced the 
prediction. Though, as a condition precedent, developers must evaluate whether 
models are based on relationships between variables that are intuitive and make 
economic sense. Banks must also perform appropriate sensitivity analyses to 
establish the sustainability of the model in business-as-usual situations, and prepare 
processes that identify and mitigate operational risks. See for example Unceta and 
Nin (2020) for a theory on copying the behavior of complex ML classifiers, aiming to 
avoid production bottlenecks and having to retrain tailor-made solutions if 
unexpected risks arise. 

In the European front, article 144(1)(b) CRR prescribes that banks’ models for 
internal ratings and probability of default (PD) and loss given default (LGD) used in 
the calculation of regulatory capital requirements are aligned for internal purposes 
like risk management, credit approval and decision-making processes. To this 
purpose, this regulation establishes a “use test”, which rationale is to prevent banks 
using proprietary models only to reduce capital requirements, but also use their 
models for other internal purposes (EBA, 2021). This requirement may hamper the 
introduction of ML models for credit decisions or early warning systems, due to the 
challenges that banks may encounter in complying with strict CRR requirements. 

Finally, EBA (2021) remembers that the pivotal challenge towards ML requires 
banks to (i) interpret their results, (ii) ensure their adequate understanding by the 
management, and (iii) justify their results to supervisors. In fact, as stated by the 
European Commission (2019, 2021), the results of a ML model need to be 
interpretable for all the people who participate in the process, including clients, since 
the decision that entails the concession, denial or refinancing of a loan can have a 
significant economic impact on people's lives.  

This is consistent with our previous results found in Alonso and Carbó (2020) where 
we concluded that for credit scoring as a use case a key risk factor is the 
interpretability of models’ output. But, how can potential ML users evaluate the 
reliability and usefulness of information produced by currently available post hoc 
interpretability techniques? 

 

3.2 Fair lending 
Banks are subject to broad anti-discrimination requirements regardless of the type 
of model they might use to predict the default of borrowers. 

For instance, the US has prohibited illegal discrimination and establish a strong 
framework since long time ago6. In this jurisdiction, the legal requirements give rise 
                                                           
6 The Equal Credit Opportunity Act (ECOA) prohibits discrimination in “any aspect of a credit 
transaction” for both consumer and commercial credit on the basis of race, colour, national origin, 
religion, sex, marital status, age, or certain other protected characteristics, and the Fair Housing Act 
(FHA) prohibits discrimination on many of the same bases in connection with residential mortgage 
lending. 
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to two fair lending principles: disparate treatment and disparate impact. Disparate 
treatment focuses on whether lenders have treated applicants differently based on 
protected characteristics, like race or gender. Disparate impact addresses lenders’ 
use of underwriting practices that have a disproportionately negative effect on 
protected classes, unless there is a legitimate business need that cannot reasonably 
be achieved through alternative means with a smaller adverse impact7. Both 
principles rely on statistical tests and analyses of data inputs that can be more 
challenging to implement in the context of complex ML models. For example, the 
identification and management of variables that may proxy for protected class 
status under both disparate treatment and disparate impact theories of 
discrimination requires a high degree of transparency into how the models are built 
and how they make predictions. However, the fact that ML models can better 
unravel patterns in consumer data has raised concerns about whether they might 
be unintentionally using sensitive information to generate the predictions. At the end, 
the fear is that these models may result in more accurate but harm fairness in their 
predictions (Bono et al. 2021). 

Under the US Equal Credit Opportunity Act (ECOA) and the Fair Credit Reporting 
Act (FCRA), many credit decisions that are adverse (either rejection or offering less 
favorable terms) to the applicant must be summarized through a predefined set of 
written explanations known as “adverse action notices". Banks must indicate the 
principal reasons for the adverse action and accurately describe the features 
actually considered, but it is not required to state how or why a given characteristic 
contributed to an adverse outcome. At this stage banks face the challenge of how 
to evaluate the statistical and economic relevance of explanatory variables in a way 
that meets current regulatory requirements.8 

Actually, these concerns transcend jurisdictions, as regulatory expectations are 
calibrated to the degree of risk posed by the particular use case, and credit 
underwriting is often considered to be among the highest risk activities; see for 
instance. The EU-wide legislative proposal on artificial intelligence (“AI act”) includes 
among the high-risk use cases the evaluation of the creditworthiness of natural 
persons. European Commission's Guide to Ethical Principles of AI (2019) cites the 
principle of explicability of algorithms as one of the critical elements, and in 
accordance with the European General Data Protection Regulation (GDPR) Article 
22 on automated individual decision-making, including profiling, the data subject 
shall have the right not to be subject to a decision based solely on automated 
processing, implying that decisions [...] shall not be based on special categories of 

                                                           
7 Historically, regulators have looked at whether particular variables have an “understandable 
relationship to an individual applicant’s creditworthiness” as well as a statistical relationship to loan 
performance in determining whether they meet a legitimate business need (Blatter and Spiess, 2021). 
8 Apart from local factors regarding his/her own case, it is important for a customer to understand 
what global factors resulted in an adverse action on their credit decision (e.g.: length of credit history), 
while also understanding what are the local factors that are within their control to achieve a favourable 
outcome in the near future (e.g.: lower utilization of credit limit). Therefore, here the challenge for ML 
goes into both dimensions, global and local interpretability of the predictions. 
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personal data and pointing to the need to include human judgement in any decision-
making process (i.e.: data controller).  

All in all, these two issues together of model risk governance and fairness, motivate 
the development of different methodologies to evaluate the compliance with current 
regulation. For example, counterfactual explanations may assist on assessing 
potential discriminatory issues (Wachter et al. 2017), while post hoc techniques are 
usually being used to help on model governance and the provision of adverse action 
notices (Hall et al. 2021). In this study we will investigate these latter tools, 
particularly by computing the accuracy of their explanations. In Section 4 we will 
describe two of the most cited ones in the literature, SHAP and permutation Feature 
Importance, which we will put to the test in Section 5. 

 

4. Two techniques for explanations 
In the ML literature, early work on explanation often focused on producing 
visualizations of the predictions in order to assist ML experts in evaluating the 
correctness of the model. Beyond visualization, some researchers nowadays try to 
create interpretable models, devising surrogate models that can be explained 
through reasoning (e.g.: Unceta and Nin, 2020). This is based on the assumption 
that in order to fully interpret a ML algorithm it needs to be transparent and entirely 
replicable (Hoepner et al. 2021). This would mean that a human actor could interpret 
each (relevant) analytical decision step. However, the quantitative models with the 
greatest predictive power usually are ML models that are not intrinsically 
interpretable (Bono et al. 2021), requiring post hoc techniques to assist on the task 
of explaining their outcome. 

In this article we are going to focus on two of the most popular techniques: SHAP 
(Lunbdberg and Lee, 2017) and permutation Feature Importance (Breiman, 2001). 
The former will allow the user of a complex ML model to know which are the features 
that most influence a certain prediction, and the latter will inform about which are 
the features that most influence the error that the model is making. Both methods 
are model agnostic, meaning that can be used for any ML model (e.g.: regressions, 
tree-based models, or deep learning). They are applied after the ML model has been 
trained, and are based on perturbing or permuting the input data on the test sample 
to determine the relevance of the variables, measuring how those changes affect 
the ML model's output. 

It is important to highlight that both techniques can explain how each feature affects 
all individuals in the entire dataset, which is called global interpretability9. Now we 

                                                           
9 SHAP that stands for Shapley Additive Explanations, is initially designed for local interpretability, letting the 
user get a justification about how the model works for an individual prediction or for a set of predictions. But it 
allows to add the local values in order to obtain a global interpretation as well. Other techniques that allow local 
interpretability are LIME (Local interpretable model-agnostic explanations), PDP (Partial Dependent Plots), ICE 
(Individual Conditional Expectation), ALE (Accumulated Local Effects) 
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will briefly explain in the following Section how both SHAP and permutation Feature 
Importance work. 

 

4.1 Permutation Feature Importance 
Permutation Feature Importance (also known and referred to in this article 
sometimes as Feature Importance) is a post hoc evaluation technique that 
measures the impact of each feature in the dataset based on the impact on a given 
performance metric. As mentioned before it was introduced by Breiman (2001) for 
Random Forest, but Fisher, Rudin and Dominici (2018) provided a model agnostic 
version, so we will be able to use it on both XGBoost and Deep Learning in our 
exercise.  

The method computes the importance of a given feature 𝑗𝑗 as follows. We need a 
trained model 𝑓𝑓  with an original set of features 𝑋𝑋 to predict our target variable 𝑦𝑦. 

First, we estimate the original model error 𝑒𝑒𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 𝐿𝐿 (𝑦𝑦, 𝑓𝑓(𝑋𝑋)) for each feature 𝑗𝑗 of 

the dataset. As we are in a classification problem, then 𝑦𝑦 is a binary variable and 
our measurable error will be (1 − 𝐴𝐴𝐴𝐴𝐴𝐴)10. We repeat 𝑘𝑘 = 10 times the following 
process to make sure that a specific shuffling of the feature is not biasing our 
results11. For the chosen feature 𝑗𝑗, we randomly shuffle its value to 𝑗𝑗′ and we 

estimate the new error 𝑒𝑒𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝐿𝐿 (𝑦𝑦, 𝑓𝑓(𝑋𝑋𝑗𝑗′)). Finally, we compare both error values 

to compute the feature importance of 𝑗𝑗 as 𝐹𝐹𝐹𝐹𝑗𝑗 = 𝑒𝑒𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑒𝑒𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 . After 10 iterations, 
we sort features by descending value of its arithmetic average 𝐹𝐹𝐹𝐹𝑗𝑗̅̅ ̅̅ . If the feature is 
important, then we should observe a considerable impact in AUC. If the feature is 
not important, the AUC should be similar when using shuffled values instead of the 
original ones. The method is simple but time consuming. It implies repeating the 
process for each feature at least several times, so the higher the number of features 
or the more complicated is to train the original ML model, then the more time it will 
take to compute 𝐹𝐹𝐹𝐹. One of the drawbacks, as it happens with SHAP, is that it 
assumes feature independence something which might be unrealistic in credit 
decisions, as we will comment later on. Additionally, this technique cannot indicate 
us the direction of the effect of a given feature. For example, it cannot indicate 
whether increases or decreases in the value of feature 𝑗𝑗 are related to increases or 
decreases in the value of target variable 𝑦𝑦 (the probability of default in our exercise). 

