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Abstract
The Coatomer protein complex subunit beta 2 (COPB2) is involved in the formation of the COPI coatomer protein complex 
and is responsible for the transport of vesicles between the Golgi apparatus and the endoplasmic reticulum. It plays an impor-
tant role in maintaining the integrity of these cellular organelles, as well as in maintaining cell homeostasis. More importantly, 
COPB2 plays key roles in embryonic development and tumor progression. COPB2 is regarded as a vital oncogene in several 
cancer types and has been implicated in tumor cell proliferation, survival, invasion, and metastasis. Here, we summarize the 
current knowledge on the roles of COPB2 in cancer development and progression in the context of the hallmarks of cancer.

Keywords  COPB2 · Cancer · Proliferation · Survival · Tumorigenesis · Invasion · Metastasis

Introduction

Cancer remains a huge global health problem. Based on 
data from the International Agency for Research on Can-
cer, 1,898,160 new cancer cases and 608,570 cancer deaths 
were reported worldwide in 2021 [1], and the global cancer 
burden is expected to reach 28.4 million cases by 2040 [2]. 
The situation in China is particularly severe, with both the 

number of new cases and deaths ranking first in the world, 
which highlights the need to develop therapy for all types 
of cancer [3].

Due to the variety of cancer research, we decide to dis-
cuss from a different perspective at the cellular level. In 
eukaryotic cells, a large number of proteins and lipids are 
transported through transport vesicles to various organelles 
and the cell surface, so they can perform their physiological 
functions. Despite their pathogenic properties, cancer cells 
have the same intracellular machinery as normal cells, at 
least for a certain period of time, which suggests the impor-
tance of coat proteins (COPs) in cancer cells, as well as 
in normal cells. COPs play an important role in vesicular 
transport, and they can be classified into three types: clath-
rin, COPI, and COPII [4]. COPI consists of seven subunits: 
α-COP, β-COP, β’-COP, γ-COP, δ-COP, ε-COP, and z-COP. 
It carries cargo molecules, such as proteins and lipids, from 
the Golgi to the endoplasmic reticulum (ER) and medi-
ates the reverse and forward transport of materials between 
the Golgi membrane and vesicles, thereby maintaining the 
polarity of the Golgi structure and the maturity of membrane 
vesicles [5–8].

Of the seven subunits that form COPI, COPB2 (also 
known as COPI coat complex subunit beta 2, β’-COP, P102 
or coatomer protein complex subunit beta prime) [6], in 
particular, has been shown to have a high correlation with 
tumors. COPB2, which is located on chromosome 3q23, 
encodes a protein with 906 amino acids (102.5 kDa) [9, 
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10]. It is mainly distributed in the ER, the Golgi stack mem-
brane, and COPI membrane vesicles, and it is involved in 
intracellular protein transport, ER-to-Golgi vesicle-mediated 
transport, regressed membrane vesicle-mediated transport, 
Golgi-to-ER transport, inner Golgi-to-ER vesicle-mediated 
transport, and so on [6, 7, 11].

As a coatomer protein, COPB2 plays a major role in 
embryonic development and tumor progression and is asso-
ciated with multiple pathological processes. Current stud-
ies have demonstrated that COPB2 is a vital oncogene in 
many cancer types due to its ability to regulate the prolif-
eration, survival, tumorigenesis, invasion, and metastasis of 
cancer cells. In this paper, we focus on the emerging roles 
of COPB2 in cancer development and progression in the 
context of the hallmarks of cancer. Through this comprehen-
sive review, we discuss the accumulating evidence for the 
future clinical utilization of COPB2 as a therapeutic target 
and a biomarker. We also provide insights that can open new 
avenues for studying the role of COPB2 in cancer.

Functions associated with COPB2

Several studies have reported direct and indirect associa-
tions between COPB2 and cancer. COPB2 overexpression 
has been reported in various kinds of cancers (Table 1). Gen-
erally, the involvement of COPB2 in tumor progression has 
been found to be related to the regulation of upstream genes, 
such as the Sensitive to apoptosis gene (SAG or RNF7) [12] 
and Yes-associated protein 1 (YAP1) [13]; the activation of 
receptor tyrosine kinase (RTK) [14] and c-jun N-terminal 
kinase (JNK)/c-Jun signaling pathways [15]; and the target-
ing of microRNAs [16–18] (Fig. 1).

