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ABSTRACT

In this paper, a representation of closed 3-manifolds as branched coverings of the
3-sphere, proved in [13], and showing a relationship between open 3-manifolds
and wild knots and arcs will be illustrated by examples. It will be shown
that there exist a 3-fold simple covering p : S3 → S3 branched over the re-
markable simple closed curve of Fox [4] (a wild knot). Moves are defined such
that when applied to a branching set, the corresponding covering manifold re-
mains unchanged, while the branching set changes and becomes wild. As a
consequence every closed, oriented 3-manifold is represented as a 3-fold cov-
ering of S3 branched over a wild knot, in plenty of different ways, confirming
the versatility of irregular branched coverings. Other collection of examples
is obtained by pasting the members of an infinite sequence of two-component
strongly-invertible link exteriors. These open 3-manifolds are shown to be 2-
fold branched coverings of wild knots in the 3-sphere Two concrete examples,
are studied: the solenoidal manifold, and the Whitehead manifold. Both are 2-
fold covering of the euclidean space R3 branched over an uncountable collection
of string projections in R3.

2000 Mathematics Subject Classification: 57M12, 57M30, 57N10.
Key words: Wild knots, open manifolds, branched coverings

∗Supported by BMF-2002-04137-C02-01
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2003, 16; Núm. 2, 577-600

577 ISSN: 1139-1138
http://dx.doi.org/10.5209/rev_REMA.2003.v16.n2.16844
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1. Introduction

The classical relationship between tame links and closed 3-manifolds has been ex-
tremely fruitful in the past. Recently, Hoste [9] has generalized Kirby calculus, based
on framed links in S3, to deal with open 3-manifolds. In this generalization, the
role played by a framed link in S3 is played by a locally finite disjoint collection of
tame framed knots living in (S3-totally disconnected tame subset). In this paper,
however, we have in mind another well known relationship. We alude to the repre-
sentation of closed 3-manifolds as branched coverings of the 3-sphere. In [13] we have
generalized this to open 3-manifolds. In this way we have exhibited a relationship
between open 3-manifolds and wild knots and arcs in the sphere which is made
precise in the following statement, proved in [13]. If M̂ is the Freudenthal compact-
ification of a connected, oriented 3-manifold without boundary M , then there exist a
3-fold simple branched covering p : M̂ → S3 such that p maps the end space E(M)
of M homeomorphically onto a tame subset T of S3. The 3-fold branched covering

p | M : M → S3 − T

is simple, and the branching set is a locally finite disjoint union of properly embedded
real lines (or strings).

This paper is devoted to illustrate this, and a related Theorem about 2-fold
branched coverings, by means of examples. In section 2 of this paper we will show
that there exist a 3-fold simple covering p : S3 → S3 branched over the remarkable
simple closed curve of Fox [4] (a wild knot). This allows to define a move, such that
when applied to a branching set, the corresponding covering manifold remains un-
changed, while the branching set changes and becomes wild. This implies that every
closed, oriented 3-manifold is a 3-fold covering of S3 branched over a wild knot. And,
in fact, this can be done in plenty of different ways. This confirms the well known
flexibility when dealing with irregular branched coverings. This is illustrated with
some additional examples.

The theorem about 2-fold branched coverings, mentioned above (also proved in
[13]) says that under some conditions, an open, connected, oriented 3-manifold M
is a 2-fold branched covering of the 3-sphere minus some 0-dimensional set. In
section 3, we illustrate this theorem with examples of open 3-manifolds with one
end. A convenient collection of examples is obtained by pasting the members of
an infinite sequence of two-component strongly-invertible link exteriors. These open
3-manifolds are 2-fold branched coverings of wild knots in the 3-sphere (minus the
wild point). Two concrete examples, and their generalizations, will be studied with
special care. They are the complement in S3 of the solenoidal continuum, and of the
Whitehead continuum. The first one will be called here the solenoidal manifold, and
the second one is the celebrated open, contractible 3-manifold discovered by J.H.C.
Whitehead (Whitehead manifold). Each one of these manifolds is a 2-fold covering
of the euclidean space R3 branched over a string. Moreover, there are uncountable
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many string projections in R3 with this property. It is left as an open problem to
show that this set of string projections contains uncountably many different strings.