 

4.2 Shapley Additive Explanations (SHAP) 
The SHAP method relies on game theory. In a cooperative game with 𝑀𝑀 players 
(features) and a function (model) that values how much total output is generated if 
                                                           
10 AUC refers always to ROC-AUC or Area Under the Curve of the Receiving Operating Characteristic is a 
common measure to evaluate the classification power of the models. AUC is a probability curve and the area 
under it will give as a value that ranges between 0 and 1. The higher, then the better is the model at distinguishing 
between classes. A value of 0.5 indicates that the model has no discrimination capacity. We have tried with 
other metrics like recall or F1, and the main results of our paper do not change. 
11 After repeating the process 10 times, the results of the Feature Importance do not seem to change. 



BANCO DE ESPAÑA 16 DOCUMENTO DE TRABAJO N.º 2222

12 
 

will briefly explain in the following Section how both SHAP and permutation Feature 
Importance work. 

 

4.1 Permutation Feature Importance 
Permutation Feature Importance (also known and referred to in this article 
sometimes as Feature Importance) is a post hoc evaluation technique that 
measures the impact of each feature in the dataset based on the impact on a given 
performance metric. As mentioned before it was introduced by Breiman (2001) for 
Random Forest, but Fisher, Rudin and Dominici (2018) provided a model agnostic 
version, so we will be able to use it on both XGBoost and Deep Learning in our 
exercise.  

The method computes the importance of a given feature 𝑗𝑗 as follows. We need a 
trained model 𝑓𝑓  with an original set of features 𝑋𝑋 to predict our target variable 𝑦𝑦. 

First, we estimate the original model error 𝑒𝑒𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 𝐿𝐿 (𝑦𝑦, 𝑓𝑓(𝑋𝑋)) for each feature 𝑗𝑗 of 

the dataset. As we are in a classification problem, then 𝑦𝑦 is a binary variable and 
our measurable error will be (1 − 𝐴𝐴𝐴𝐴𝐴𝐴)10. We repeat 𝑘𝑘 = 10 times the following 
process to make sure that a specific shuffling of the feature is not biasing our 
results11. For the chosen feature 𝑗𝑗, we randomly shuffle its value to 𝑗𝑗′ and we 

estimate the new error 𝑒𝑒𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝐿𝐿 (𝑦𝑦, 𝑓𝑓(𝑋𝑋𝑗𝑗′)). Finally, we compare both error values 

to compute the feature importance of 𝑗𝑗 as 𝐹𝐹𝐹𝐹𝑗𝑗 = 𝑒𝑒𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑒𝑒𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 . After 10 iterations, 
we sort features by descending value of its arithmetic average 𝐹𝐹𝐹𝐹𝑗𝑗̅̅ ̅̅ . If the feature is 
important, then we should observe a considerable impact in AUC. If the feature is 
not important, the AUC should be similar when using shuffled values instead of the 
original ones. The method is simple but time consuming. It implies repeating the 
process for each feature at least several times, so the higher the number of features 
or the more complicated is to train the original ML model, then the more time it will 
take to compute 𝐹𝐹𝐹𝐹. One of the drawbacks, as it happens with SHAP, is that it 
assumes feature independence something which might be unrealistic in credit 
decisions, as we will comment later on. Additionally, this technique cannot indicate 
us the direction of the effect of a given feature. For example, it cannot indicate 
whether increases or decreases in the value of feature 𝑗𝑗 are related to increases or 
decreases in the value of target variable 𝑦𝑦 (the probability of default in our exercise). 

 

4.2 Shapley Additive Explanations (SHAP) 
The SHAP method relies on game theory. In a cooperative game with 𝑀𝑀 players 
(features) and a function (model) that values how much total output is generated if 
                                                           
10 AUC refers always to ROC-AUC or Area Under the Curve of the Receiving Operating Characteristic is a 
common measure to evaluate the classification power of the models. AUC is a probability curve and the area 
under it will give as a value that ranges between 0 and 1. The higher, then the better is the model at distinguishing 
between classes. A value of 0.5 indicates that the model has no discrimination capacity. We have tried with 
other metrics like recall or F1, and the main results of our paper do not change. 
11 After repeating the process 10 times, the results of the Feature Importance do not seem to change. 

12 
 

will briefly explain in the following Section how both SHAP and permutation Feature 
Importance work. 

 

4.1 Permutation Feature Importance 
Permutation Feature Importance (also known and referred to in this article 
sometimes as Feature Importance) is a post hoc evaluation technique that 
measures the impact of each feature in the dataset based on the impact on a given 
performance metric. As mentioned before it was introduced by Breiman (2001) for 
Random Forest, but Fisher, Rudin and Dominici (2018) provided a model agnostic 
version, so we will be able to use it on both XGBoost and Deep Learning in our 
exercise.  

The method computes the importance of a given feature 𝑗𝑗 as follows. We need a 
trained model 𝑓𝑓  with an original set of features 𝑋𝑋 to predict our target variable 𝑦𝑦. 

First, we estimate the original model error 𝑒𝑒𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 𝐿𝐿 (𝑦𝑦, 𝑓𝑓(𝑋𝑋)) for each feature 𝑗𝑗 of 

the dataset. As we are in a classification problem, then 𝑦𝑦 is a binary variable and 
our measurable error will be (1 − 𝐴𝐴𝐴𝐴𝐴𝐴)10. We repeat 𝑘𝑘 = 10 times the following 
process to make sure that a specific shuffling of the feature is not biasing our 
results11. For the chosen feature 𝑗𝑗, we randomly shuffle its value to 𝑗𝑗′ and we 

estimate the new error 𝑒𝑒𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝐿𝐿 (𝑦𝑦, 𝑓𝑓(𝑋𝑋𝑗𝑗′)). Finally, we compare both error values 

to compute the feature importance of 𝑗𝑗 as 𝐹𝐹𝐹𝐹𝑗𝑗 = 𝑒𝑒𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑒𝑒𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 . After 10 iterations, 
we sort features by descending value of its arithmetic average 𝐹𝐹𝐹𝐹𝑗𝑗̅̅ ̅̅ . If the feature is 
important, then we should observe a considerable impact in AUC. If the feature is 
not important, the AUC should be similar when using shuffled values instead of the 
original ones. The method is simple but time consuming. It implies repeating the 
process for each feature at least several times, so the higher the number of features 
or the more complicated is to train the original ML model, then the more time it will 
take to compute 𝐹𝐹𝐹𝐹. One of the drawbacks, as it happens with SHAP, is that it 
assumes feature independence something which might be unrealistic in credit 
decisions, as we will comment later on. Additionally, this technique cannot indicate 
us the direction of the effect of a given feature. For example, it cannot indicate 
whether increases or decreases in the value of feature 𝑗𝑗 are related to increases or 
decreases in the value of target variable 𝑦𝑦 (the probability of default in our exercise). 

 

4.2 Shapley Additive Explanations (SHAP) 
The SHAP method relies on game theory. In a cooperative game with 𝑀𝑀 players 
(features) and a function (model) that values how much total output is generated if 
                                                           
10 AUC refers always to ROC-AUC or Area Under the Curve of the Receiving Operating Characteristic is a 
common measure to evaluate the classification power of the models. AUC is a probability curve and the area 
under it will give as a value that ranges between 0 and 1. The higher, then the better is the model at distinguishing 
between classes. A value of 0.5 indicates that the model has no discrimination capacity. We have tried with 
other metrics like recall or F1, and the main results of our paper do not change. 
11 After repeating the process 10 times, the results of the Feature Importance do not seem to change. 
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all the players contribute together, SHAP is a method that attempts to measure the 
individual contribution of each player to the output generated by the cooperation of 
all players. From an economic standpoint, it can be interpreted as a weighted 
average of a feature’s marginal contribution (Shap value) to every possible subset 
of grouped features (coalitions). 

SHAP explanation of a feature 𝑗𝑗 for a given instance 𝑥𝑥 could be computed as: 

𝑔𝑔(𝑆𝑆′) = ∅0 + ∑ ∅𝑗𝑗𝑆𝑆′𝑗𝑗
𝑀𝑀

𝑗𝑗=1
 

Where 𝑔𝑔 is the explanation model and ∅𝑗𝑗 ∈ ℝ is the Shapley value of feature 𝑗𝑗. We 
start by considering all possible coalitions of features that exclude the feature of 
interest, including the empty set ∅0. For all different coalition vectors 𝑆𝑆′ ∈ {0,1}𝑀𝑀, 
where 𝑀𝑀 is the maximum coalition size, and an entry of one means that the 
corresponding feature value is “present” and zero that it is “absent”, we compute 
the difference in the predicted outcome with and without the feature of interest. The 
Shapley value will be calculated as the weighted average of the differences in the 
predictions among all coalitions.  

Mathematically, the Shapley value or contribution ∅𝑗𝑗 of a given feature 𝑗𝑗 in a 
prediction 𝑝𝑝 is summarized by the following formula: 

∅𝑗𝑗 = ∑
|𝑆𝑆|! (𝑀𝑀 − |𝑆𝑆| − 1)!

𝑀𝑀! ∙ [𝑝𝑝(𝑆𝑆 ∪ 𝑗𝑗) − 𝑝𝑝(𝑆𝑆)]
𝑆𝑆∈𝑀𝑀

𝑗𝑗

 

Where 𝑀𝑀 is the total number of features, 𝑆𝑆 ∈ 𝑀𝑀/𝑗𝑗represents all possible coalitions 
of features excluding feature 𝑗𝑗, considering all possible orders, and 𝑝𝑝(𝑆𝑆 ∪ 𝑗𝑗) − 𝑝𝑝(𝑆𝑆) 
represents the difference in the predicted outcome 𝑝𝑝 when we consider a particular 
coalition of features and feature 𝑗𝑗 minus the predicted outcome when we consider 

the coalition of features without feature 𝑗𝑗. The term 
|𝑆𝑆|!(𝑀𝑀−|𝑆𝑆|−1)

𝑀𝑀!  assigns different 

weights to the differences, depending on the features that are in the set |𝑆𝑆|!, the 
features that have to be added(𝑀𝑀 − |𝑆𝑆| − 1), and all normalized by the features that 
we have in total. 