SAG is an oncoprotein that targets several tumor suppres-
sors for degradation [19–21] and is positively correlated with 
COPB2 expression, which suggests the potential oncogenic 
effects of COPB2 [12]. Similarly, Pu et al. [13] reported that 
COPB2 can promote the proliferation of lung cancer cells by 
upregulating the expression of YAP1, another oncoprotein 
that contributes to tumorigenesis as a downstream effector 
in the tumor-suppressive Hippo pathway [22, 23].

Because COPB2 is overexpressed in several types of 
malignant tumors, COPB2 knockdown or silencing would 
help determine its role in cancer. An et al. [14] tried to deter-
mine the significance and function of COPB2 in gastric 
cancer using a COPB2 knockdown model, which revealed 
an association with the RTK signaling pathway and down-
stream signaling cascade molecules. RTKs are type I trans-
membrane proteins that can modulate fundamental cellular 
functions, including cell division, growth, metabolism, dif-
ferentiation, migration, and survival by activating a wide 
range of downstream signaling cascades [24]. RTKs par-
ticipation has also been reported in the development and 

progression of human cancer via gain-of-function mutations, 
genomic amplification, chromosomal rearrangements, and 
autocrine activation [25]. The knockdown of COPB2 in 
gastric cancer cell lines suppressed colony formation and 
promoted apoptosis via the inhibition of RTK signaling and 
downstream signaling cascade molecules, which suggests 
that COPB2 is a potential target for gene silencing for the 
treatment of gastric cancer [14]. The JNK/c-Jun signaling 
pathway was also activated by COPB2 silencing in colo-
rectal cancer (CRC) [15]. JNK proteins are a subgroup of 
MAPK with conservative evolution in higher animals. They 
promote tumor cell apoptosis and inhibit tumor formation 
by promoting the transcription of apoptotic target genes and 
the expression of apoptotic proteins [26, 27]. Thus, COPB2 
silencing inhibited CRC cell proliferation and induced apop-
tosis via the JNK/c-Jun signaling pathway.

As knowledge regarding the functions of exosomes grew, 
the understanding of their roles in cancer has likewise deep-
ened. When investigating the function of bone marrow-
derived mesenchymal stem cell (BMSC)-derived exosome 
miR-4461 in CRC, Chen et  al. [16] found that COPB2 
mRNA levels negatively correlated with the levels of miR-
4461. Further studies revealed that the BMSC-derived 
exosome miR-4461 downregulated COPB2 and inhibited 
cell migration and invasion. Similar to the observations on 
miR-4461 in CRC, miR-335-3p and miR-216a-3p have been 
found to target the 3′UTR of COPB2, which led to the inhi-
bition of COPB2 in lung adenocarcinoma (LUAD) [18] and 
lung cancer [17] cell lines, respectively.

COPB2 and cancer cells

Cancer is caused by genetic mutations in cancer cells [28]. 
Cancer progression is highly complex and is characterized 
by several hallmarks, including uncontrolled proliferation, 
insensitivity to growth-inhibitory (antigrowth) signals, eva-
sion of apoptosis, limitless replicative potential, sustained 
angiogenesis, tissue invasion, and metastasis [29]. COPB2 
involvement has been reported as an oncogene in some of 
these mechanisms, especially in proliferation, apoptosis, 
invasion, migration, cell cycle, and tumorigenesis. In the 
following sections, we describe the roles of COPB2 in each 
of these processes.

COPB2 and the proliferation of cancer cells

Telomeres become shorter with each round of cell division 
(mitosis) [30]. When the telomeres have been reduced to a 
certain length, cells can no longer maintain chromosomal 
stability and cellular activity, and they eventually die [31]. 
With the activation of telomerase, the length of the telomere 
is maintained, which promotes the immortalization of cells. 
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Subsequently, the cells gain the ability to proliferate without 
limit and transform into cancer cells.

Two main types of genes regulate cell growth. Proto-
oncogenes are involved in promoting cell growth and mito-
sis, whereas tumor-suppressive genes are responsible for 
inhibiting cell growth or regulating cell division. COPB2 is 
involved in tumorigenic processes as a proto-oncogene that 
has been implicated in the proliferation of cancer cells. Mi 

et al. [32] first demonstrated the effect of COPB2 on the pro-
liferative ability of prostate cancer cell lines by showing that 
the downregulation of COPB2 inhibited cell proliferation. 
The research of Wang et al., Li et al., and Bhandari et al. [4, 
33, 34] also showed similar involvement of COPB2 in colon 
cancer, cholangiocellular carcinoma, and breast cancer.