These results were announced in [12].

2. Some mixed preliminaries.

A knot in a 3-manifold M is a PL embedding of the 1-dimensional sphere S1 in M .
A string in an open 3-manifold M is a PL proper embedding of the real line R1in M .
Let T be a compact, totally disconnected subset of S3. A T -tangle L in S3 will be
a subset of S3 such that L − T is a locally finite, disjoint union of knots and strings
in S3 − T , and every point of T is adherent to L − T . Then L − T is called the
tame part of L. The adherence in S3 of a string in S3 − T is either a (wild) arc or
a (wild) knot in S3. We say that a compact, totally disconnected subset T of S3 is
tamely embedded, if it lies in a rectilinear segment in S3 = R3 + ∞.

Following Fox [3], we say that a space X is locally connected in a space Y if there
is a basis of Y such that V ∩X is connected for every basic open set V . Freudenthal [5]
(see [3]) has shown that every connected, locally connected, locally compact, regular,
T1 space X with a numerable basis, is contained in a compact space Y with the same
properties in such a way that X is dense, open and locally connected in Y , and the
end space E(X) := Y −X is totally disconnected. Moreover, this compactification Y
of X (Freudenthal compactification) is determined by these properties.

A represented T-tangle (L, ω) is a T -tangle L in S3 together with a transitive
representation ω of π1(S3 − L) into the symmetric group Sn of n indices. The
representation is simple if it represents meridians by transpositions.

Given a represented T -tangle (L, ω) in S3 there exist a branched covering (in Fox
sense [3])

p̂ : M̂(L, ω) → S3

of n sheets, which is the Fox completion of the spread j ◦ f , where f is the ordinary
covering of S3 − L with monodromy ω , and

j : S3 − L → S3

is the inclusion map. (Note that j ◦ f satisfies the conditions listed in [3] granting
the existence and unicity of the completion

p̂ : M̂(L, ω) → S3.)

The covering p̂ restricted to

p̂−1(S3 − T ) := M(L, ω)

defines a branched covering

p : M(L, ω) → S3 − T

579 Revista Matemática Complutense
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where M(L, ω) is an open 3-manifold, oriented and connected.
Since p is a finite covering, and S3 is the Freudenthal compactification of S3 − T ,

then M̂(L, ω) is the Freudenthal compactification of M(L, ω). This follows from the
following direct generalization of the Compactification Theorem of Fox ( [3], page
249):

Theorem 1. Let f : X → B be a branched covering. Assume X an B are con-
nected, locally connected, locally compact, with base numerable, T1 and regular, but
no compact.Let B̂ be the Freudenthal compactification of B, and let j be the inclusion
j : B ⊂ B̂ . Let g : Y → B̂ be the branched covering which is the Fox completion of
j ◦ f : X → B̂. Then, Y is the Freudenthal compactification of X if B̂ has a basis
such that, for each basic open set W , the number of components of f−1(W ) is finite.

In general M̂(L, ω) is not a manifold at the points belonging to the end space

E(M(L, ω) := M̂(L, ω) − M(L, ω).

Of course, p̂(E(M(L, ω)) = T . The covering

p̂ : M̂(L, ω) → S3

will be called simple if ω is simple.
In [13] the following theorem was proved.

Theorem 2. The Freudenthal compactification M̂ of a connected, oriented 3-manifold
without boundary M is a 3-fold simple covering of S3 branched over a E(M)-tangle L
in S3, where the end space E(M) of M is tamely embedded in S3. Moreover L−E(M)
can be assumed to be a disjoint union of strings.

This is a generalization of the Theorem of Hilden [6],[7] and the author[10],[11]
(independently), because, when M is compact, M̂ = M ; E(M) is empty, and L is a
disjoint union of a finite set of knots (in fact, just one knot is enough).

The proof of the above Theorem uses the following representation of 3-manifolds
without boundary given by Hoste [9] . Let Γ be a tree (a contractible locally finite
1-complex). To each vertex v of Γ is associated a compact, connected, oriented 3-
manifold Xv. The boundary components of Xv are in one to one correspondence with
the edges of Γ with vertex v. To each edge e of Γ we associate an orientation reversing
homeomorphism

fe : Σv,e → Σw,e

between the corresponding boundary components Σv,e of Xv and Σw,e of Xw. The
manifold M(Γ) is obtained by pasting together the pieces Xv by means of the home-
omorphisms fe.

