On reduced pairs of bounded closed convex sets

Jerzy Grzybowski and Ryszard Urbański

Faculty of Mathematics and Computer Science
Adam Mickiewicz University
Umultowska 87, PL-61614 Poznań, Poland
jgrz@amu.edu.pl
rich@amu.edu.pl

Recibido: 12 de Septiembre de 2003
Aceptado: 23 de Febrero de 2002

Abstract

In this paper certain criteria for reduced pairs of bounded closed convex set are presented. Some examples of reduced and not reduced pairs are enclosed.

2000 Mathematics Subject Classification: 52A07, 26A27.
Key words: Convex analysis, pairs of convex sets
Let $X=(X, \tau)$ be a topological vector space over the field \mathbb{R}. Let $\mathcal{K}(X)[\mathcal{B}(X)]$ be a family of all nonempty compact [bounded closed] convex subsets of X. For any $A, B \subset X$ the Minkowski sum is defined by $A+B=\{a+b \mid a \in A$ and $b \in B\}$. Since $A+B$ is not always closed [4], [9] we define $A+B=\overline{A+B}$ for $A, B \in \mathcal{B}(X)$. It was showed in [9] that for $A, B, C \in \mathcal{B}(X)$ the inclusion $A+B \subset B+C$ implies $A \subset C$. From this it follows that $\mathcal{B}(X)$ together with " + " is a semigroup satisfying the law of cancellation, i.e. $A+B=B+C$ implies $A=C$.

For $(A, B),(C, D) \in \mathcal{B}^{2}(X)$, let $(A, B) \sim(C, D)$ if and only if $A \subset C, B \subset D$ and $(A, B) \sim(C, D)$. The relation " \sim " is an equivalence relation in $\mathcal{B}^{2}(X)$ and " \leq " is an ordering in the equivalence class $[A, B]$ of any pair (A, B). It should be mentioned that the space $\mathcal{K}(X) / \sim, \mathcal{K}(X)=\{A \in \mathcal{B}(X) \mid A$ is compact $\}$, plays important role in quasidifferential calculus [2].

The set $A \in \mathcal{B}(X)$ is called a polytope if A is convex hull of a finite set. If $A, B \in \mathcal{B}(X)$ then $A \vee B$ is the convex hull of $A \cup B$.

It was proved in [6] that if $A, B \in \mathcal{K}(X)$, then there exists minimal element (C, D) in $[A, B]$ such that $(C, D) \leq(A, B)$. From [3], [8] we know that if $(A, B),(C, D) \in$ $\mathcal{K}^{2}(X)$, are two minimal pairs in $[A, B]$ and $\operatorname{dim} X \leq 2$ then $C+x, D=B+x$.

Let $(A, B) \in \mathcal{B}^{2}(X)$. The pair (A, B) is called reduced if for any $(C, D) \in[A, B]$ there exists $M \in \mathcal{B}(X)$ such that $C=A+M$ and $D=B+M$. Let us notice that every reduced pair is minimal. Every minimal pair is reduced in $X=\mathbb{R}$ (see, [6]).

Let $A \in \mathcal{K}(X), f \in X^{*}$. Then $H_{f} A=\left\{x \in A \mid f(x)=\max _{y \in A} f(y)\right\}$.
The set $A \in \mathcal{B}(X)$ is called a summand of $B \in \mathcal{B}(X)$ if there exists $M \in \mathcal{B}(X)$ such that $B=A+M$.
W. Weil has proved in [11] the following lemma.

Lemma. Let $A, B \in \mathcal{K}\left(\mathbb{R}^{n}\right)$ and A be a convex polytope. Then A is a summand of B if an only if each one-dimensional face $H_{f} A$ is contained in a translate of the corresponding face $H_{f} B$.

Theorem 1. Let $A, B \in \mathcal{K}\left(\mathbb{R}^{n}\right)$ and A be a convex polytope such that card $H_{f} B=1$ for each one-dimensional face $H_{f} A$. Then the pair (A, B) is reduced.

Proof. Let $\left(C, D \in[A, B]\right.$. Then $A+D=B+C$. Let $f \in\left(\mathbb{R}^{n}\right)^{*}$ and $H_{f} A$ be onedimensional face of A. Then, by virtue of the formula of the addition of faces, we have

$$
H_{f} A+H_{f} D=H_{f} B+H_{f} C
$$

According to the assumption, $H_{f} B=\{b\}$ for some $b \in \mathbb{R}^{n}$. Then $H_{f} A \subset b-d+H_{f} C$, where $d \in H_{f} D$. Applying Lemma, we obtain that $C=A+M$ for some $M \in \mathcal{K}\left(\mathbb{R}^{n}\right)$. Hence, from the law of cancellation, it follows that $D=B+M$.