Other studies have indicated that COPB2 is involved 
in the proliferation of cancer cells by disrupting relevant 

Fig. 1   The mechanism functions associated with COPB2. There is a 
positive correlation between SAG and COPB2 expression, the down-
regulation of SAG or COPB2 and upregulating YAP1 expression pro-
moted cancer cell proliferation and tumorigenesis; COPB2 promote 

tumor cell apoptosis and inhibit tumor formation through activating 
the RTKs signaling pathways and JNK/c-Jun signaling pathways after 
silencing; miR-335-3p, miR-216a-3p and miR-4461 inhibit the func-
tion of COPB2 by targeting 3′UTR of COPB2
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signaling pathways. For instance, An et al. [14] showed 
that COPB2 was involved in the pro-proliferative effects 
of the RTK signaling pathway in gastric cancer. Similarly, 
Liu et al. [12] demonstrated that COPB2-related signaling 
was involved in the pro-proliferative effects of SAG in breast 
cancer.

The first human disease known to be associated with 
miRNA dysregulation was chronic lymphoblastic leukemia; 
a number of other miRNAs have since been associated with 
cancer [35, 36]. Chen et al. and Wang et al. [16, 17] dem-
onstrated that the proliferation of CRC cells results from 
the interaction between miR-4461/miR-216a-3p and the 
proto-oncogene COPB2. In addition, the effects of COPB2 
and miR-335-3p were observed in lung cancer, where miR-
335-3p mimics significantly increased the proliferation 
of lung cancer cells following COPB2 knockdown [18]. 
Because malignant proliferation of cancer cells is the most 
important mechanism underlying tumor formation, control-
ling the proliferation of cancer cells by regulating COPB2 
would be a major step in the treatment of cancer.

COPB2 and cancer cell apoptosis

There are two main types of cell death: necrosis and apop-
tosis. The main goal of traditional tumor therapy is to use 
cytotoxic drugs or radiation to cause necrosis. Apoptosis, or 
programmed death, is a gene-mediated process of suicide. 
Not only is it the opposite of cell proliferation and mitosis as 
in terms of function, but it is also a mechanism for remov-
ing excessively damaged and precancerous cells. Genes that 
have been associated with apoptosis include TP53 (encodes 
p53) [37], MYC (encodes c-Myc) [38], BCL2 (encodes 
B-cell lymphoma 2, Bcl-2) [39], COPB2, and others [32, 
40–43]. Silencing COPB2 greatly affects the apoptotic abil-
ity of cancer cells. Mi et al. [44] suggested that COPB2-
targeted siRNA (siCOBP2) promoted cancer cell apoptosis. 
Li et al. [33] have also shown that knocking down COPB2 
promotes apoptosis in human RBE cholangiocellular carci-
noma cells. Similarly, Wang et al.’s [15] study showed that 
knocking down COPB2 promoted apoptosis in human colon 
cancer cells.

COPB2 silencing also promotes the activation of the 
RTK [14] and JNK/c-Jun [15] signaling pathways in gas-
tric cancer and CRC. COPB2 is also involved in cancer cell 
apoptosis by targeting downstream microRNAs. The rate of 
apoptosis in LUAD cell lines significantly increased after 
COPB2 knockdown via RNA silencing, and miR-335-3p 
[18] and miR-216a-3p [17] significantly increased the 
effects of siCOPB2. Understanding the relationship between 
COPB2 and cancer cell apoptosis provides new strategies 
for the diagnosis and treatment of cancer and highlights the 
potential of COPB2 as a new biomarker for the progression 
of cancer and monitoring treatment effects.

COPB2 and the invasion and migration of cancer 
cells

Invasion and migration of cancer cells result from the dete-
rioration of tumor lesions and the accumulation of malignant 
properties, which are signs of late stages in the progression 
of malignant tumors [45]. During this process, malignant 
cells dissociate from the original tumor mass, reorganize 
their attachment to the tumor extracellular matrix (ECM) 
though alterations in cell–ECM adhesion dynamics, and 
start degrading the surrounding ECM to eventually invade 
through adjacent tissues and/or intravasate into blood vessels 
and travel through the circulation to distant sites in the body 
[46]. COPB2 also plays an important role in controlling the 
invasive ability of cancer cells. For instance, Bandari et al. 
[34] showed that downregulating COPB2 significantly inhib-
ited the migratory and invasive capacities of breast cancer 
cells. Based on the study by Liu et al. [12], knocking down 
either SAG or COPB2 significantly inhibited breast cancer 
cell migration and invasion. The migratory and invasive 
capacities of CRC and lung cancer cells decreased upon 
treatment with siCOPB2 or with siCOPB2 plus miR-4461 
[16] and miR-216a-3p [17] mimics, respectively.