In [13] the following theorem is proved.
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Theorem 3. Let M be a connected, oriented 3-manifold without boundary which is
represented by a tree Γ, to each vertex v of which, is associated a compact, oriented 3-
manifold Xv such that (i) BdXv is composed of nv connected components of genus �
2, and (ii) Xv is a 2-fold branched covering of the adherence of S3 minus nv disjoint
3-balls. Then M̂ is a 2-fold covering of S3 branched over a E(M)-tangle L in S3,
where E(M) is tamely embedded in S3 .

Rational link are classified by fractions p/q in lower terms with p even and 0 < q <
p (see [14]and[1]). This link p/q is interchangeable. This means that there exist an
orientation preserving homeomorphism of S3 interchanging the two components v+

and v− of p/q. An ad hoc description of p/q, useful for our purposes, is the following
[8]. Take the (unique) continuous fraction expansion of p/q of the form

[2, n1,−2, n2, 2, n3,−2, ..., ns, (−1)s2],

where the numbers {n1, n2, n3, ..., ns} are integers �= 0. Then the link p/q is depicted
in Figure 1. Since the link is interchangeable it is irrelevant what component of p/q
is called + or −. Note that the components v+ and v− of p/q are both trivial knots.

Figure 1: Rational link p/q

We assume S3 oriented. In pictures, the positive orientation of S3 will be a right
handed screw. Let V ± be a regular neighbourhood of v±, such that V + ∩ V − = ∅.
Let X(p/q) be the adherence of S3 − (V + ∪ V −). Give to X(p/q) the induced
orientation. Thus X(p/q) is a compact, oriented 3-manifold bounded by oriented
tori T± := BdV ±. Take meridian-longitude pairs (M±, L±) in T± in the usual way;
that is, M± is a meridian of V ± oriented arbitrarily, and L± is parallel to (p/q)±,
nulhomologous in S3 − V ±, and oriented in such a way that the linking number
between M± and L± is +1 in the oriented S3.
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Figure 2: The branching set

Since p/q is strongly invertible, there exist an involution (180◦ rotation around
the E axis) defining a 2-fold covering

ĝ : S3 → S3,

branched over the trivial knot O and sending v± onto the arcs b± of Figure 2. By
restriction, ĝ : S3 → S3 defines a 2-fold branched covering

g : X(p/q) → S2 × [−1, 1],

sending T± := BdV ± onto S2×{±1} . The branching set of g : X(p/q) → S2× [−1, 1]
will be denoted by R(p/q). It is depicted in Figure 3. The two curves

M± ∪ L± ∪ M̃± ∪ L̃±

(each one composed of four arcs) lift to standard meridian-longitude pairs of the trivial
knots v±.

3. The remarkable simple closed curve of Fox.

Let (L, ω) be a represented T -tangle in S3, where ω is a simple representation of
π1(S3 −L) onto the symmetric group S3 of the indices {1, 2, 3}. Thus ω sends merid-
ians of L to transpositions (1, 2), (1, 3), or (2, 3) of S3, which, following a beautiful
idea of Fox, will be represented by colors Red (R = (1, 2)), Green (G = (1, 3)) and
Blue (B = (2, 3)). If the representation exists we can endow each overpass of a nor-
mal projection of L with one of the three colors R,G,B in such a way that the colors
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Figure 3: R(p/q)

meeting in a crossing are all equal or all are different. Moreover, at least two col-
ors are used. In most cases, (for instance tame or wild knots) these conditions are
also sufficient . A tangle with a coloration corresponding to some ω is a colored T-
tangle. Theorem 2 says that every connected, oriented 3-manifold without boundary
is M(L, ω) for some colored T -tangle (L, ω) .

Figure 4: Fox curve

Consider the colored T -tangle (L, ω) of Figure 4, where T consists of just one
point. This colored T -tangle was first considered by R. H. Fox in[4]; he considered L
a remarkable simple closed curve. We will call L Fox curve, and we intend to
show in this paper that Fox curve is even more remarkable than expected. The colored
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T -tangle (L, ω) is a colored wild knot and we will prove the following Theorem.