Theorem 2. Let $A, B \in \mathcal{K}\left(\mathbb{R}^{2}\right)$ be a reduced pair. Then card $H_{f} B=1$ for each one-dimensional face $H_{f} A$.

Proof. Let us assume that $\operatorname{dim} H_{f} B=\operatorname{dim} H_{f} A=1$ for some $f \in\left(\mathbb{R}^{2}\right)^{*}$. Then there exists an interval I and a triangle T such that length of I is not greater than both lengths of $H_{f} A$ and $H_{f} B$, and $H_{-f} T=I$. If $H_{f} T=\{b\}$ then $H_{f}(A+T)=$ $H_{f} A+b, H_{-f}(A+T)=H_{-f} A+I, H_{f}(B+T)=H_{f} B+b$ and $H_{-f}(B+T)=H_{-f} B+I$. Hence I is a summand of both $A+T$ and $B+T$, and $A+T=A^{\prime}+I, B+T=B^{\prime}+I$ for some $A^{\prime}, B^{\prime} \in \mathscr{K}\left(\mathbb{R}^{2}\right)$. Then $\left.A^{\prime}, B^{\prime}\right) \in[A, B]$, and since $H_{f} A$ is not a summand of $H_{f} A^{\prime}$ then A is not a summand of A^{\prime}. Therefore, (A, B) is not reduced.

Proposition 1. Let $(A, B),(C, D),(E, F) \in \mathcal{B}^{2}(X)$ and $A=C+E, B=D+F$. If the pair (A, B) is reduced then both (C, D) and (E, F) are reduced.

Proof. Let $\left(C^{\prime}, D^{\prime}\right) \in[C, D]$. Then $C^{\prime} \dot{+} D=C \dot{+} D^{\prime}$, and we have

$$
A \dot{+} D \dot{+} F \dot{+} D^{\prime}=A \dot{+} B \dot{+} D^{\prime}=C \dot{+} E \dot{+} B \dot{+} D^{\prime}=E \dot{+} B+C^{\prime}+D
$$

Hence $A+F+D^{\prime}=B+E+C^{\prime}$. From the assumption, it follows that $E+C^{\prime}=$ $A+M$ and $F \dot{+} D^{\prime}=B \dot{+} M$ for some $M \in \mathcal{B}(X)$. Then $E \dot{+} C^{\prime}=C \dot{+} E+M$ and $F \dot{+} D^{\prime}=D \dot{+} F \dot{+} M$. Hence $C^{\prime}=C \dot{+} M$ and $D^{\prime}=D \dot{+} M$.

Proposition 2. Let $A, B \in \mathcal{B}(X)$. If the pair $(A \vee B, A+B)$ is reduced then $(A \vee B, B)$ is also reduced.

Proof. Since $(A \vee B, A+B)=(A \vee B, B)+(\{0\}, A)$ then applying Proposition 1 we obtain our Proposition.

Let $A, B \in \mathcal{B}(X)$. We call the pair (A, B) convex if $A \cup B$ is convex. We call (A, B) convexly reduced if for any convex pair (C, D) in $[A, B]$ there exists $M \in \mathcal{B}(X)$ such that $C=A \dot{+} M$ and $D=B \dot{+}$.

Theorem 3. The convex pair $(A, B) \in \mathcal{B}^{2}(X)$ is convexly reduced if and only if $(A \cap B, A \cup B)$ is reduced.

Proof. \Rightarrow) Let the pair (A, B) be convexly reduced and $(F, G) \in[A \cap B, A \cup B]$. From [4],[10] it follows that there exists $\left(A_{0}, B_{0}\right) \in[A, B]$ such that $A_{0} \cap B_{0}=F$ and $A_{0} \cup B_{0}=G$. From the assumption, $A_{0}=A \dot{+} M$ and $B_{0}=B \dot{+} M$ for some $M \in \mathcal{B}(X)$. Then $F=A_{0} \cap B_{0}=A \cap B \dot{+} M$ and $G=A_{0} \cup B_{0}=A \cup B \dot{+} M$. Therefore, the pair $(A \cap B, A \cup B)$ is reduced.
$\Leftrightarrow)$ Let $(A \cap B, A \cup B)$ be reduced, $(C, D) \in[A, B]$ and $C \cup D$ be convex. Then $A+$ $D=B \dot{+} C=A \cap B \dot{+} C \cup D=C \cap D \dot{+} A \cup B$, [see [10]]. Hence $C \cap D=A \cap B \dot{+} M$ and $C \cup D=A \cup B+M$ for some $M \in \mathcal{B}(X)$. From the law of cancellation, we obtain $C=A \dot{+} M$ and $D=B \dot{+} M$.

