
 

 

 

Documento de Trabajo - 2021/09 
 
 

Bayesian Estimation of Epidemiological Models: 
Methods, Causality, and Policy Trade-Offs 

 
Jonas E. Arias 

(Federal Reserve Bank of Philadelphia) 

Jesús Fernández-Villaverde 
(University of Pennsylvania) 

Juan F. Rubio-Ramírez 
(Emory University, Federal Reserve Bank of Atlanta, and FEDEA)   

Minchul Shin 
(Federal Reserve Bank of Philadelphia)  

  

  
  
 
 
 
 

Marzo 2021  
 
 
 
   
 
 
 
 
 
 
 
 
 

fedea 
 
 
 
 
 

Las opiniones recogidas en este documento son las de sus autores  
y no coinciden necesariamente con las de FEDEA. 



Bayesian Estimation of Epidemiological Models:

Methods, Causality, and Policy Trade-O↵s
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Abstract

We present a general framework for Bayesian estimation and causality assessment in
epidemiological models. The key to our approach is the use of sequential Monte Carlo
methods to evaluate the likelihood of a generic epidemiological model. Once we have the
likelihood, we specify priors and rely on a Markov chain Monte Carlo to sample from the
posterior distribution. We show how to use the posterior simulation outputs as inputs for
exercises in causality assessment. We apply our approach to Belgian data for the COVID-19
epidemic during 2020. Our estimated time-varying-parameters SIRD model captures the
data dynamics very well, including the three waves of infections. We use the estimated
(true) number of new cases and the time-varying e↵ective reproduction number from
the epidemiological model as information for structural vector autoregressions and local
projections. We document how additional government-mandated mobility curtailments
would have reduced deaths at zero cost or a very small cost in terms of output.
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1 Introduction

We present a general framework for the Bayesian estimation of epidemiological models and their

use for causality assessment and policy evaluation. Also, we show how to measure the trade-o↵

between containing the spread of an epidemic and maintaining economic activity induced by

non-pharmaceutical interventions, such as “shelter-in-place” orders. We do so in four steps. First,

we write a generic epidemiological model using a state-space representation. This representation

provides a familiar and intuitive notation to encompass a wide range of models, independently

of the number of compartments, reinfection probabilities, and other features.

State-space representations deal e�ciently with epidemiological models with time variation

in the parameters controlling an infectious disease’s dynamics. Time variation is critical: i)

to incorporate changes in the behavior of individuals as they respond to the public health

conditions (either voluntarily due to precautionary behavior or forced by government mandates);

and ii) to include shifts in the transmission and clinical outcomes of the epidemic, such as

virus variants, new medical treatments, or better logistical organization of social distancing.

Thanks to points i) and ii), epidemiological models with time-varying parameters can account

for the successive waves often observed in epidemic data. For example, as individuals observe

rising death rates, they reduce their mobility, which lowers the number of e↵ective contacts.

After some periods, fewer contacts lead to falling death rates, and individuals revert to higher

mobility, thus increasing e↵ective contacts and death rates after a lag. Without time variation

in parameters, one would be forced, in an attempt to fit the data, to depart from the class of

standard epidemiological models (see Ho et al., 2021, for a similar argument).1

Another strength of the state-space representation is that it easily incorporates variables

observed at di↵erent frequencies, from high-frequency and regular data on hospitalizations,

deaths, and reported new cases to low-frequency and irregular data from seroprevalence studies.

As our empirical application shows, this flexibility is vital while estimating epidemiological

models as researchers might need to scramble disparate sources of data.

Second, and as the key step in our paper, we use sequential Monte Carlo techniques to

evaluate the likelihood of the model while fully accounting for the essential nonlinearities and

possible non-normalities present in the dynamics of epidemiological models. Doing so is necessary

to capture correctly the fast variations in the spread of infectious diseases and the turning points

of the di↵erent waves of an epidemic. Sequential Monte Carlos enjoy many advantages. More

concretely, we will implement a particle filter that handles the nonlinearities and non-normalities

1We do not claim that these time-varying parameters are structural in the sense of being invariant to policy
interventions à la Hurwicz (1966). We consider them only as behavioral parameters, which might be complex
functions of structural parameters describing preferences, technology, and information processes. See Fernández-
Villaverde and Rubio-Ramı́rez (2007) for a more detailed discussion of the distinction between structural and
behavioral parameters. Alternatively, we could write a constant-parameters decision theory model, but that
would move us away from the typical epidemiological models we consider.
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in the model much more e�ciently than older alternatives such as the extended Kalman filter,

whose behavior deteriorates quickly when the nonlinearities of the model are severe, a common

feature among many epidemiological models. The particle filter is easy to code and well-suited

for implementation in massively parallel computational environments.