Theorem 4. For the colored Fox curve (L, ω) of Figure 1 the space M̂(L, ω) is
homeomorphic to S3. Thus there exist a 3-fold simple covering p̂ : S3 → S3 branched
over the Fox curve L.

Proof. We will give two different proofs.

First Proof. Assume T = ∞ . Select a sequence of closed 3-balls {C3
i }∞i=1 such

that C3
i ⊂ Int(C3

i+1) and
∪∞

i=1C
3
i = R3 = S3 −∞,

as indicated in Figure 4. Let

p : M(L, ω) → S3 − T

be the simple branched covering given by the representation ω. Then, for i ≥ 1,
p−1(C3

i ) is a closed 3-ball B3
i . In fact,

p|p−1(C3
i ) : p−1(C3

i ) → C3
i

is a 3-fold simple covering of the closed 3-ball C3
i , branched over two properly em-

bedded arcs; these arcs are embedded exactly as in case i = 1 (see Figure 4).Since it
follows easily that p−1(C3

1 ) is a closed 3-ball B3
1 , then p−1(C3

i ) is also a closed 3-ball
B3

i . It is clear that B3
i ⊂ IntB3

i+1, i ≥ 1, and that

M(L, ω) = ∪∞
i=1B

3
i .

From this it follows that M(L, ω) is homeomorphic to R3 [2].

Figure 5: The move

Second Proof. The move of Figure 5, [11], has the following property. If this move
is applied to a portion of a colored T-tangle, we obtain a new colored T-tangle whose
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2003, 16; Núm. 2, 577-600

584
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corresponding 3-fold branched covering spaces are homeomorphic. Thus, apply this
move simultaneously to each of the sections of the wild colored knot (L, ω) of Figure
4, as depicted in Figure 6. The colored wild knot (L, ω) is converted in the colored T-
tangle (L1, ω1) of Figure 7, which is homeomorphic to a bouquet of two circles, whose
corresponding 3-fold branched covering space is S3. Therefore also M̂(L, ω) = S3,
as claimed.

Figure 6: Applying moves

Figure 7: A colored bouquet
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Trading what is outside ball C3
1 of Figure 4, with what is inside it one gets the

following Corollary.

Corollary 5. There is a move of the form indicated in Figure 8, such that when
applied to a portion of a colored T1-tangle, we obtain a new colored (T 1 ∪ T )-tangle
whose corresponding 3-fold branched covering spaces are homeomorphic.

Figure 8: A new move

Remark 6. A wise application of this move can increase the cardinality of the set
T from any finite discrete set of S3 to a point-convergent sequence of points. We
inductively create new moves whose defining 3-balls contain T -tangles, where T is
any countable, tame, closed, totally disconnected set. This shows that the 3-fold
branched coverings p̂ : S3 → S3 can have very wild branching sets. The following
Corollary implies that the same can be said of any closed, oriented 3-manifold. (In
the last section of this paper we will create a non standard 2-fold branched coverings
p̂ : S3 → S3 with T a Cantor set.)

Corollary 7. Every closed, oriented 3-manifold is a 3-fold covering of S3branched
over a colored wild knot.

Proof. By Theorem 1 the manifold in question is a 3-fold covering of S3 branched
over a colored tame knot. Apply now the move granted by Corollary 4.

I conjecture that every closed, oriented 3-manifold is a 3-fold covering of S3

branched over a colored wild knot in uncountably many different ways. The follow-
ing construction will construct uncountably many colored wild knot projections in
S3whose associated branched covering space is S3. Only (!) remains to show that that
collection contains uncountably many different knot types, which seems very likely.

Take the colored T-tangle of Figure 7 and isotope it to the colored T-tangle de-
picted in Figure 9 (all the isotopies can be done simultaneously), having the property
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Figure 9: A colored bouquet

that in each crossing meet three different colors.Apply now the move of Figure
5 to these infinite crossings in all possible ways. In this way we obtain uncountably
many colored wild knot projections in S3whose associated branched covering space
is S3. An example is shown in Figure 10. In this example we have applied the move
in a sequence of crossings. The application can be characterized by a sequence like:
{1, 1, 1, ...}. If the no-application of the move is denoted with the symbol 0, the T-
tangle of Figure 9 is denoted by {0, 0, 0, ...}. Any sequence of symbols 0 and 1 will
define a colored T-tangle whose associated branched covering space is S3.