For illustrative purposes, let’s consider the following example. Imagine a consumer 
loan dataset that includes the features “income," "loan size," and "monthly credit 
card payments". The target is a binary variable that indicates whether or not the 
loan has defaulted. Imagine that we want to know the importance of the variable 
“income" on the probability of default of an individual 𝑥𝑥. We have the following 
possible coalitions without including “income”: 

 No features 
 Size of loan 
 Credit card 
 Size of loan and credit card 
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For all these four coalitions we compute the predicted probability of default of 
individual 𝑥𝑥 with and without “income” in order to get the marginal contribution of 
“income” for the four coalitions. The Shapley value of “income” for the predicted 
probability of default of individual  𝑥𝑥 is the weighted average of those marginal 
contributions. To get the global contribution SHAP of “income” to the probability of 
default in the whole dataset, we repeat the process for all individuals in our dataset, 
and average over the absolute Shapley values. Features with large absolute Shapley 
values are considered as important local features (and correspondingly, SHAP 
values for a global explanation). 

Interestingly, the Shapley value is the only attribution method that can achieve the 
following desired properties: efficiency, as the sum of Shapley values of all features 
equals the value of the total coalition; symmetry, because if two features contributed 
the same across all possible coalitions, their Shapley value should be the same; 
dummy, as if a feature does not change the predicted outcome, regardless of the 
coalition of features, then its Shapley value should be zero; and finally additivity, as 
for any pair of games 𝑥𝑥 and 𝑧𝑧 it follows ∅i(x + z) = ∅i(x) + ∅i(z). However, there 
are two key drawbacks which are important to highlight: 

- Feature independence: SHAP makes the unrealistic assumption that 
features are uncorrelated. This assumption strikes over real-world datasets 
in finance where variables are strongly correlated, as usually happens in 
credit portfolios. This is common in many post hoc explainability techniques. 
In fact, permutation Feature Importance relies on this property as well, and it 
calls into question the utility of these techniques in applied settings. 
 

- Convergence: when the number of features is high, the number of coalitions 
can be almost impossible to manage, and this is why there are several 
numerical methods for approximating the results, usually through sampling 
when permuting the input data. The resulting explanation can change as 
more samples are used, creating another source of potential instability in the 
results, as different configurations of the same ML model, or refreshing the 
same ML model with new data can result in different explanations for the 
same consumer (Hall et al. 2021). This is a special concern in financial 
services, especially for the generation of adverse action notices for credit 
decisions, where two similar models giving different explanations to the same 
applicant may raise questions (e.g.: see the consistency test in FinrRegLab, 
2022).  
 
To approximate the results in our article we will use Tree explainer (Lundberg, 
2018) for XGBoost, and for Deep Learning we will use Deep SHAP 
(Shrikumar et al, 2017). 

To tackle these weaknesses, new promising research is ongoing. For instance, 
Miroshnikov et al. (2021) propose a feature grouping technique that employs an 
information-theoretic measure of dependence to design appropriate groups of 
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features. Achieving independent groups of features allows to reduce the 
dimensionality of the problem and consequently the computational complexity of 
generating explanations, while increasing the accuracy of the partitioning and 
therefore the reliability and stability of the results. In this line Jullum et al. (2021) 
presents an adaptation called groupShapley. Following a different approach, Aas et 
al. (2021), extend the Kernel SHAP method (Lundberg and Lee, 2017) to handle 
dependent features, though at a high computational cost. 

5.    Data and models 
While post hoc evaluation techniques are helpful in understanding the relevance of 
the input variables on a model’s prediction, how can we know when these 
explanations are reliable? To answer this question, we use a framework based on 
creating several synthetic datasets to test the goodness of fit of post hoc 
explanation techniques. Our synthetic datasets contain a binary variable that would 
correspond to the target variable. The approach we follow to obtain the synthetic 
datasets allows us to choose flexibly the characteristics of the features. 
Subsequently, we estimate two non-interpretable ML models, XGBoost and Deep 
Learning, to predict the binary variable based on the features. These two ML models 
are among the most used ones in the literature on credit default prediction 
(Königstorfer and Thalmann, 2020). Once we have estimated them, we will apply 
Feature Importance and SHAP to reveal which are the most important features for 
the ML models’ predictions. Since the datasets have been created by us, we know 
the ground truth, in particular which are the features that most influence the target 
variable. By comparing the real importance of the features with the importance given 
to the features by the interpretability techniques, we can assess the reliability of the 
interpretability techniques. Before we begin our discussion, we explain in the 
following Section how the dataset generation process works. 

 

5.1 Synthetic datasets 
The importance of synthetic datasets to evaluate the performance of post hoc 
interpretation techniques is paramount. Without knowing the ground truth of the 
data it is not possible to understand up to which degree is the explanation given by 
the interpretability technique correct. Despite the existence of a new and growing 
literature on the use of synthetic data for ML interpretability, there is not a 
standardized procedure on how to create these synthetic datasets. As mentioned 
in the literature review, some papers have used Gaussian Copulas (Barr et al. 2020) 
or Monte Carlo linear models (Aas et al. 2021) to generate the datasets. In this paper 
we want to create synthetic datasets by being completely agnostic about the 
underlying data generating process. We will take no assumption or knowledge on 
the data we wish to create, this way we can be as flexible as possible. With our 
methodology we can choose randomly, for each dataset, how many observations, 
how many features, the percentage of positives in the binary target variable, the 
statistical distribution of the features (in our case we allow Normal, Beta, Gamma, 
Cauchy, Uniform distributions), and the number of categorical variables. More 



BANCO DE ESPAÑA 19 DOCUMENTO DE TRABAJO N.º 2222

15 
 

features. Achieving independent groups of features allows to reduce the 
dimensionality of the problem and consequently the computational complexity of 
generating explanations, while increasing the accuracy of the partitioning and 
therefore the reliability and stability of the results. In this line Jullum et al. (2021) 
presents an adaptation called groupShapley. Following a different approach, Aas et 
al. (2021), extend the Kernel SHAP method (Lundberg and Lee, 2017) to handle 
dependent features, though at a high computational cost. 

5.    Data and models 
While post hoc evaluation techniques are helpful in understanding the relevance of 
the input variables on a model’s prediction, how can we know when these 
explanations are reliable? To answer this question, we use a framework based on 
creating several synthetic datasets to test the goodness of fit of post hoc 
explanation techniques. Our synthetic datasets contain a binary variable that would 
correspond to the target variable. The approach we follow to obtain the synthetic 
datasets allows us to choose flexibly the characteristics of the features. 
Subsequently, we estimate two non-interpretable ML models, XGBoost and Deep 
Learning, to predict the binary variable based on the features. These two ML models 
are among the most used ones in the literature on credit default prediction 
(Königstorfer and Thalmann, 2020). Once we have estimated them, we will apply 
Feature Importance and SHAP to reveal which are the most important features for 
the ML models’ predictions. Since the datasets have been created by us, we know 
the ground truth, in particular which are the features that most influence the target 
variable. By comparing the real importance of the features with the importance given 
to the features by the interpretability techniques, we can assess the reliability of the 
interpretability techniques. Before we begin our discussion, we explain in the 
following Section how the dataset generation process works. 

 

5.1 Synthetic datasets 
The importance of synthetic datasets to evaluate the performance of post hoc 
interpretation techniques is paramount. Without knowing the ground truth of the 
data it is not possible to understand up to which degree is the explanation given by 
the interpretability technique correct. Despite the existence of a new and growing 
literature on the use of synthetic data for ML interpretability, there is not a 
standardized procedure on how to create these synthetic datasets. As mentioned 
in the literature review, some papers have used Gaussian Copulas (Barr et al. 2020) 
or Monte Carlo linear models (Aas et al. 2021) to generate the datasets. In this paper 
we want to create synthetic datasets by being completely agnostic about the 
underlying data generating process. We will take no assumption or knowledge on 
the data we wish to create, this way we can be as flexible as possible. With our 
methodology we can choose randomly, for each dataset, how many observations, 
how many features, the percentage of positives in the binary target variable, the 
statistical distribution of the features (in our case we allow Normal, Beta, Gamma, 
Cauchy, Uniform distributions), and the number of categorical variables. More 

16 
 

importantly, we can control the importance of all features with the binary target 
variable through the following four characteristics of each feature: Overlap between 
positives and negatives in the target variable conditional on the distribution of the 
feature, the percentage of noise, sparsity or missing values (#NAs)12 and outliers or 
extreme values in some features (corruption). We will explain how these four 
characteristics control the importance of the feature on the Target in section 5.1.1. 

There are two advantages of creating datasets with this methodology. First, we 
generate very granular levels of importance, feature by feature. This allows for a 
richer analysis than having just identified a cluster of important or redundant 
features, as in Barr et al. (2020). Second, we control for different circumstances, like 
different sample sizes, distribution of features, or number of #NAs, giving 
robustness to our results. On the other hand, one of the drawbacks is that the 
resulting correlation among variables in our dataset is low as we will explain later. 

5.1.1 Step-by-step creation of the synthetic datasets 
The steps to create a single dataset are as follows:  

1. We first decide the number of observations as a random integer from 50,000 
to 150,000.  

2. We select the percentage of zeros and ones in the target variable. 
3. We select the number of features of each class as a random integer between 

a minimum and a maximum number. 
a. For each class, we specify a minimum and a maximum value for its 

mean. 
b. For each class, we specify a minimum and a maximum value for the 

following properties: overlap, noise, sparsity and corruption. 

We will now define each of these four characteristics through which we control the 
influence of the feature on the variable Target.  

Overlap: It is a parameter that takes values between zero and one and refers to the 
amount of separation between positives and negatives in the target variable 
conditional on the distribution of a given feature. For each feature of the dataset, we 
create a distribution for the observations with Target equal to one, and a different 
distribution for the observations with target equal to zero. If a feature has overlap 
one, it means that its distribution associated with Target equal to one overlaps 
completely with its distribution associated with Target equal to zero, and it has no 
discriminatory power. On the other hand, if a feature has an overlap of zero, then its 
effect on the Target is maximum, see Figure 1 for a normal distribution with low 
overlap, and Figure 2 for a normal distribution with high overlap.  

 

                                                           
12 Not Available observations or missing values. 
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variable through the following four characteristics of each feature: Overlap between 
positives and negatives in the target variable conditional on the distribution of the 
feature, the percentage of noise, sparsity or missing values (#NAs)12 and outliers or 
extreme values in some features (corruption). We will explain how these four 
characteristics control the importance of the feature on the Target in section 5.1.1. 