COPB2 and the cancer cell cycle

The cell cycle is a series of physiological processes that 
lead to cell division [47]. Cell cycle regulation has two 
main mechanisms, namely, cell cycle-driven mechanisms 
and regulatory mechanisms. When the cell cycle regula-
tory mechanism is disrupted, normal cell growth becomes 
uncontrollable, and normal cells are transformed into tumor 
cells. The cell cycle is divided into four consecutive periods: 
G1, S, G2, and M [48, 49]. The G1 phase of the cell cycle 
is controlled by an event known as a restriction point; when 
the restriction point control becomes non-functional for any 
reason, uncontrolled proliferation occurs in cancerous cells 
[50]. Regulating gene expression to control the cell cycle is 
instructive and meaningful for the treatment of tumors. Mi 
et al. [32] have demonstrated that prostate cancer cell lines 
were arrested in the G1 phase after COPB2 knockdown, 
which, in turn, promoted tumorigenesis. Li et al. [33] found 
that downregulation of COPB2 arrested the cell cycle in 
the G1 phase in human cholangiocellular carcinoma cells. 
Furthermore, in a study by Wang et al. [4], silencing COPB2 
induced G1 phase arrest and inhibited cell cycle progression 
in RKO CRC cells; in contrast, HCT116 human CRC cells 
were arrested at the S phase following COPB2 silencing.

COPB2 and tumorigenesis

COPB2 has been found to be upregulated in all kinds of can-
cer tissue. A study has demonstrated that COPB2 promoted 
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tumorigenesis through the downregulation of YAP1 [33]. 
Additionally, knockdown of COPB2 significantly downregu-
lated the expression (in varying degrees) of phosphorylated 
target factors in the RTK signaling pathway [14].

COPB2 protein interactions

The Golgi coatomer complex (MIM 601,924) constitutes the 
coat of non-clathrin coated vesicles and is essential for Golgi 
budding and vesicular trafficking. To predict the genes that 
interact with COPB2 and to better understand the biologi-
cal role of COPB2, we used the STRING database to search 
for the functional partners of COPB2. The search yielded 
coatomer subunit beta (COPB), coatomer subunit epsilon 
(COPE), coatomer subunit delta (ARCN1), coatomer subu-
nit gamma-1 (COPG1), coatomer subunit alpha (COPA), 
coatomer subunit gamma-2 (COPG2), coatomer subunit 
zeta-1 (COPZ1), coatomer subunit zeta-2 (COPZ2), cell 
division cycle 5-like protein (CDC5L), and protein SEC13 
homolog (SEC13) (Fig. 2). Although the level of COPB2 in 
cancer tissues is lower than in normal tissues in adrenocorti-
cal carcinoma (ACC), kidney chromophobe (KICH), kidney 
renal clear cell carcinoma (KIRC), and acute myeloid leuke-
mia (LAML), the level of COPB2 expression in most other 
cancer tissue types is higher than in normal tissues (Fig. 3), 
according to the GEPIA database.

Future perspectives

COPB2 and autophagy

Autophagy, which delivers cellular materials to lys-
osomes for degradation, leading to the basal turnover of 

cell components and providing energy and macromolecu-
lar precursors to cells, is another major mechanism in the 
progression of cancer [51]. Yamamoto et al. [52] pointed 
out that autophagy promoted immune evasion of pancreatic 
cancer by degrading the major histocompatibility complex 
class I (MHC-I). Furthermore, HPV16 drive cancer immune 
escape via NLRX1-mediated degradation of STING [53]. 
Thus, autophagy is an effective escape mechanism in cancer; 
in addition, it has already been implicated in the develop-
ment of drug resistance in multiple cancer types [54, 55]. 
Evidence shows that autophagy caused by chemotherapeu-
tics may boost the resistance of cancer cells to paclitaxel, 
tamoxifen, epirubicin, or trastuzumab [55]. However, the 
connection between COPB2 and autophagy has not yet been 
described. Therefore, we suggest that the regulatory role of 
COPB2 in autophagy should be considered in future studies.