Figure 10: A colored wild knot

Example 8. The colored T -tangle (L, ω) of Figure 11 has M(L, ω) homeomorphic
to the one point compactification of the infinite connected sum of projective 3-spaces

#∞
i=1RP 3.

This is proved using moves, as depicted. (Use the fact that the 2-fold covering of S3

branched over the rational linl 2/1 is RP 3.)

4. Manifolds with one end and 2-fold coverings.

We start with the simplest non trivial example. Consider the rational link L = 4/1 of
Figure 12, which is composed of two trivial knots v+ and v− (compare with section
2).
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Figure 11

Figure 12: L = 4/1

Rotation of 180◦ around the E-axis defines a 2-fold covering ĝ : S3 → S3 branched
over the trivial knot O := ĝ(E). Take disjoint 3-ball neighbourhoods B± of the arcs
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Figure 13

b± := ĝ(v±) as in Figure 13, and consider the two depicted curves

M± ∪ L± ∪ M̃± ∪ L̃±,

each one composed of four arcs. Call V ± := ĝ−1(B±). This is a solid torus, regular
neighbourhood of v±.In the boundary T± of V ± take the pairs ĝ−1(M±, L±) and
ĝ−1(M̃±, L̃±). These are standard meridian-longitude pairs of the trivial knots v±.
Orient them so that their linking number in S3 be +1. Since there is no risk of
confusion, we will denote ĝ−1(M±, L±) by the symbol (M±, L±). (Analogously with
ĝ−1(M̃±, L̃±); see Figure 14.)

We will define three open, connected, oriented 3-manifolds S1, S2, S3 with one end.
The solenoidal manifold S1. Call X = X(4/1) the exterior

S3 − Int(V + ∪ V −)

of the link L. Take a sequence {Xi}∞i=1 of copies of X, and a solid torus X0 with
meridian M−

0 . Paste X0 with X1 in such a way that M−
0 is identified with M+

1 .
Paste Xi with Xi+1 along the boundaries T−

i and T+
i+1 in such a way that the pair

(M−
i , L−

i ) is identified with the pair (L+
i+1,M

+
i+1). This defines the manifold S1. We

will call S1 the solenoidal manifold. It enjoys the following two properties:

Property 1. X0 ∪ X1 ∪ ... ∪ Xn is a solid torus, for each n ≥ 0.

Property 2. S1 can be embedded in S3 (in such a way that its complement is the
celebrated solenoidal continuum).

We will presently find uncountably many strings in R3 with the same 2-fold
branched covering S1.
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Figure 14: X(4/1)

The manifold X is (by restriction of ĝ : S3 → S3) a 2-fold branched covering

g : X → S2 × [−1, 1],

where S3−Int(B+∪B−) is identified with S2×[−1, 1]. The branching set R = R(4/1)
is depicted in Figure 15a (compare with Figure 13). The manifold X0 is a 2-fold
branched covering of the ball depicted in Figure 15b; the branching set is called R0.

Figure 15: R = R(4/1)

Notice the symmetry enjoyed by R and exhibited in Figure 16. This involutory
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symmetry is the projection by g of the interchanging symmetry common to all rational
links.

Figure 16: R

Take now a sequence {Ri}∞i=1 of copies of R, and paste R0 with R1 in such a way
that (M−

0 , L−
0 ) is identified with (M+

1 , L+
1 ). Paste Ri with Ri+1 in such a way that

the pair (M−
i , L−

i ) is identified with the pair (L+
i+1,M

+
i+1). This defines a string in

R3,denoted by R0RRR..., and shown in Figure 17.

Figure 17: The wild knot R0RRR...