Third, we use Markov chain Monte Carlo techniques to sample from the posterior of the

epidemiological model. In that way, we can implement a fully Bayesian approach. In our context,

the Bayesian approach allows incorporating information in the prior of the parameters from

laboratory results, clinical studies, seroprevalence surveys, and the experience of other regions

or countries. For example, the average duration of a spell at a recovering compartment of an

inhabitant of Belgium (the country we will use for our empirical application) is likely to be close

to the average duration of a spell at a recovering compartment of an inhabitant of neighboring

countries. If we have high-quality estimates of the latter, we can build an informative prior

for the former. The Bayesian choice is also attractive because it quickly gauges the range

of uncertainty existing in the data by looking at the whole posterior, instead of focusing on

the maximum likelihood point estimate or relying on simulation errors as in Li et al. (2020).

Furthermore, by evaluating the marginal likelihood, the Bayesian approach allows for e�cient

model comparison.2

Fourth, we show how to use outputs from the epidemiological model to answer critical policy

questions involving causality in a time-series environment. Let us illustrate this point with an

example. A key element in measuring the e↵ect of a government mandate curtailing mobility,

such as “shelter-in-place” orders, is to have access to a reliable sample of new infectious cases.

However, such data might not exist or be subject to large and biased measurement error due to

problems like testing constraints, unwillingness to test, etc. (this point was recognized long ago

in the epidemiological literature; for example, see O’Neill and Roberts, 1999). To complicate

matters, the biased error in the measured new cases might not be constant over time (for instance,

as testing becomes more accessible), and simple corrections (such as scaling up the number of

recorded cases by some factor) would produce flawed results.3 Similarly, recorded death due to

the disease might be di↵erent from the true deaths, as miscounting and classification errors are

likely, especially at the start of an epidemic or during peak moments.

An epidemiological model can take observations of recorded new cases, recorded hospitaliza-

tions, recorded new deaths in hospitals and at home, and from irregular seroprevalence studies

and impose the discipline brought by the cross-equation restrictions determined by the model’s

2Also, a Bayesian approach can help with weak identification, a common problem in epidemiological models
(Alahmadi et al., 2020; Korolev, 2021). This advantage is not so much a consequence of the informativeness of the
prior (we could always rely on flat priors), but because Bayesian inference can integrate over the whole posterior
to obtain important outputs for policy analysis, such as a smoothed estimate of the e↵ective reproduction number,
even if portions of the parameters’ posterior are flat.

3Nonetheless, see the more sophisticated approaches in Manski and Molinari (2021) and Toulis (2021) to
estimate COVID-19 prevalence based on partial identification.
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dynamics. In such a way, we can transform, for example, a series of recorded new cases into

a series of estimated true new cases and use the latter as an input to ascertain the e↵ects of

a “shelter-in-place” order using standard techniques such as structural vector autoregressions

(SVARs) and local projections (LPs). In comparison, a reduced-form model –such as those

described in Gostic et al. (2020)– that does not use the structure of an epidemiological model

cannot build on the strengths of the cross-equation restrictions and the biological and clinical

information they bring to the estimation.4 Interestingly, this methodology goes well beyond

epidemiological models: it can be applied to any causal inference problem that relies on obtaining

good estimates of unobserved variables.5

We illustrate these four steps using data from the COVID-19 epidemic in Belgium during

2020. While this application is of interest in itself, we must emphasize that our methods are much

more general than the details of the model we specify or the data we use. As we mentioned above,

they are applicable to a wide range of epidemiological models, other diseases beyond COVID-19,

and alternative techniques to ascertain causality in time series. In that sense, our application

should be read as being representative of the range of exercises that can be performed.

We pick Belgium for five reasons. First, it is one of the countries that has su↵ered the most

from the COVID-19 epidemic. As of March 13, 2021, it is the fourth territory globally with the

highest COVID-19 deaths per capita, behind only tiny Gibraltar and San Marino and the larger

Czechia. Second, Belgium is a small country, 30,689 km2 (roughly 20% larger than Maryland),

and geographically and climatically quite homogeneous in the area where most of the population

is concentrated (that is, in the coastal plain and central plateau outside the Ardennes). That

allows us to consider Belgium as a single unit for our analysis.6 Third, as mentioned above, we

will use the cross-equation restrictions to discipline the estimated true new cases and deaths.