There are two advantages of creating datasets with this methodology. First, we 
generate very granular levels of importance, feature by feature. This allows for a 
richer analysis than having just identified a cluster of important or redundant 
features, as in Barr et al. (2020). Second, we control for different circumstances, like 
different sample sizes, distribution of features, or number of #NAs, giving 
robustness to our results. On the other hand, one of the drawbacks is that the 
resulting correlation among variables in our dataset is low as we will explain later. 

5.1.1 Step-by-step creation of the synthetic datasets 
The steps to create a single dataset are as follows:  

1. We first decide the number of observations as a random integer from 50,000 
to 150,000.  

2. We select the percentage of zeros and ones in the target variable. 
3. We select the number of features of each class as a random integer between 

a minimum and a maximum number. 
a. For each class, we specify a minimum and a maximum value for its 

mean. 
b. For each class, we specify a minimum and a maximum value for the 

following properties: overlap, noise, sparsity and corruption. 

We will now define each of these four characteristics through which we control the 
influence of the feature on the variable Target.  

Overlap: It is a parameter that takes values between zero and one and refers to the 
amount of separation between positives and negatives in the target variable 
conditional on the distribution of a given feature. For each feature of the dataset, we 
create a distribution for the observations with Target equal to one, and a different 
distribution for the observations with target equal to zero. If a feature has overlap 
one, it means that its distribution associated with Target equal to one overlaps 
completely with its distribution associated with Target equal to zero, and it has no 
discriminatory power. On the other hand, if a feature has an overlap of zero, then its 
effect on the Target is maximum, see Figure 1 for a normal distribution with low 
overlap, and Figure 2 for a normal distribution with high overlap.  

 

                                                           
12 Not Available observations or missing values. 
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Figure 1. Low overlap in normal distributions. 

 

Figure 2. High overlap in normal distributions. 

Once we decide the desired degree of overlap, the way to create the final values of 
the feature is as follows: we select randomly a mean within the desired interval for 
the distribution of observations with Target one, and a mean for the observations 
with Target zero. The standard deviation for the observations with Target one is 
calculated as the absolute difference between those two means. And the standard 
deviation for the observations with Target zero is calculated as the standard 
deviation of the observations with Target one multiplied by a value such that both 
distributions have the desired overlap. Here we depict an example for a variable with 
a Normal distribution13: 

𝑋𝑋~𝑁𝑁(𝜇𝜇1 ∈ [𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚, 𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚], 𝜎𝜎1 =  |𝜇𝜇1 − 𝜇𝜇2|) 𝑖𝑖𝑖𝑖 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 1  
                                                           
13 The creation of variables belonging to the other distributions follow a similar process. We explain 
in the Appendix how to proceed with them. 
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Figure 1. Low overlap in normal distributions. 

 

Figure 2. High overlap in normal distributions. 

Once we decide the desired degree of overlap, the way to create the final values of 
the feature is as follows: we select randomly a mean within the desired interval for 
the distribution of observations with Target one, and a mean for the observations 
with Target zero. The standard deviation for the observations with Target one is 
calculated as the absolute difference between those two means. And the standard 
deviation for the observations with Target zero is calculated as the standard 
deviation of the observations with Target one multiplied by a value such that both 
distributions have the desired overlap. Here we depict an example for a variable with 
a Normal distribution13: 

𝑋𝑋~𝑁𝑁(𝜇𝜇1 ∈ [𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚, 𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚], 𝜎𝜎1 =  |𝜇𝜇1 − 𝜇𝜇2|) 𝑖𝑖𝑖𝑖 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 1  
                                                           
13 The creation of variables belonging to the other distributions follow a similar process. We explain 
in the Appendix how to proceed with them. 

18 
 

𝑋𝑋~𝑁𝑁(𝜇𝜇2 ∈ [𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚, 𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚], 𝜎𝜎2 =  𝛼𝛼 ∗ 𝜎𝜎1) 𝑖𝑖𝑖𝑖 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 0  

Where 𝛼𝛼 is the parameter with a value such that we can achieve the desired overlap, 
𝜇𝜇1 and 𝜎𝜎1 are the mean and the standard deviation of the Normal distribution for the 
observations with Target equal to one, and 𝜇𝜇2 and 𝜎𝜎2 are the mean and the standard 
deviation of the Normal distribution for the observations with Target equal to zero. 

Noise: refers to the percentage of values of the feature that will have a random 
noise created. It follows a Bernoulli, with probability 𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 ∈
[𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛, 𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛], multiplied by a uniform variable that controls the extent of the 
noise. The random noise will be created as follows: 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁~𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 ∈ [𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛, 𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛]) ∗ 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈(−1.5 ∗ 𝐼𝐼𝐼𝐼𝐼𝐼(𝑋𝑋), 1.5
∗ 𝐼𝐼𝐼𝐼𝐼𝐼(𝑋𝑋)) 

In case of being one, the Noise variable changes the value of the original value with 
an extent from minus 1.5 times the interquartile range of the original variable IQR(x) 
to plus 1.5 times the interquartile range of the original variable. 

Corruption: it is a parameter that we use to control the percentage of elements of 
each generated feature that will change its position without taking into account the 
Target values giving rise to outliers.  

And finally, sparsity is a parameter that controls the percentage of variables which 
values will be replaced by empty or null value (#NAs). 

Giving different values to the parameters of Overlap, Noise, Corruption and Sparsity 
we can control the importance of a given feature on the Target. Therefore, in order 
to create the ranking, since all four characteristics are values between zero and one, 
for each feature we sum the four characteristics, and we order the features in 
descending order. The less Overlap, Corruption, Noise and Sparsity, the more 
important the feature. Following this, we create 250 datasets, with (bounded) 
random values for the number of instances and features and different parameters. 
In Table 1 we summarize the values that we have used to create the datasets. 

 

Table 1. Parameters for the generation of synthetic datasets 

Parameter Min Max 
Number of observations 50,000 150,000 
Percentage of ones in 
Target 

3% 7% 

Number of Normal 
variables 

10 25 

Number of Uniform 
variables 

10 25 

Number of Cauchy 
variables 

10 25 

Number of Beta variables 10 25 
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Figure 1. Low overlap in normal distributions. 

 

Figure 2. High overlap in normal distributions. 

Once we decide the desired degree of overlap, the way to create the final values of 
the feature is as follows: we select randomly a mean within the desired interval for 
the distribution of observations with Target one, and a mean for the observations 
with Target zero. The standard deviation for the observations with Target one is 
calculated as the absolute difference between those two means. And the standard 
deviation for the observations with Target zero is calculated as the standard 
deviation of the observations with Target one multiplied by a value such that both 
distributions have the desired overlap. Here we depict an example for a variable with 
a Normal distribution13: 

𝑋𝑋~𝑁𝑁(𝜇𝜇1 ∈ [𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚, 𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚], 𝜎𝜎1 =  |𝜇𝜇1 − 𝜇𝜇2|) 𝑖𝑖𝑖𝑖 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 1  
                                                           
13 The creation of variables belonging to the other distributions follow a similar process. We explain 
in the Appendix how to proceed with them. 
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𝑋𝑋~𝑁𝑁(𝜇𝜇2 ∈ [𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚, 𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚], 𝜎𝜎2 =  𝛼𝛼 ∗ 𝜎𝜎1) 𝑖𝑖𝑖𝑖 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 0  

Where 𝛼𝛼 is the parameter with a value such that we can achieve the desired overlap, 
𝜇𝜇1 and 𝜎𝜎1 are the mean and the standard deviation of the Normal distribution for the 
observations with Target equal to one, and 𝜇𝜇2 and 𝜎𝜎2 are the mean and the standard 
deviation of the Normal distribution for the observations with Target equal to zero. 

Noise: refers to the percentage of values of the feature that will have a random 
noise created. It follows a Bernoulli, with probability 𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 ∈
[𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛, 𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛], multiplied by a uniform variable that controls the extent of the 
noise. The random noise will be created as follows: 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁~𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 ∈ [𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛, 𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛]) ∗ 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈(−1.5 ∗ 𝐼𝐼𝐼𝐼𝐼𝐼(𝑋𝑋), 1.5
∗ 𝐼𝐼𝐼𝐼𝐼𝐼(𝑋𝑋)) 

In case of being one, the Noise variable changes the value of the original value with 
an extent from minus 1.5 times the interquartile range of the original variable IQR(x) 
to plus 1.5 times the interquartile range of the original variable. 

Corruption: it is a parameter that we use to control the percentage of elements of 
each generated feature that will change its position without taking into account the 
Target values giving rise to outliers.  

And finally, sparsity is a parameter that controls the percentage of variables which 
values will be replaced by empty or null value (#NAs). 

Giving different values to the parameters of Overlap, Noise, Corruption and Sparsity 
we can control the importance of a given feature on the Target. Therefore, in order 
to create the ranking, since all four characteristics are values between zero and one, 
for each feature we sum the four characteristics, and we order the features in 
descending order. The less Overlap, Corruption, Noise and Sparsity, the more 
important the feature. Following this, we create 250 datasets, with (bounded) 
random values for the number of instances and features and different parameters. 
In Table 1 we summarize the values that we have used to create the datasets. 

 

Table 1. Parameters for the generation of synthetic datasets 

Parameter Min Max 
Number of observations 50,000 150,000 
Percentage of ones in 
Target 

3% 7% 

Number of Normal 
variables 

10 25 

Number of Uniform 
variables 

10 25 

Number of Cauchy 
variables 

10 25 

Number of Beta variables 10 25 
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𝑋𝑋~𝑁𝑁(𝜇𝜇2 ∈ [𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚, 𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚], 𝜎𝜎2 =  𝛼𝛼 ∗ 𝜎𝜎1) 𝑖𝑖𝑖𝑖 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 0  

Where 𝛼𝛼 is the parameter with a value such that we can achieve the desired overlap, 
𝜇𝜇1 and 𝜎𝜎1 are the mean and the standard deviation of the Normal distribution for the 
observations with Target equal to one, and 𝜇𝜇2 and 𝜎𝜎2 are the mean and the standard 
deviation of the Normal distribution for the observations with Target equal to zero. 