It immediately follows that the solenoidal manifold is the 2-fold covering of R3

branched over the string R0RRR....
To find uncountably many such strings with the same property we make the fol-
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lowing observation.Consider the standard 2-fold covering p : T → S branched over
P ⊂ S, where T , S, P are, respectively, the 2-torus, the 2-sphere, and a set of four
points in S. Then, the subgroup of the mapping class group of (S, P ) represented by
elements lifting to homeomorphisms of T isotopic to identity is the Klein group of
four elements

{A0, A1, A2, A3},
where A0 is the identity. Three 4-braids realizing the non trivial elements A1, A2, A3

are shown in Figure 18.

Figure 18

Then, for any map
ε : N → {0, 1, 2, 3},

where N is the set of integers ≥ 1, we define the string

Rε := R0RAε(1)RAε(2)RAε(3)R.....

in R3. (In Figure 19 we have depicted Rε, for ε constantly equal to 2.) Then we

have: The solenoidal manifold is the 2-fold covering of R3 branched over the string
Rε, for any map ε : N → {0, 1, 2, 3}.
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Figure 19: The wild knot R0RA2RA2RA2...

Remark 9. I conjecture that the uncountably many wild knot projections Rε contain
uncountably many wild knot types.

Remark 10. The wild knots Rε +∞ ⊂ R3 +∞ ⊂ S, for any ε, are almost unknotted
in Fox sense [4] . This reflects Property 1 of S1 above.

The manifold S2. Same definition as S1, but instead of identifying (M−
i , L−

i ) with
the pair (L+

i+1,M
+
i+1) , identify it with (L̂+

i+1,M
+
i+1), where L̂+

i+1 is homologous to
M+

i+1 + 2L+
i+1 on T+

i+1. Depict again R = R(4/1), enhancing the new curve L̂+ =
M+ + 2L+, as in Figure 20.

Figure 20

The branching set (with coordinates (M−, L−), (M+, L̂+)) will be denoted by
R(2, 4/1). Then, for any ε : N → {0, 1, 2, 3} we have the string

R(2, 4/1)ε := R0R(2, 4/1)Aε(1)R(2, 4/1)Aε(2)R(2, 4/1)Aε(3)R(2, 4/1)...

in R3.(For instance, in Figure 21 we have depicted

R0R(2, 4/1)R(2, 4/1)R(2, 4/1)R(2, 4/1)...,
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which is Fox curve!)

Figure 21: Fox curve

Then we have: The manifold S2 is the 2-fold covering of R3 branched over the
string R(2, 4/1)ε, for any map ε : N → {0, 1, 2, 3}. In particular, the 2-fold covering
of S3 branched over Fox curve is the one point compactification Ŝ2 of the manifold
S2.

Remark 11. Again, I conjecture that the uncountably many wild knot projections
R(2, 4/1)εcontain uncountably many wild knot types. As above, all branching sets
R(2, 4/1)ε + ∞ are almost unknotted wild knots. This reflects the fact that S2 has
also Property 1. However, I do not know if it has Property 2, but I conjecture in
the negative.Note also that all these wild knots are colorable and that in all cases the
corresponding covering manifold is S3.Since Ŝ2 is the 2-fold covering of S3 branched
over Fox curve, and S3 is a 3-fold simple covering of S3 branched over Fox curve, it
follows that there exist a common 6-fold regular dihedral covering N of S3, branched
over Fox curve. It is an interesting exercise to describe N .

The manifold S3. Here (M−
i , L̂−

i ) is identified with the pair (L+
i+1,M

+
i+1), where

L̂−
i is homologous to M−

i + 2L−
i on T−

i . Then R = R(4/1) , with new coordinates
(M−, L̂−), (M+, L+), will be denoted by R(4/1, 2) (see Figure 22, which is like Figure
20b but turned around 180◦). Then, for any ε : N → {0, 1, 2, 3} we define the string

R0R(4/1, 2)Aε(1)R(4/1, 2)Aε(2)R(4/1, 2)Aε(3)R(4/1, 2)...

in R3, denoted by R(4/1, 2)ε. (For instance, in Figure 23 we have depicted R(4/1, 2)ε,

for ε constantly equal to 0 .) Then we have: The manifold S3 is the 2-fold covering
of R3 branched over the string R(4/1, 2)ε, for any map ε : N → {0, 1, 2, 3}.
Remark 12. The manifold S3 satisfies Property 2 above (embeddable in S3).
However, I am almost sure that none of the wild knots R(4/1, 2)ε + ∞ is almost
unknotted. An indication is the following. The knot of Figure 23 is colorable and
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Figure 22: R(4/1, 2)

Figure 23

is associated 3-fold branched covering space is the one point compactification of the
infinite connected sum of projective 3-spaces ( see Example 9 above).