Belgium has high-quality national data, including reported new cases, hospitalizations, deaths

in hospitals and at home, and several national seroprevalence studies that allow us to e�ciently

implement those cross-equation restrictions. Fourth, Belgium experienced, within our sample,

three waves of the epidemic, which would demonstrate how our methods can handle intricate

data patterns. Fifth, the Belgian government has passed di↵erent mandates curtailing mobility

on several occasions, which will give us the identification of the e↵ects of these mandates.

We postulate a SIRD model of COVID-19 for Belgium with time variation in the e↵ective

4The cross-equations discipline could come at a cost if the model is misspecified: the resulting smoothed
estimates might be biased. Since our framework is general enough to encompass many epidemiological models,
we could detect misspecification by comparing our SIRD model against flexible reduced-form time-series models
such as the one proposed by Ho et al. (2021).

5In a di↵erent environment, Gilchrist and Zakraǰsek (2012) follow a similar approach by using a pricing model
to recover a measure of sentiment in the corporate credit market. They show, using reduced-form regressions
and SVARs, how such a measure can a↵ect the economy and asset prices.

6The incidence of COVID-19 has been around 10% higher in Wallonia than in Flanders in per capita terms
(with Flanders having a worst first wave and Wallonia a more damaging third wave) and about average in
Brussels. To keep our analysis as transparent as possible, we can ignore these relatively small regional di↵erences.
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contact rate among individuals in the model, the hospitalization rates, and death probabilities.

The first variation embodies the idea that individuals react to the prevailing health conditions and

“shelter-in-place” orders. The second and third variations incorporate changes in hospital capacity

and improvements in medical protocols (and possible changes in the epidemic’s demographics

not fully added to the model). We let this variation evolve as random walks, with the likelihood

function telling us about the most likely innovations to them.

We estimate the model using data from Sciensano, a public institution in Belgium, of COVID-

19 per capita deaths in hospitals and at home, per capita hospitalizations due to COVID-19, the

observed per capita new cases, and the seroprevalence rates. The sample starts on March 15,

2020, the first day with available data on COVID-19 hospitalizations, and ends on November

30, 2020, the latest available data when we estimated the model. We show how the data are

informative about the parameters of the model, how the point estimates are in line with other

evidence, and how the model fits the data very well (including tracking the three waves of the

epidemic). Also, we recover the smoothed states such as time-varying reproduction numbers,

time-varying death rates, and new cases.

Next, we illustrate how we can use these outcomes from the estimated epidemiological model

to answer policy-relevant questions, such as the e↵ectiveness of mobility-curtailing policies in

controlling the epidemic’s spread and its lethality and in measuring their cost in terms of output.

Identifying the causal e↵ects of these policies is challenging because mobility, as measured by

indexes such as the Google COVID-19 Community Mobility Reports, changes due to both

voluntary behavior and government orders.

To get around this problem, we rely on the two most salient methods for assessing causality

in a time-series context: SVARs and LPs. We use an SVAR to identify a government stringency

shock (such as a “shelter-in-place” order). We use the LP approach to analyze how a reproduction

shock (such as the spread of a new, more contagious variant of the SARS-CoV-2 virus) a↵ects

the rest of the variables depending on the level of government mobility limitations. However,

for SVARs and LPs to deliver reliable answers, we need accurate inputs for their estimation.

Some of those inputs, such as the e↵ective reproduction number, are not directly observed.

Others, such as new cases, are observed subject to large, biased, and time-varying measurement

errors. As highlighted above, our estimated epidemiological model can deliver those inputs and,

therefore, be a vital piece for SVARs and LPs and other causality-assessment exercises.

Using the SVAR, we estimate that a positive stringency shock —normalized such that, upon

impact, the posterior median increase is equivalent to a one-unit increase in one of the ordinal

components of the Oxford Stringency Index of mobility curtailments— leads to roughly 1, 000

fewer deaths in Belgium after 2 months, or around 6% fewer deaths in the sample at a negligible

cost in terms of output. In fact, our point estimate implies a small economic gain of e4.2 per

capita (although it is hard to distinguish it from zero cost or a small cost). The intuition is that,
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by controlling the epidemic, a positive stringency shock brings higher economic activity after a

few weeks that more than compensate for the very short-run losses.