Noise: refers to the percentage of values of the feature that will have a random 
noise created. It follows a Bernoulli, with probability 𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 ∈
[𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛, 𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛], multiplied by a uniform variable that controls the extent of the 
noise. The random noise will be created as follows: 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁~𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 ∈ [𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛, 𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛]) ∗ 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈(−1.5 ∗ 𝐼𝐼𝐼𝐼𝐼𝐼(𝑋𝑋), 1.5
∗ 𝐼𝐼𝐼𝐼𝐼𝐼(𝑋𝑋)) 

In case of being one, the Noise variable changes the value of the original value with 
an extent from minus 1.5 times the interquartile range of the original variable IQR(x) 
to plus 1.5 times the interquartile range of the original variable. 

Corruption: it is a parameter that we use to control the percentage of elements of 
each generated feature that will change its position without taking into account the 
Target values giving rise to outliers.  

And finally, sparsity is a parameter that controls the percentage of variables which 
values will be replaced by empty or null value (#NAs). 

Giving different values to the parameters of Overlap, Noise, Corruption and Sparsity 
we can control the importance of a given feature on the Target. Therefore, in order 
to create the ranking, since all four characteristics are values between zero and one, 
for each feature we sum the four characteristics, and we order the features in 
descending order. The less Overlap, Corruption, Noise and Sparsity, the more 
important the feature. Following this, we create 250 datasets, with (bounded) 
random values for the number of instances and features and different parameters. 
In Table 1 we summarize the values that we have used to create the datasets. 

 

Table 1. Parameters for the generation of synthetic datasets 

Parameter Min Max 
Number of observations 50,000 150,000 
Percentage of ones in 
Target 

3% 7% 

Number of Normal 
variables 

10 25 

Number of Uniform 
variables 

10 25 

Number of Cauchy 
variables 

10 25 

Number of Beta variables 10 25 
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Number of Gamma 
variables 

10 25 

Number of categorical 10 60 
Probability sparsity 30% 75% 
Probability corruption 50% 95% 
Probability noise 50% 95% 
Probability overlap 40% 90% 
Mean Normal -1,500 15,000 
Mean Uniform -1,500 15,000 
Mean Cauchy 3 40,000 
Mean Gamma 10 400,000 

 

Table 2. Parameters for the generation of synthetic datasets 

 Number of 
features Number of rows Target 

Mean 71.21 98,661.71 0.049 
Standard 
deviation 

9.37 28,298 0.011 

Minimum 45 50,217 0.030 
25% 64 75,184 0.039 
50% 71 97,453 0.050 
75% 77 122,022 0.060 
Maximum 100 149,801 0.069 

 

We acknowledge that the accuracy of the interpretability techniques will depend on 
the particular parameters of Table 1. For instance, had we chosen a set of relaxed 
parameters (like minimum probability of sparsity 1% and maximum probability of 
sparsity 5%), the accuracy of the post hoc evaluation techniques would be higher. 
We assume that by using these ranges of values we control realistically for situations 
we could encounter in real applied settings, just by averaging out our results for 
each parameter. The parameters regarding the number of features, number of rows 
and target have been chosen so that the resulting dataset is similar to other credit 
datasets, like Alonso and Carbo (2020), or “Give me some credit”, available in 
Kaggle.com. We acknowledge that more work is needed to generate datasets 
which resulting distributions and correlation structure could be similar to real credit 
datasets. 

Notwithstanding this, since we draw the features one by one without explicitly 
imposing any correlation structure, our dataset present low levels of cross 
correlation, between -10% to 10% at maximum. Two features with similar overlap 
would be correlated, but since we are using random overlaps for every feature, and 
we are adding a significant amount of noise, sparsity, and corruption, the resulting 
correlations end being low. We will not be able to recreate situations in which the 
data displays higher correlations among variables, something that might be 
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Number of Gamma 
variables 

10 25 

Number of categorical 10 60 
Probability sparsity 30% 75% 
Probability corruption 50% 95% 
Probability noise 50% 95% 
Probability overlap 40% 90% 
Mean Normal -1,500 15,000 
Mean Uniform -1,500 15,000 
Mean Cauchy 3 40,000 
Mean Gamma 10 400,000 

 

Table 2. Parameters for the generation of synthetic datasets 

 Number of 
features Number of rows Target 

Mean 71.21 98,661.71 0.049 
Standard 
deviation 

9.37 28,298 0.011 

Minimum 45 50,217 0.030 
25% 64 75,184 0.039 
50% 71 97,453 0.050 
75% 77 122,022 0.060 
Maximum 100 149,801 0.069 

 

We acknowledge that the accuracy of the interpretability techniques will depend on 
the particular parameters of Table 1. For instance, had we chosen a set of relaxed 
parameters (like minimum probability of sparsity 1% and maximum probability of 
sparsity 5%), the accuracy of the post hoc evaluation techniques would be higher. 
We assume that by using these ranges of values we control realistically for situations 
we could encounter in real applied settings, just by averaging out our results for 
each parameter. The parameters regarding the number of features, number of rows 
and target have been chosen so that the resulting dataset is similar to other credit 
datasets, like Alonso and Carbo (2020), or “Give me some credit”, available in 
Kaggle.com. We acknowledge that more work is needed to generate datasets 
which resulting distributions and correlation structure could be similar to real credit 
datasets. 

Notwithstanding this, since we draw the features one by one without explicitly 
imposing any correlation structure, our dataset present low levels of cross 
correlation, between -10% to 10% at maximum. Two features with similar overlap 
would be correlated, but since we are using random overlaps for every feature, and 
we are adding a significant amount of noise, sparsity, and corruption, the resulting 
correlations end being low. We will not be able to recreate situations in which the 
data displays higher correlations among variables, something that might be 
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characteristic in real life credit datasets. While it is potentially feasible to adapt the 
methodology to accommodate a particular correlation structure, we would need to 
abandon the assumption of being fully agnostic on the underlying processes. 
Consequently, we find it insightful to start the analysis using this idealized dataset, 
due to the advantages mentioned before, and leaving for further research how to 
impose a higher level of correlation in the synthetic dataset. All in all, we believe that 
this methodology contributes to the literature by showing a way to make a fine grain 
comparison of the two rankings of relevance of the variables, controlling for a broad 
scope of real life situations (while not exhaustively) in credit portfolios. 

 

5.2 Machine learning models 
Before examining the interpretability techniques, we will need to estimate our Target 
variable using two (non-interpretable) ML models: XGBoost and Deep Learning. 
Ideally, the data should be split into three samples, train (60%), test (20%), and 
validation (20%). The validation test sample should be used to choose the hyper 
parameters and the proper architecture of the ML models. Since our aim is to create 
potentially hundreds of datasets, we could not afford cross validate the ML models 
in all of them, since that would have increase the computational time exponentially. 
Therefore, we have decided to realize a proper 5-k fold cross validation with only 
20 sets. We select the architecture for XGBoost and Deep Learning that achieves 
the best AUC-ROC on average on the validation test for those 20 sets, and we 
consider those architectures as the baseline XGBoost and the baseline Deep 
Learning14 for the rest of the paper. Therefore, for the reminder of the paper, we use 
80% of the data to train the ML models, and 20% of the data to test the out-of-
sample performance.  

 

5.2.1 XGBoost  
Gradient-boosted decision trees (XGB) are an ensemble ML method that consists 
on initially estimating a very simple tree with the training dataset and then by looking 
at the residuals it fits another tree by giving a higher weight to the observations 
erroneously classified and repeats this process subsequently with more trees until 
a stopping criteria is met. The boosting method works as a committee method to 
aggregate the decision of the individual trees. The committee evolves over time and 
the members cast a weighted vote. The final prediction is obtained by taking a 
weighted majority vote on the sequence of generated trees (Hastie, Friedman and 
Tibshirani, 2009). 

Our baseline XGBoost is composed of 80 trees, estimated using a logistic 
regression as loss function, a learning rate of 0.1, and a maximum depth of 3. All 
the sub-samples are used for fitting the individual decision trees, and we use the 

                                                           
14 We show in section 5.2.1 the baseline XGBoost and in section 5.2.2 the baseline Deep Learning 
model. 

20 
 

characteristic in real life credit datasets. While it is potentially feasible to adapt the 
methodology to accommodate a particular correlation structure, we would need to 
abandon the assumption of being fully agnostic on the underlying processes. 
Consequently, we find it insightful to start the analysis using this idealized dataset, 
due to the advantages mentioned before, and leaving for further research how to 
impose a higher level of correlation in the synthetic dataset. All in all, we believe that 
this methodology contributes to the literature by showing a way to make a fine grain 
comparison of the two rankings of relevance of the variables, controlling for a broad 
scope of real life situations (while not exhaustively) in credit portfolios. 

 

5.2 Machine learning models 
Before examining the interpretability techniques, we will need to estimate our Target 
variable using two (non-interpretable) ML models: XGBoost and Deep Learning. 
Ideally, the data should be split into three samples, train (60%), test (20%), and 
validation (20%). The validation test sample should be used to choose the hyper 
parameters and the proper architecture of the ML models. Since our aim is to create 
potentially hundreds of datasets, we could not afford cross validate the ML models 
in all of them, since that would have increase the computational time exponentially. 
Therefore, we have decided to realize a proper 5-k fold cross validation with only 
20 sets. We select the architecture for XGBoost and Deep Learning that achieves 
the best AUC-ROC on average on the validation test for those 20 sets, and we 
consider those architectures as the baseline XGBoost and the baseline Deep 
Learning14 for the rest of the paper. Therefore, for the reminder of the paper, we use 
80% of the data to train the ML models, and 20% of the data to test the out-of-
sample performance.  

 

5.2.1 XGBoost  
Gradient-boosted decision trees (XGB) are an ensemble ML method that consists 
on initially estimating a very simple tree with the training dataset and then by looking 
at the residuals it fits another tree by giving a higher weight to the observations 
erroneously classified and repeats this process subsequently with more trees until 
a stopping criteria is met. The boosting method works as a committee method to 
aggregate the decision of the individual trees. The committee evolves over time and 
the members cast a weighted vote. The final prediction is obtained by taking a 
weighted majority vote on the sequence of generated trees (Hastie, Friedman and 
Tibshirani, 2009). 

Our baseline XGBoost is composed of 80 trees, estimated using a logistic 
regression as loss function, a learning rate of 0.1, and a maximum depth of 3. All 
the sub-samples are used for fitting the individual decision trees, and we use the 

                                                           
14 We show in section 5.2.1 the baseline XGBoost and in section 5.2.2 the baseline Deep Learning 
model. 
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minimum square error with improvement score by Friedman as a function to 
measure the quality of the split.  