If instead of the space X = X(4/1) we take the exterior X(p/q) of any rational
link we can perform the above construction in a more general way. Take an arbitrary
sequence {(pi/qi,mi)}∞i=1, where pi/qi represents a rational link, and mi is an integer.
For n ≥ 1, let Xn be X(pn/qn), the exterior of pn/qn; and let X0 be a solid torus
with meridian M−

0

Construction 1. Paste X0 with X1 in such a way that M−
0 is identified with

M+
1 . Paste Xi with Xi+1 along the boundaries T−

i and T+
i+1 in such a way that
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the pair (M−
i , L−

i ) is identified with the pair (L+
i+1,M

+
i+1). This defines the mani-

fold M{(pi/qi)}∞i=1. (The typical examples are S1, the solenoidal manifold, studied
above,and W = M{(8/3)}∞i=1, the Whitehead contractible open 3-manifold.) The
manifolds M{(pi/qi)}∞i=1enjoy properties 1 and 2 above, i.e.:

Property 1. X0 ∪ X1 ∪ ... ∪ Xn is a solid torus, for each n ≥ 0.

Property 2. M{(pi/qi)}∞i=1 can be embedded in S3 (the complement of W in S3 is
the celebrated Whitehead continuum).

The branching set Ri = R(pi/qi) is depicted in Figure 3. Take now the sequence
{Ri}∞i=1 and any map ε : N → {0, 1, 2, 3}, where N is the set of integers ≥ 1 . Define
the string

R0R1Aε(1)R2Aε(2)R2Aε(3)R3.....

in R3, denoted by Rε{(pi/qi)}∞i=1. (In Figure 24a, and resp. 24b, we have depicted
Rε{(8/3)}∞i=1, for ε constantly equal to 0, and resp. 2.) We have the Theorem:.

Figure 24: Rε{(8/3)}∞i=1, ε = 0, 2
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Theorem 13. The manifold M{(pi/qi)}∞i=1 is the 2-fold covering of R3 branched
over the string Rε{(pi/qi)}∞i=1, for any map ε : N → {0, 1, 2, 3}.In particular, the
open contractible Whitehead manifold

W = M{(8/3)}∞i=1

is a 2-fold branched covering space of S3 −∞ = R3.The branching set is any member
of the uncountable family Rε{(8/3)}∞i=1. In particular Ŵ is the 2-fold covering of S3

branched over the wild knots of Figure 24.

Conjecture 14. The family Rε{(8/3)}∞i=1 contains uncountably many different wild
knots, so that W contains uncountably many different involution with R3 as base
space.

Construction 2. Paste X0 with X1 in such a way that M−
0 is identified with

M+
1 . Paste Xi with Xi+1 along the boundaries T−

i and T+
i+1 in such a way that the

pair (M−
i , L−

i ) is identified with the pair (L̂+
i+1,M

+
i+1), where L̂+

i+1 is homologous to
M+

i+1 + mi+1L
+
i+1 on T+

i+1. This defines the manifold

M{(mi, pi/qi)}∞i=1.

(The typical example is S2 = M{(2, 4/1)}∞i=1 studied above. Another example is
W4 := M{(4, 8/3)}∞i=1.) The manifolds

M{(mi, pi/qi)}∞i=1

have Property 1, and I expect they do not have Property 2. Some of them are
contractible open 3-manifolds according to the following generalization of Whitehead
example [15]. (If in a rational link p/q the linking number of its two components is
zero we say that p/q is a linking-zero rational link.)

Theorem 15. If a cofinal subsequence of {(pi/qi)}∞i=1 is formed of linking-zero
rational links then the manifold

M{(mi, pi/qi)}∞i=1

is contractible.