Using the LP, we find that a high government stringency —i.e., a level of stringency above

the median in our sample— could save up to about 250 deaths in the first two weeks after

the reproduction shock, or around 1.5% of the deaths in our sample, compared with a low

government stringency, at the small cost of between e2 and e4 per capita.

The rest of the paper is organized as follows. Section 2 frames our paper within the literature.

Section 3 presents a general framework for the Bayesian estimation of epidemiological models.

Section 4 presents a time-varying model of the COVID-19 epidemic. Section 5 introduces the

data from Belgium for our application. Section 6 reports our results and Section 7 shows how to

exploit these results for causality and policy trafe-o↵ analysis with SVARs and LPs. Section 8

concludes.

2 Literature Review

Our paper makes a contribution to the literature estimating epidemiological models and to the

emerging literature studying the causal e↵ects of health policy.

Bayesian approach The use of a Bayesian approach in epidemiological models became

popular after the contributions of O’Neill and Roberts (1999). The state-of-the-art methods for

Bayesian analysis of infectious diseases are reviewed by Alahmadi et al. (2020) and Broemeling

(2021). New research in the area includes approximate Bayesian Computation for epidemic

models by Kypraios et al. (2017) and Minter and Retkute (2019), importance sampling-based

Bayesian inference by Black (2019) and Li et al. (2020). That last paper, the closest to our

approach, uses an ensemble adjustment Kalman filter to estimate with maximum likelihood

an epidemiological model for 375 Chinese cities. We improve on this approach along two key

dimensions. First, the particle filter is more powerful than variations of the Kalman filter when

dealing with highly nonlinear models, like the ones in epidemiology. Second, we can assess

the whole uncertainty on the posterior instead of relying in simulation errors to build credible

intervals for the maximum likelihood estimates as Li et al. (2020) do. This will be important

when we evaluate the infectious period (a central component of the model), which we conclude

has a much wider range of likely values than their tight estimate.

Black (2019) and Walker, Black, and Ross (2019) propose sampling algorithms to perform

Bayesian inference when one wants to exactly match epidemiological observations available to

state variables. While these are useful techniques, the COVID-19 epidemic is characterized by

the misreporting issue mentioned above. Walker, Ross, and Black (2017) propose two methods

—exact Bayesian inference using data-augmentation and approximate Bayesian inference— for

6



Bayesian inference of within-household transmission, recovery, and between-household transmis-

sion using data from the first few hundred studies (a data collection process that occurs at the

onset of a pandemic influenza outbreak). Their approach is valuable for computing the e↵ective

reproductive number in the early stages of an epidemic, but as acknowledged by the authors, it

relies on the assumption of perfect detection of infectious cases.

More recently, Atkeson et al. (2020) use a Bayesian approach to estimate the trend growth

of daily deaths by assuming that it follows a mixture of Weibull density functions. Then, they

recover the time-varying e↵ective reproduction number combining their estimated reduced-form

model for deaths and the restrictions implied by a SIR model. Arnon et al. (2020) estimate the

time-varying e↵ective reproduction number by using the Bayesian method developed by Cori

et al. (2013), but they do not evaluate the likelihood or estimate the behavorial parameters of

the model. Bognanni et al. (2020) estimate the location-specific parameters of infection rates per

excursion and present the cost of infection of a spatial economic-SAIRD model using a Bayesian

approach similar to ours, but they do not formulate a general framework to encompass abstract

epidemiological models. Dehning et al. (2020) estimate a Bayesian SIR model to infer change

points in the spread of COVID-19, but they can only evaluate a very simple likelihood.

Frequentist approach Some papers estimate a similar compartmental model under the

frequentist paradigm. For example, Toda (2020) and Korolev (2021) estimate a compartmental

model by minimizing a loss function measured by the distance between the model-implied

share of new cases and the reported new cases. Hortaçsu et al. (2021) estimate the fraction of

unreported infections in epidemics with a known epicenter by utilizing the covariation in initial

reported infections across regions and the number of travelers to these regions from the epicenter.

Our approach requires much less granular information. Renne et al. (2020) estimate a SIRD

model using a quasi-likelihood methodology and the extended Kalman filter. Arroyo-Marioli

et al. (2021), Fernández-Villaverde and Jones (2020), Pesaran and Yang (2020), and Lee et al.

(2021) estimate time-varying contact rates using the restrictions implied by the SIR model.

Avery et al. (2020, Table 1) list a dozen COVID-19 predictive epidemiological models, but most

of them either rely on simple curve fitting or the formal estimation takes a secondary role to

granularity in location details.