COPB2 and other diseases

COPB2 is also involved in other diseases. Based on a 
genome-wide association study, COPB2 is a susceptibility 
gene for Kawasaki disease [56], and COPB2 homozygous 
mutations have been associated with microcephaly [57, 58]. 
COPB2 has also been identified as a vitamin D-regulated 
gene, along with other new candidate vitamin D response 
elements that have demonstrated importance for transcrip-
tional regulation, immune function, stress response, and 
DNA repair [59]. Notably, knockdown of COPB2 is det-
rimental to parasitic infection, thereby inhibiting malaria 
[60]. Meanwhile, as one of the candidate genes for neuronal 
function and mu opioid receptor expression, as revealed by 
whole-genome expression profiling, COPB2 is implicated 
in modified neuronal development, central nervous sys-
tem patterning processes, differentiation and dopaminergic 

Fig. 2   Predicted functional 
partners associated with COPB2 
from String online website
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neurotransmission, the serotonergic signaling pathway, and 
glutamatergic neurotransmission [61]. In addition to its ben-
efits to human health, targeting COPB2 can be beneficial to 
certain aspects of breeding and animal husbandry. Knock-
ing down COPB2 had been shown to destroy the integrity 
of the epithelial cell membrane and contribute to increased 
mortality of Tetranychus urticae [62], Aedes aegypti [63], 
Lepeophtheirus salmonis [64]. It has therefore been recog-
nized as a target candidate for new pest control methods.

COPB2 and animal models

Based on the currently available literature, we found that 
studies on COPB2 were mostly limited to the cellular level. 
The only research we found in vivo was the one conducted 
by An et  al. [14], which demonstrated the function of 
COPB2 silencing in the xenograft nude mouse model. They 
proposed that silencing COPB2 using the Lv‑shCOPB2 
vector significantly inhibited the tumorigenicity of gastric 
cancer cells, and the total radiant efficiency of mice in the 
Lv‑shCOPB2‑infected group was markedly reduced com-
pared with that in the Lv‑shCtrl‑infected group. To the best 
of our knowledge, more in vivo studies must be carried out 
before COPB2 targeting can be fully applied in the clini-
cal stage. COPB2 has been implicated in different aspects 
of tumorigenesis in in vitro studies. It is therefore consid-
ered as a potential biomarker for cancer progression and 
cancer treatment. Hence, studies in animal models must be 
performed to support the use of COPB2 in cancer therapy, 
diagnosis and follow up.

COPB2 and new technologies

In recent years, researchers have devoted more energy to 
understanding the underlying mechanisms of cancer etiol-
ogy to identify new drug targets. It has long been recognized 
that cancer is a heterogeneous disease, and genome changes 
play a crucial role in the occurrence of this disease. In the 
past few years, many new technologies have been used in 
cancer identification and treatment. For example, with the 
development of technologies such as single cell sequenc-
ing, microarray chips, and big data, other regulatory factors 
upstream of COPB2 can also be identified. Furthermore, 
single cell sequencing can accurately determine the number 
of gene copies in a single nucleus and can therefore be an 
accurate test to estimate COPB2 copy numbers to reduce 
false positive results and resolve issues on heterogeneity in 
future studies.

Conclusion

Here, we summarize the emerging roles of coatomer protein 
COPB2 in cancer development and progression in light of 
the hallmarks of cancer. COPB2 is viewed as a vital onco-
gene in many cancer types that regulates multiple biological 
behaviors of tumor cells, including proliferation, survival, 
tumorigenesis, invasion, and metastasis. However, current 
research on the role of COPB2 is still lacking, and many 
details will be worth exploring in the future.

Fig. 3   The COPB2 expression profile across all tumor samples and 
paired normal tissues on line database. Adrenocortical carcinoma 
(ACC), Breast invasive carcinoma (BRCA), Cholangio carcinoma 
(CHOL), Lymphoid Neoplasm Diffuse Large B-cell Lymphoma 
(DLBC), Glioblastoma multiforme (GBM), Kidney Chromophobe 
(KICH), Kidney renal papillary cell carcinoma (KIRP), Brain Lower 

Grade Glioma (LGG), Lung adenocarcinoma (LUAD), Ovarian 
serous cystadenocarcinoma (OV), Pheochromocytoma and Paragan-
glioma (PCPG), Rectum adenocarcinoma (READ), Skin Cutaneous 
Melanoma (SKCM), Testicular Germ Cell Tumors (TGCT), Thy-
moma (THYM), Uterine Carcinosarcoma (UCS)
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