Proof. Any compact set K will lie in a solid torus X0 ∪ X1 ∪ ... ∪ Xi−1 such that
the link pi/qi is a linking-zero rational link. Note that X0 ∪ X1 ∪ ... ∪ Xi−1 is V +

i .
But V +

i is contractible in S3 − V −
i , because v+

i is nullhomologous in the solid torus
S3 − V −

i . Thus K is contractible in

X0 ∪ X1 ∪ ... ∪ Xi = S3 − V −
i .

Since K might be any singular sphere we deduce that M{(mi, pi/qi)}∞i=1 is con-
tractible.
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The branching set Ri = R(pi/qi) (with coordinates (M−
i , L−

i ), (M+
i , L̂i

+
= M+

i +
miL

+
i )) will be denoted by R(mi, pi/qi). Given any map ε : N → {0, 1, 2, 3}, where

N is the set of integers ≥ 1, define the string

R0R(m1, p1/q1)Aε(1)R(m2, p2/q2)Aε(2)R(m3, p3/q3)Aε(3)R(m4, p4/q4)...

in R3, denoted by Rε{(mi, pi/qi)}∞i=1 . (In Figure 25a, and resp. 25b, we have
depicted Rε{(4, 8/3)}∞i=1, for ε constantly equal to 0 , and resp. to 2). Then we have:

Figure 25: Rε{(4, 8/3)}∞i=1, for ε = 0 , 2

Theorem 16. The manifold M{(mi, pi/qi)}∞i=1 is the 2-fold covering of R3 branched
over the string Rε{(mi, pi/qi)}∞i=1, for any map ε : N → {0, 1, 2, 3}. In particular,
the open contractible manifold W4 = M{(4, 8/3)}∞i=1 is a 2-fold branched covering
space of S3 − ∞ = R3.The branching set is any member of the uncountable family
Rε{(4, 8/3)}∞i=1. In particular Ŵ4 is the 2-fold covering of S3 branched over the wild
knots of Figure 25.

Remark 17. The wild knots

Rε{(mi, pi/qi)}∞i=1 + ∞ ⊂ R3 + ∞ ⊂ S,
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for any ε, are almost unknotted in Fox sense [4] . This reflects Property 1 of
M{(mi, pi/qi)}∞i=1 above.

Construction 3. Paste X0 with X1 in such a way that M−
0 is identified with

M+
1 . Paste Xi with Xi+1 along the boundaries T−

i and T+
i+1 in such a way that the

pair (M−
i , L̂−

i ) is identified with the pair (L+
i+1,M

+
i+1), where L̂−

i is homologous to
M−

i + miL
−
i on T−

i . This defines the manifold

M{(pi/qi,mi)}∞i=1.

(The typical example is S3 = M{(4/1, 2)}∞i=1 studied above . Another example is
V4 = M{(8/3, 4)}∞i=1.) The manifolds

M{(pi/qi,mi)}∞i=1

have Property 2. The branching set Ri = R(pi/qi) with coordinates (M−
i , L̂−

i ),
(L+

i ,M+
i ) will be denoted by R(pi/qi,mi). Given any map ε : N → {0, 1, 2, 3}, where

N is the set of integers ≥ 1, define the string

R0R(p1/q1,mi)Aε(1)R(p2/q2,m2)Aε(2)R(p3/q3,m3)Aε(3)R(p4/q4,m4, )...

in R3, denoted by Rε{(pi/qi,mi)}∞i=1. (In Figure 26a, and resp. 26b, we have depicted
Rε{(8/3, 4)}∞i=1, for ε constantly equal to 0, and resp. 2.) Then, as before, we have:

Figure 26: Rε{(8/3, 4)}∞i=1, ε = 0, 2
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Theorem 18. The manifold M{(pi/qi,mi)}∞i=1 is the 2-fold covering of R3 branched
over the string Rε{(pi/qi,mi)}∞i=1, for any map ε : N → {0, 1, 2, 3}. In particular,
the manifold V4 = M{(8/3, 4)}∞i=1 is a 2-fold branched covering space of S3 − ∞
= R3.The branching set is any member of the uncountable family Rε{(8/3, 4)}∞i=1. In
particular V̂4 is the 2-fold covering of S3 branched over the wild knots of Figure 26.
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