Our main methodological innovation relative to the previous papers is to show how to combine

sequential Monte Carlo methods with a general epidemiological framework that simultaneously

deals with under-reporting cases and includes data on new cases, hospitalizations, deaths in

hospitals and at home, as well as serological studies and time-varying parameters. Importantly,

in addition to its usefulness for establishing causal inference (to be discussed below), our paper

is potentially useful for policymaking. For example, our smoothed estimates about the share of

individuals recovering in hospitals and at home can be applied to planning purposes such as

7



new construction of hospitals or the optimal design of lockdowns, both in terms of stringency

and duration (as in Acemoglu et al., 2020).

Causal e↵ects of policy on health outcomes and behavior Chernozhukov, Kasahara,

and Schrimpf (2021) quantify the causal e↵ects of masks, policies, and behavior on new cases

and death outcomes using a structural equations model based on causal diagrams. Since this

approach requires the use of the true cases, it dovetails perfectly with the outputs of our

estimated SIRD model. The same can be said of the growing literature on the e↵ects of policy

on behavior as measured by Google COVID-19 Community Mobility Reports, e.g., Abouk and

Heydari (2021), Maloney and Taskin (2020), Andersen (2020), and Wilson (2020). Since all

of these papers rely on reported cases, the outputs of our estimated SIRD model can be most

valuable for their estimations by correcting the biases in those reported cases.

Hsiang et al. (2020) and Courtemanche et al. (2020) use a reduced-form model to gauge

the e↵ects of policies on the growth rate of infections. While reduced-form approaches help

in understanding properties of the data, the lessons from modern empirical studies on the

propagation of structural shocks indicate that a structural model is essential to establish causal

inference.

In summary, one of our paper’s main contributions is to combine the output from our

estimated model with state-of-the-art causal inference methods to establish how mobility

curtailments a↵ect the transmission rates and deaths of COVID-19. More in general, we o↵er an

innovative approach for conducting causal inference in situations where obtaining good estimates

of unobserved variables is critical for establishing causality.

3 A General Framework

We use the well-known state-space representation of a dynamic model to encompass a large

class of epidemiological models (SIRD, SIS, etc.). We rely on this representation because it is

convenient for filtering, smoothing, forecasting, and estimation. Section 4 will show how the

abstract notation on the next pages works in an application dealing with COVID-19.

The state-space representation consists of a transition equation, governing the evolution of

the states of the model, and a measurement equation, linking those states with the observed

variables. The transition equation of a general epidemiological model takes the form:

Xt = f(Xt�1,E t;⇥) (1)

where the vector Xt stacks all the states of the model (share of the population in each of

the di↵erent compartments of the model in period t, hospital and ICU bed occupancy rates,
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government policy, the season of the year, etc.), E t is a vector of innovations, and ⇥ is a vector

of parameters indexing the function f(·) and the distributions of E t and Vt (to be defined below).

We use capital letters to denote random variables and lower case letters for the realizations

of those random variables, a straight bold font for the vector of parameters, and, for all other

vectors, an italic bold font. Vectors can always be interpreted, if needed, as being 1 ⇥ 1.7

We highlight five points regarding the transition equation. First, the Markov structure

of Equation (1) is not a tight restriction because we can redefine the vector Xt to include

additional lags of the relevant state variables. Second, the vector Xt can include state variables

indexed by location (i.e., susceptible population in location j) and individual characteristics

(i.e., susceptible population over 65) or any other combination of interest. Third, we are not

forcing any restriction in the function f(·). In general, this function will be nonlinear and may

include threshold e↵ects or jumps. Fourth, at this level of abstraction, we are not imposing any

distributional assumption on E t, and it might include non-Gaussian innovations. Fifth, we will

include in Xt all the time-varying parameters of the model that capture the notion that the

behavior of individuals, government policies, and medical technology (broadly construed) can

change over time. We will reserve ⇥ for the parameters that are time-invariant. That is, if the

mortality rate changes over time (for example, due to better clinical protocols), the mortality

rate at period t will be a state of the model, while the parameters of the law of motion of the

mortality rate will belong to ⇥.

The measurement equation of a general epidemiological model can be written as:

Yt = g(Xt,Vt;⇥) (2)

where Yt is a vector of observables (cases, deaths, hospitalizations, ...) and Vt is a vector of

innovations to observables. As before, we are not imposing a functional form on g(·) or a

distribution assumption on Vt. In particular g(·) can be, along some dimensions, an identity

(i.e., we observe one or several states of the model).