 

5.2.2 Deep Learning 
Artificial neural networks (NN) learn non-linear relationships between features and 
the target variable through several inner layers (Bengio and Lecun, 2007). The first 
layer consists of the features of the input data, which are used to generate latent 
features that make up the nodes in the second layer. The evaluation is conducted 
by weighting the sum of inputs, based on an activation function which combines 
several features into a single number (usually between zero and one). This process 
repeats until the final layer, where predictions for the target variable are generated.  

In our study we will estimate a Deep Neural Network (those with three or more 
intermediate or hidden layers) and we will use the ReLU activation function at the 
hidden nodes, as defined by: 

ReLU(xi) = max(0, xi) 

The main advantage of using the ReLU function over other activation functions is 
that it does not activate all the neurons at the same time. In particular, the neurons 
will only be deactivated if the output of the linear transformation is less than 0. 

For the output layer, we use a sigmoid function, as defined by: 

Sigmoid(xi) =
1

1 + e−xi 

This function is widely used for binary classification problems, as it returns values 
between 0 and 1, which can be treated as probabilities of a data point belonging to 
a particular class (in our case a default or not). 

There are many choices to make when structuring a neural network, including the 
number of hidden layers, the number of neurons in each layer, and the activation 
functions. For our analysis the number of layers and the number of neurons in each 
layer, along with other hyper-parameters of the model, are chosen using the open-
source libraries Keras and Talos in Python. Our baseline architecture consists of 
four hidden layers with 512, 256, 128 and 64 neurons respectively, and in its 
implementation, to improve the convergence of the weights, input data have been 
normalized to have a mean of 0 and standard deviation of 1. As neural networks 
tend to be low-bias, high-variance models, which gives them a tendency to over-fit 
the data, we apply dropout of 20% to each of the layers, limiting the complexity of 
the fitted model. 
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6.    Empirical results 
6.1 Predictive performance  
We have created 250 sets, and in all of them we have used XGB and NN to predict 
the target variable in the test sample. The model with the highest AUC-ROC has 
been always XGBoost. As shown in Table 3 the minimum AUC achieved by 
XGBoost has been 0.768, while the maximum has been 0.955. The average AUC 
across the 250 datasets has been 0.881. On the other hand, the performance of 
Deep Learning has been worse, with an average AUC of 0.831, maximum AUC of 
0.899 and minimum AUC of 0.667. Overall both models have a decent predictive 
performance, and the fact that XGBoost is better that Deep Learning in a 
classification problem with a low percentage of positives is consistent with the 
literature (Alonso, Carbo 2020). 

 

Table 3. Model performance. 

Model Average AUC Maximum AUC Minimum 
AUC 

XGBoost 0.881 0.955 0.768 
Deep Learning 0.831 0.899 0.667 

 

6.2 Accuracy of the explanations. Comparing rankings 
How do we determine the goodness of fit of post hoc explanations? We know the 
ordered ranking of importance for each dataset by adding the Overlap, Noise, 
Corruption and Sparsity of each feature. And we can compute the ordered ranking 
from both SHAP and Feature Importance. In order to compare the real ordered 
ranking with the one from the post hoc interpretability techniques, we need a 
quantitative metric. Two of the most used metrics to compare rankings are Kendal 
Tau and Ranked Based Overlap (RBO). We will use RBO since Kendall Tau has 
some serious drawbacks, like the fact the it needs the ranking list to be conjoint 
(and then it prevents us from focusing on the top elements of a list), and it is 
unweighted, meaning that disagreements in the top of the ranking are as important 
as disagreements at the bottom of the ranking. However, presumably a potential 
financial supervisor would be more interested in putting more emphasis on the most 
important features than on the least relevant ones. The RBO metric on the other 
hand allows us to decide how much weight the metric should assign to top of the 
ranking. We will now explain briefly how the RBO works, as proposed by Webber 
et al (2010). 

Let A and B be two possibly infinity ranking lists, where 𝐴𝐴𝑖𝑖 represents element i in 
list A. Let 𝐴𝐴𝑐𝑐:𝑑𝑑 be the set of elements from position c to position d. 

At each depth d, we are interested in the intersection of lists A and B. Such 
intersection can be defined as: 

𝐼𝐼𝐼𝐼𝐼𝐼𝐴𝐴,𝐵𝐵,𝑑𝑑 = 𝐴𝐴1:𝑑𝑑 ∩ 𝐵𝐵1:𝑑𝑑 
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Let´s call agreement at the proportion of A and B that overlap at d: 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴,𝐵𝐵,𝑑𝑑 = 𝐼𝐼𝐼𝐼𝐼𝐼𝐴𝐴,𝐵𝐵,𝑑𝑑
𝑑𝑑  

Now that we have defined how to compute the agreement up to certain depth, we 
call the average overlap (AO) at a given overlap depth K 

𝐴𝐴𝐴𝐴𝐴𝐴,𝐵𝐵,𝐾𝐾 = 1
𝐾𝐾 ∑ 𝐴𝐴𝐴𝐴𝑟𝑟𝑒𝑒𝑒𝑒𝑑𝑑

𝐾𝐾

𝑑𝑑=1
 

Now, we can use a vector of weights in such a way that we can give more 
importance to the first elements of the list. This vector of weights should be 
convergent, otherwise the series would go to infinite, while we want a vector of 
weights which sum could be represented with a finite number. Let´s consider the 
following vector of weights: 

𝑤𝑤 = ∑ 𝜌𝜌𝑑𝑑−1
∞

𝑑𝑑=1
= 1

1 − 𝜌𝜌 

With 0< 𝜌𝜌 <1, where the weight of the d element, 𝑤𝑤𝑑𝑑, is 𝜌𝜌𝑑𝑑−1. 

Finally, setting 𝑤𝑤𝑑𝑑 = (1- 𝜌𝜌) 𝜌𝜌𝑑𝑑−1 so that we have ∑ 𝑤𝑤𝑑𝑑
∞
𝑑𝑑=1 =1, we obtain our desired 

Rank Base Order measure (RBO) 

𝑅𝑅𝑅𝑅𝑅𝑅𝐴𝐴,𝐵𝐵,𝜌𝜌 = 1
𝐾𝐾 ∑ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑑𝑑

𝐾𝐾

𝑑𝑑=1
 

RBO is a measure that is bounded between zero and one. The higher the value, the 
more similar would be the rankings. With the parameter 𝜌𝜌 we can control the 
importance of the top items of the final ranking. On one extreme, when 𝜌𝜌 is equal 
to zero, then the only item that matters is the first one of the lists. When 𝜌𝜌 is equal 
to one, then the weights are arbitrarily flat. Consequently, we consider a range of 𝜌𝜌 
that focus more on the top of the lists. Specifically, we will focus on the performance 
of the interpretability techniques when 𝜌𝜌 is equal to 0.99 and 0.92515. The 
importance of the top variables for these possible values of the parameter is 
explained in the following Table 4. For example, if we choose 𝜌𝜌 = 0.925, then the 
top 10 variables weight 75% in the final RBO score. The top 50 variables will weight 
99% in the final score, but mainly because the top 10 variables weight already 75%. 
We will compare the performance of both Feature Importance and SHAP using this 
metric. 

 

                                                           
15 We have performed exercises manipulating the parameter from 0.995 to 0.9 and the results do not change. 
Using a parameter p of 0.995 would put an importance on the top 10 variables of 18%, while putting a 
parameter of 0.9 would put an importance to the top 10 variables of 85%. We consider that values of the 
parameter below 0.9 would put too much importance on the top variables, so we restrict our selection to 0.99 
and 0.925. 
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Table 4. Different weights for RBO 

Parameter 
𝜌𝜌 

% weight of top 
10 variables 

% weight of top 
30 variables 

% weight of 
top 50 

variables 
0.99 27% 53% 67% 
0.925 78% 97% 99% 

 

Before assessing the RBO obtained by the two techniques in all the datasets, let's 
visually see how the interpretability techniques perform when ordering the features 
in a ranking. In Figure 3 we plot the original ranking and the ranking of SHAP after 
XGB was applied to the test data for one of the sets we artificially created (one with 
76 features)16.  On the x-axis we represent the real ranking, and on the vertical axis, 
the SHAP ranking after applying XGB. If the points on the scatterplot are on the 45-
degree line that means that the feature is ranked in the same way in both the actual 
ranking and the SHAP ranking. It can be seen that the points do not necessarily fall 
on the 45-degrees’ line. While the first feature of the real ranking is correctly 
identified as the most important feature by the SHAP ranking, the second and third 
features of the real ranking are identified as the 10th and 15th in the SHAP ranking. 
Mismatches are to be expected, as we are putting explainability techniques to a 
severe test. The parameters that we have chosen for Overlap, Noise, etc. make the 
interpretation task complicated. In any case, it can be seen that as we go through 
the real ranking, the SHAP ranking follows closely, and the points are near the 45-
degree line. We note that despite the mismatches, the order of SHAP is in line with 
the order of the real ranking. 

Figure 3. Example of SHAP ranking and ground truth ranking. 

 

                                                           
16 The characteristics of this particular set are as follows:128.000 observations, 4.9% of positives, and the AUC 
ROC achieved by the XGB is of 0.89. 
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So graphically it is clear that the SHAP’s ranking is similar to the real ranking, at 
least a priori using one out of 250 datasets as example. But how to measure this 
similarity? Can we conclude there is an advantage of SHAP over Feature 
Importance or vice-versa? To this purpose, now we quantify how accurate are the 
actual rankings of SHAP and Feature importance using the RBO with different 
thresholds ρ. With that parameter we can control the importance of the top 
variables. We use threshold ρ=0.99 to have an idea of the entire ranking, and 
ρ=0.925 to focus on the top variables. In Table 5 we summarize the results for XGB 
and in Table 6 the results for Deep Learning. In both tables we show the average 
RBO obtained from using SHAP or Feature Importance over the 250 datasets, and 
we also show the minimum RBO and the maximum RBO from all those simulations.  