The pair (A, B) is convexly reduced and $(A, B) \sim(C, D)$.

Theorem 4. Let $A, B \in \mathcal{B}(X)$. If $(A \vee B, B)$ is a reduced pair then the pair (A, B) is reduced.

Proof. Let $(C, D) \in[A, B]$. Then $A+D=B+C$. Therefore,

$$
D \dot{+} A \vee B=(A \dot{+} D) \vee(B \dot{+} D)=(B \dot{+} C) \vee(B \dot{+} D)=B \dot{+} C \vee D
$$

Since the pair $(A \vee B, B)$ is reduced then $D=B+M$ for some $M \in \mathcal{B}(X)$. From the law of cancellation ([9]) $C=A+M$.

The pair (A, B) is convexly reduced and $(A, B) \sim(C, D)$. The pair (A, B) is also reduced and the class $[A, B]$ is convex, that is $C \cup D$ is convex for any $(C, D) \in[A, B]$ ([4]).

In [5] the following theorem was proved:

Theorem 5. Let $A, B \in \mathcal{K}\left(\mathbb{R}^{n}\right)$ and A be a polytope with nonempty interior. Let $\operatorname{card} H_{f} B=1$ for each face $H_{f} A$ such that $\operatorname{dim} H_{f} A=n-1$. Then the pair (A, B) is minimal.

For $n=2$, Theorem 1 and Theorem 5 have equivalent assumptions, hence Theorem 1 is stronger than Theorem 5 . For $n=3$, the assumption of Theorem 5 is weaker than the assumption of Theorem 1. The following example shows that generally we cannot replace the assumption in Theorem 1 with the assumption from Theorem 5.

Example. Let $A=[-1,1]^{3}$ and
$B=A \vee(0,0,3 / 2) \vee(0,0,-3 / 2) \vee(0,3 / 2,0) \vee(0,-3 / 2,0) \vee(3 / 2,0,0) \vee(-3 / 2,0,0)$. Let us notice that if $\operatorname{dim} H_{f} A=2$ then card $H_{f} B=1$. Let $I=(1,0,0) \vee(0,1,0)$. Let $A^{\prime}=$ $(A+I) \vee(5 / 3,5 / 3,0)$ and $B^{\prime}=(B+I) \vee(5 / 3,5 / 3,0)$. We have $\left(A^{\prime}, B^{\prime}\right) \sim(A+I, B+$ $I) \sim(A, B)$. Let us notice that $H_{f} A^{\prime}=(5 / 3,5 / 3,0)$ and $H_{f} A=(1,1,-1) \vee(1,1,1)$ for $f(x, y, z)=x+y$. Then A is not a summand of A^{\prime}. The pair (A, B) is not reduced.

References

[1] C. Bauer, Minimal and reduced pairs of convex bodies, Geom. Dedicata 62 (1996), 179192.
[2] V. F. Demyanov and A. M. Rubiov, Quasidifferential Calculus, Optimization Software Inc., Springer-Verlag, New York, 1986.
[3] J. Grzybowski, Minimal pairs of compact sets, Arch. Math. 63 (1994), 173-181.
[4] J. Grzybowski and R. Urbański, Minimal pairs of bounded closed convex sets, Studia Math. 126 (1997), 95-99.
[5] J. Grzybowski, R. Urbański and M. Wiernowolski, On Common Summands and Antisummands of Compact Convex Sets, Bull. Polish. Acad. Sci. Math. 47 (1999), 69-76.
[6] D. Pallaschke, S. Scholtes and R. Urbański, On minimal pairs of convex compact sets, Bull. Polish Acad. Sci. Math. 39 (1991), 1-5.
[7] R. Schneider, On asymmetry classes of convex bodies, Mathematika 21 (1974), 12-18.
[8] S. Scholtes, Minimal pairs of convex bodies in two dimensions, Mathematika 39 (1992), 267-273.
[9] R. Urbański, A generalization of the Minkowski-Rådström-Hörmander Theorem, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 24 (1976), 709-715.
[10] R. Urbański, On minimal convex pairs of convex compact sets, Archiv der Mathematic 67 (1996), 226-238.
[11] W. Weil, Decomposition of convex bodies, Mathematika 21 (1974), 19-25.