 

Table 5. RBO for XGB 

Parameter RBO 

𝜌𝜌 

SHAP RBO 

Average 

(Min, Max) 

Feature 
importance RBO 

Average 

(Min, Max) 

0.99 

(General focus) 

0.897 

( 0.810, 0.939) 

0.861 

(0.778, 0.918 ) 

0.925 

(Focus on top variables) 

0.663 

(0.337, 0.867 ) 

0.564 

( 0.297, 0.782) 

 

 

Table 6. RBO for Deep Learning 

Parameter RBO 

𝜌𝜌 

SHAP RBO 

Average 

(Min, Max) 

Feature 
importance RBO 

Average 

(Min, Max) 

0.99 

(General focus) 

0.840 

(0.778, 0.897) 

0.836 

(0.772, 0.889 ) 

0.925 

(Focus on top variables) 

0.558 

(0.322, 0.727 ) 

0.555 

(0.312, 0.724) 
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From this exercise we highlight three key results. First, the accuracy of SHAP is 
higher than the accuracy of Feature Importance, regardless of the parameter 𝜌𝜌 or 
the ML model, XGBoost or Deep Learning. Differences are higher when we focus 
on top variables (when 𝜌𝜌 is smaller), and the difference between SHAP and Feature 
Importance is much higher for XGBoost. Actually, for Deep Learning we find that 
the difference between SHAP and Feature importance is not significant, as we 
cannot reject the null the hypothesis that the difference in average RBO between 
SHAP and Feature Importance is different than zero17. In any case, we have tried 
our exercise with different parameters 𝜌𝜌, and we find that the average RBO of SHAP 
is always higher than the average RBO of Feature Importance, although by small 
margins. The positive difference between RBO of SHAP and Feature Importance is 
always significant for XGBoost. 

Second, we find that the RBO for both SHAP and Feature Importance under 
XGBoost is much higher than for Deep Learning. This might be motivated by the 
fact that XGBoost has a higher AUC than Deep Learning, as we will discuss later 
on. 

And third, we like to highlight that, while RBO never reach the value of one, both the 
RBO for SHAP and Feature Important are remarkably high for XGBoost. That 
indicates that the methods, while not being perfect, are capable of a reasonable 
degree of interpretability of the datasets. They are able to identify the main relevant 
variables, even though our synthetic datasets have been built in a way that it was 
complicated (noisy) to capture the relations among variables. We shall remember 
that due to the fact that we have been completely agnostic about the data 
generated processes, the correlation among variables in our dataset is low, ranging 
between -10% to 10%. However, we expect the correlation to play an important 
role on the results (in the Appendix we perform a small regression analysis using the 
data obtained from the 250 synthetic sets in which we try to understand which 
factors could be influencing the performance of the interpretability techniques 
measured through the RBO metric). We leave for further research to compare SHAP 
and Feature Importance in a context with higher correlation. 

 

6.3 Accuracy of the explanations. Comparing magnitudes 
In addition to comparing the order of the actual ranking with the order of the 
rankings obtained with SHAP and Feature Importance, we can compare the 
magnitude of the importance given to the features. Let's imagine that we create a 
dataset in which the most important variable is much more important than the 
second most important variable (i.e., its sum of the parameters overlap, noise, 
sparsity and corruption is much lower). Therefore, in a good explanation of the data, 

                                                           
17 If we perform a traditional t-test to determine if there is a significant difference between average 
RBO obtained by SHAP and average RBO obtained by Feature Importance, we find that the 
difference is statistically different at any level of significance after performing XGBoost, but it is not 
statistically different after performing Deep Learning. 
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not only should the most important variable be correctly identified as first, but its 
assigned importance should be much greater than that assigned to the second 
most important variable, in order to correctly capture the relevance of both variables. 
In short, it should be expected that there is a negative correlation between the sum 
of the four parameters that define the variables in the real ranking, and the 
importance assigned to the features by SHAP and Feature Importance. For 
example, in Figure 4, after applying XGBoost to one of our synthetic datasets, we 
plot on the vertical axis the importance given by SHAP to each feature, and on the 
horizontal axis the sum of the parameters of each feature. It could be seen that there 
is a clear negative correlation, in this case of -0.81. The more negative and the more 
significant the correlation, the more accurate would be the importance assigned by 
the interpretability technique. In Table 7 we show the average correlation between 
the sum of parameters of the real ranking and the SHAP values for all 250 sets after 
applying XGBoost, and the average correlation between the sum of parameters of 
the real ranking and the permutation Feature Importance values. In Table 8 we 
show the same, when applying Deep Learning. It could be seen that, as with the 
analysis made using the RBO, the accuracy of SHAP is higher than the accuracy of 
permutation Feature Importance, especially for XGBoost. 

Figure 4. Example of SHAP magnitudes and ground truth magnitudes 

 

Table 7. XGBoost 

Correlation SHAP 
magnitudes and ground 

truth magnitudes  

(Min, Max) 

Correlation Feature Importance 
magnitudes and ground truth 

magnitudes  

(Min, Max) 

-0.80 

(-0.70, -0.87) 

-0.62 

(-0.48, -0.74 ) 
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Table 8. Deep Learning 

Correlation SHAP 
magnitudes and ground 

truth magnitudes  

 (Min, Max) 

Correlation Feature Importance 
magnitudes and ground truth 

magnitudes  

 (Min, Max) 

-0.58 

(-0.35, -0.77) 

-0.53 

(-0.32, -0.69 ) 

 

6.4 Sensitivity analysis 
Finally, we assess to what extent ML models that achieve higher predictive 
performance are associated with higher accuracy of their explanations. To this 
purpose, we explore which could be the effect on the performance of SHAP and 
Feature Importance of being applied to better or worse predictive models. For a 
given dataset we create a series of XGBoost models with some random hyper-
parameters so that we can achieve “low AUC” models and we can then compare it 
with “well calibrated” XGBoost models. In order to obtain these random XGBoost, 
for each set we keep the original and well calibrated XGBoost and we create five 
additional XGBoost models, in which the number of trees is a random number with 
maximum value the number of trees of the original XGB model, and in which the 
depth of tree is a random number with maximum value the number of the trees of 
the original XGBoost model. Therefore, for each set we have a well calibrated 
XGBoost (the original one) and five additional XGBoost models with lower 
performance than the original one. We do this exercise for 20 datasets from our 
created pool of datasets, so we have 120 XGBoost models in total (20 “well 
calibrated” and 100 “low AUC”). In Figure 5 we show a scatter plot where the 
horizontal axis represents the ratio of the AUC of the “well calibrated” models over 
the AUC of the “low AUC” models, and in the vertical axis we show the ratio of the 
RBO (with 𝜌𝜌 = 0.925) obtained by SHAP of the “well calibrated” over the RBO of the 
“low AUC” models. In Figure 6 we show the same scatter plot but for Feature 
Importance. We can see that, for both SHAP and Feature Importance, it is obvious 
that the higher the difference in AUC, the higher the difference in RBO. The 
correlation is positive and significant. A 1% increase in AUC is associated with a 
0.68% increase in overall RBO for SHAP and for a 0.64% for Feature Importance.  
What happens if we focus on a RBO with 𝜌𝜌 = 0.9, i.e., a RBO that put more 
emphasis in the 10 top variables? We show the results in Table 9. The correlation 
is not as strong as before. This means that the low AUC models do reasonably well 
for the top variables. This makes sense. The top variables are important even for 
“low AUC” models, and the interpretability techniques are able to pick them up in 
the ranking. In any case, regardless of the kind of RBO that we choose, SHAP 
seems to be more sensitive to the original performance of the ML model. 
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6.4 Sensitivity analysis 
Finally, we assess to what extent ML models that achieve higher predictive 
performance are associated with higher accuracy of their explanations. To this 
purpose, we explore which could be the effect on the performance of SHAP and 
Feature Importance of being applied to better or worse predictive models. For a 
given dataset we create a series of XGBoost models with some random hyper-
parameters so that we can achieve “low AUC” models and we can then compare it 
with “well calibrated” XGBoost models. In order to obtain these random XGBoost, 
for each set we keep the original and well calibrated XGBoost and we create five 
additional XGBoost models, in which the number of trees is a random number with 
maximum value the number of trees of the original XGB model, and in which the 
depth of tree is a random number with maximum value the number of the trees of 
the original XGBoost model. Therefore, for each set we have a well calibrated 
XGBoost (the original one) and five additional XGBoost models with lower 
performance than the original one. We do this exercise for 20 datasets from our 
created pool of datasets, so we have 120 XGBoost models in total (20 “well 
calibrated” and 100 “low AUC”). In Figure 5 we show a scatter plot where the 
horizontal axis represents the ratio of the AUC of the “well calibrated” models over 
the AUC of the “low AUC” models, and in the vertical axis we show the ratio of the 
RBO (with 𝜌𝜌 = 0.925) obtained by SHAP of the “well calibrated” over the RBO of the 
“low AUC” models. In Figure 6 we show the same scatter plot but for Feature 
Importance. We can see that, for both SHAP and Feature Importance, it is obvious 
that the higher the difference in AUC, the higher the difference in RBO. The 
correlation is positive and significant. A 1% increase in AUC is associated with a 
0.68% increase in overall RBO for SHAP and for a 0.64% for Feature Importance.  
What happens if we focus on a RBO with 𝜌𝜌 = 0.9, i.e., a RBO that put more 
emphasis in the 10 top variables? We show the results in Table 9. The correlation 
is not as strong as before. This means that the low AUC models do reasonably well 
for the top variables. This makes sense. The top variables are important even for 
“low AUC” models, and the interpretability techniques are able to pick them up in 
the ranking. In any case, regardless of the kind of RBO that we choose, SHAP 
seems to be more sensitive to the original performance of the ML model. 
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Figure 5. Performance of AUC vs SHAP’s RBO in XGBoost 

 

 

 

Figure 6. Performance of AUC vs FI’s RBO in XGBoost 
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Table 9. Correlation of AUC vs SHAP values for XGBoost. 

RBO 
measure 

Correlation 
improvement AUC, 
improvement SHAP 

Correlation 
improvement AUC, 

improvement Feature 
Importance 

0.925 0,68 
 

0,64 
 

0.9 0,55 
 

0,52 
 

 

Moving from a pure data modeling culture to a more flexible algorithmic approach 
(as defined in Breiman, 2001b) in the quest for more predictive power would usually 
be seen as a risk of having less trustworthy explanations. However, the current 
access to techniques like SHAP and Feature Importance allows increases in 
predictions together with accuracy of explanations, though this last one at a 
significant slower pace. Therefore, for the task of model selection, in a world where 
we might have a sufficient number of good models and the explanations are focused 
only on the most relevant features, there seems to be room to maneuver to look for 
better explanatory models without jeopardizing too much predictive capacity. 

 

7. Conclusion 
The use of ML in finance is gaining momentum. Its advantage in terms of predictive 
capacity is undeniable in fields such as credit scoring, robo-advisors, early-warning 
systems or provisioning (Fernández, 2019), but the application of ML is not exempt 
from risks (Alonso and Carbo, 2020). Among them, one of the most important is the 
interpretability of the results, which is particularly relevant in the field of credit 
scoring. Financial regulators give special importance to achieving and ethical use of 
AI and ML for different reasons, such as fair lending, discrimination and model 
governance – see for instance, EBA (2021) for a discussion paper on ML for IRB 
models; BaFin (2022) for a consultation paper on this topic by the German authority; 
Akinwumi et al (2021) for a report on AI fair lending policy agenda for the US federal 
financial regulators; or Dupont et al (2022) on the ACPR Tech Sprint on the 
explainability of artificial intelligence.  

Motivated by this need to manage new model risks, different techniques are being 
created to help interpret the results of ML models. But this is still an incipient area, 
and there is no consensus about the reliability of these post hoc techniques, nor 
about how they should be evaluated. In this article we tackle this latter concern, 
proposing a framework to assess the accuracy of the explanations provided by 
these techniques, based on the generation of synthetic datasets. The use of 
synthetic data allows us to define the importance of the variables, and therefore we 
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can assess if the explanation given by the interpretability techniques is in line with 
the true nature of the data. We apply two ML models, XGBoost and Deep Learning 
to our synthetic datasets, and we use both SHAP and permutation Feature 
Importance to explain the outcome of these models. From our empirical exercise, 
we observe that the accuracy of SHAP is better than permutation Feature 
Importance, particularly for XGBoost. In any case, the accuracy of both methods is 
reasonably high when using XGBoost, considering the difficulty of the task at hand. 

We acknowledge that this methodology must be adapted to generate contexts 
other than those created in this article, such as situations where the correlation 
between variables is higher, or even generating the ground truth through other 
methods, like causal models. We acknowledge as well that the methodology should 
be tested with more post hoc interpretability techniques, capable of performing well 
in presence of correlation, like Aas et al (2021) or been richer in its definition of the 
objective functions like the one suggested by Giudici and Raffinetti (2021). 
Notwithstanding this, our framework is, to the best of our knowledge, the first to 
assess the reliability of global interpretability techniques, controlling the importance 
of variables in synthetically generated datasets. We conclude that using synthetic 
datasets seems a promising research area for financial authorities to work on, as it 
can be an extremely useful tool to ease the use of innovative ML models while 
mitigating the risks that are created.  
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Appendix 

9.1 Creation of variables from other distributions 
The process to draw features from distributions other than Normal distribution is 
very similar to the one shown in section 5.1 for drawing features from a Normal 
distribution. It is also based on the selection of four parameters, overlap, noise, 
sparsity and corruption, that would determine the overall importance of the features 
on the target. Depending on the distributions, there are small differences. 

Cauchy and Gamma: Drawing variables from a Cauchy or a Gamma distribution 
follow the exact same process as for the Normal distribution, being the only 
difference that instead of choosing the parameters mean and standard deviation, 
we choose location and scale for Cauchy, and shape and scale for Gamma 
respectively. 

 

Beta: Drawing variables from a Beta distribution implies choosing values for 
parameters 𝛼𝛼 and 𝛽𝛽. 

Distribution if target = 1 

X~Beta(𝛼𝛼1, 𝛽𝛽1) 

Where 𝛼𝛼1 = Uniform(2,5), and 𝛽𝛽1=min(4 ∗ 𝛼𝛼1, 𝛼𝛼1+ 2 ∗ 𝛼𝛼1 ∗  (1 −  ω)1.5) 

Distribution if target = 0 

X~Beta(𝛼𝛼0, 𝛽𝛽0) 

Where 𝛼𝛼0= 𝛽𝛽1 and 𝛽𝛽0=𝛼𝛼1 

Where ω is a parameter such that we obtain he desired overlap 

 

Uniform: Drawing variables from a Uniform distribution will imply choosing values 
for parameters 𝑚𝑚𝑚𝑚𝑚𝑚 0, 𝑚𝑚𝑚𝑚𝑚𝑚 1, 𝑚𝑚𝑚𝑚𝑚𝑚 0, 𝑚𝑚𝑚𝑚𝑚𝑚 1. We assign values to these main 
parameters using auxiliary parameters: a, b and coincidence. 

a = Uniform (minimum, maximum) 

b = Uniform (minimum, maximum) 

Coincidence=
|𝑎𝑎−𝑏𝑏|

(2− ω) 

 

 

 

 

38 
 

Where ω is a parameter such that we obtain he desired overlap, and minimum and 
maximum are random real values 

 

Distribution if target = 1 

X ~ Uniform (𝑚𝑚𝑚𝑚𝑚𝑚 1, 𝑚𝑚𝑚𝑚𝑚𝑚 1) 

If parameter a is smaller than b, then: 

𝑚𝑚𝑚𝑚𝑚𝑚 1= a  

𝑚𝑚𝑚𝑚𝑚𝑚 1= a + Coincidence 

If parameter a is greater or equal than b, then: 

𝑚𝑚𝑚𝑚𝑚𝑚 1= a - Coincidence 

𝑚𝑚𝑚𝑚𝑚𝑚 1= a 

 

Distribution if target = 0 

X ~ Uniform (𝑚𝑚𝑚𝑚𝑚𝑚 0, 𝑚𝑚𝑚𝑚𝑚𝑚 0) 

If parameter a is smaller than b, then: 

𝑚𝑚𝑚𝑚𝑚𝑚 0= b - Coincidence  

𝑚𝑚𝑚𝑚𝑚𝑚 0= b 

If parameter a is greater or equal than b, then: 

𝑚𝑚𝑚𝑚𝑚𝑚 0= b 

𝑚𝑚𝑚𝑚𝑚𝑚 0= b + Coincidence 

 

Categorical: The drawing from categorical variables is slightly different. Instead of 
drawing from two distributions (one for zeros and one for ones), we draw from three 
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Where ω is a parameter such that we obtain he desired overlap, and minimum and 
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obtain he desired overlap. Let categories be the number of categories (any number 
between 2 and 10). Then, we use binomial discrete distributions as follows: 

  

Distribution for ones: 

X ~ Binomial (𝑛𝑛 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜, categories , p) 

Distribution overlapping observations: 

X ~ Binomial (𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜, categories , 0.5 ) 

Distribution for zeros: 

X ~ Binomial (𝑛𝑛 𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧 , categories , 1- p ) 

 

Where p is a random number between 0.1 and 0.2 

 

9.2 Determinants of the accuracy of the explanations 
We analyze the determinants of the performance of SHAP and Feature Importance. 
We will focus on XGBoost, since is the best performing model. We start by 
considering all the following characteristics of the datasets as possible determinants 
of the accuracy of SHAP and Feature importance.  

 Percentage of ones in the Target 
 Percentage of binary and categorical variables 
 Number of features 
 Number of observations 
 Average correlation of variables of top variables among themselves  
 Performance of the original machine learning model 

Of all these variables, the variable with a higher significant correlation with RBO of 
SHAP and Feature importance is the number of features. This makes sense, since 
a higher number of features would complicate the identification of the real order of 
variables, and thus, the RBO will be lower. Therefore, in order to control for the 
number of features, we decide to run the following regression: (Equation 1): 

𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝑁𝑁_𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖 + 𝛽𝛽2𝑁𝑁_𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖 + 𝛽𝛽3𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 + 𝛽𝛽4𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖 + 𝛽𝛽5𝐶𝐶𝑜𝑜𝑟𝑟_𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖 +  𝜖𝜖𝑖𝑖 

Equation 1 

Where i stands for each different dataset (up to 250 created datasets), RB0 is one 
of the measures of RBO for dataset i that we analyzed in Table 4 (We do our 
analysis with 𝜌𝜌 = 0,925), 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 is the number of features for set 
i, 𝑁𝑁_𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 is the number of observations in set i, 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 is the percentage of 
positives in set i, 𝑅𝑅𝑅𝑅𝑅𝑅 is AUC-ROC obtained by the XGB model used in set i,  
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𝐶𝐶𝐶𝐶𝐶𝐶_𝑡𝑡𝑡𝑡𝑡𝑡 is the correlation among the top 20 variables18, and 𝜖𝜖𝑖𝑖 is the error term. We 
record the results in Table 10, where we show the estimate of the coefficients of 
Equation 1 and in parenthesis the p value associated with the null hypothesis that 
the coefficient is equal to zero. As expected, number of features is negative and 
significant for the performance of SHAP and Feature Importance, but this is due to 
the definition of RBO. What is more relevant is that Feature Importance seems to 
be more affected by correlation among top variables. The coefficient of 𝛽𝛽6 is more 
significant for Feature Importance than for SHAP. An increase of 1% in the 
correlation among top variables could increase 0.30% the RBO of Feature 
Importance, an effect that is significant at 1%, while the effect is smaller and less 
significant for SHAP. The other variables do not seem to be significant, except the 
percentage of 1’s in the Target variable, which is a significant determinant for 
Feature Importance. Therefore, we can conclude that higher correlation among top 
variables and higher percentage of 1’s in the target helps the interpretability 
techniques, but it helps particularly to Feature Importance. The rest of the variables 
are not significant. Since, by construction, correlation among variables in our 
datasets is low, and correlation among top variables seems to be an important 
determinant, more research is needed to understand how could correlation affect 
the performance of both SHAP and Feature Importance. 

Table 10 

Independent variable RBO SHAP RBO Feature 
Importance 

𝑁𝑁_𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 -0,34 
(0,00) *** 

 

-0,43 
(0,00) *** 

 
𝑁𝑁_𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 -0,11 

(0,36) 
 

0,06 
(0,64) 

 
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 0,007 

(0,87) 
 

-0,11 
(0,03) *** 

 
𝑅𝑅𝑅𝑅𝑅𝑅 0,27 

(0,42) 
 

-0,04 
(0,90) 

 
𝑪𝑪𝑪𝑪𝑪𝑪_𝒕𝒕𝒕𝒕𝒕𝒕 0.16 

(0.055) ** 
 

0,33 
(0,00) *** 

 
N 250 250 
𝑹𝑹𝟐𝟐 0,096 

 
0,18 

 

                                                           
18 We have performed this analysis considering top 10 variables and top 30 variables and the 
results hold. 
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