Two aspects of Equation (2) deserve further discussion. First, the observable variables can

come at di↵erent frequencies, with some components of Yt being the empty set for some periods.

This feature is desirable as some data may come daily (e.g., new hospitalizations and deaths),

others may be more informative weekly (e.g., reported new cases), or some might be gathered

only sporadically (e.g., seroprevalence surveys). The latter would be the case in our application

in Section 4. Second, Vt might be a shock (e.g., an unexpectedly high level of deaths given the

number of recovering individuals) or a measurement error (e.g., cases are under-reported due to

7In this paper, we will deal with epidemiological models in discrete time. Since we will be taking these
models to the data, which comes in discrete units of time, this is a more natural framework than continuous
time, which is often more convenient for mathematical analysis. We could rework our framework into continuous
time with some extra notation.
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an insu�cient testing).

Combining Equations (1) and (2), we get:

Yt = g(f(Xt�1,E t;⇥),Vt;⇥) = h(Xt�1,E t,Vt;⇥),

which shows that, conditional on the states Xt�1, Yt is a change of variables of E t and Vt and

that the distributions of these innovations induce a distribution for Yt: p (Yt|Xt�1;⇥).

Unfortunately, since the functions f(·) and g(·) are, in standard epidemiological models,

nonlinear, even if the distributions of E t and Vt were to belong to well-known parametric families

(e.g., Gaussian), Yt would not follow any known distribution (except in nongeneric situations).

Given a sample of observables over T periods, yT = {y1,y2, . . . ,yT}, our goal is to evaluate

the likelihood function of yT given ⇥, i.e., p
�
yT ;⇥

�
. We can write:

p
�
yT ;⇥

�
= p (y1|⇥)

TY

t=2

p
�
yt|yt�1;⇥

�
.

Then:

p
�
yT ;⇥

�
=

Z
p (y1|X1;⇥) p(X1;⇥)dX1

TY

t=2

Z
p (yt|Xt;⇥) p

�
Xt|yt�1;⇥

�
dXt. (3)

In other words, knowledge of the sequence {p (Xt|yt�1;⇥)}T
t=1 allows the evaluation of the like-

lihood in Equation (3) of the model (given the ability to solve or approximate the corresponding

integrals). Also, notice that y0 is the empty set and, therefore, p(X1;⇥) = p (X1|y0;⇥).

The sequence {p (Xt|yt�1;⇥)}T
t=1 can be found with filtering, by solving the Chapman-

Kolmogorov equation:

p
�
Xt|yt�1;⇥

�
=

Z
p (Xt|Xt�1;⇥) p

�
Xt�1|yt�1;⇥

�
dXt�1 (4)

and applying Bayes’ theorem:

p
�
Xt|yt;⇥

�
=

p (yt|Xt;⇥) p (Xt|yt�1;⇥)

p (yt|yt�1;⇥)
(5)

where:

p
�
yt|yt�1;⇥

�
=

Z
p (yt|Xt;⇥) p

�
Xt|yt�1;⇥

�
dXt (6)

is the marginal distribution of yt given yt�1. We assume that ⇥ includes X0. Hence, we are

computing the likelihood conditional on those initial states.

Since this filtering problem is standard, we will not spend much time addressing it. Fernández-
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Villaverde et al. (2016) review this topic in detail. Su�ce it to say that we can use the particle

filter or other sequential Monte Carlo methods to e�ciently simulate swarms of particles

representing possible alternative values of Xt. Relying on a law of large numbers, we can

substitute the integrals in Equations (3), (4), (5), and (6) by averages of the corresponding

probabilities evaluated at the simulation. Beyond their applicability to an extensive class of

filtering problems, sequential Monte Carlo methods have the additional advantages of being easy

to code and well suited for massive parallelization. Thus, in this paper, we will use the particle

filter to evaluate the likelihood function.8

Alternatives to sequential Monte Carlo methods such as the extended Kalman filter or the

unscented Kalman filter are unlikely to work with high enough accuracy in epidemiological

models because of the strong nonlinearities present in these models. Examples, in other fields,

where a well-designed particle filter clearly outperforms variations of the Kalman filter in head-

to-head comparisons include Chatzi and Smyth (2009) and Lee et al. (2010). Also, Smyth et al.

(1999) document the poor performance of the extended Kalman filter in highly nonlinear setups.

Once we have the likelihood function, p
�
yT ;⇥

�
, we can either maximize it or combine it

with a prior p (⇥) to obtain a posterior p
�
⇥|yT

�
/ p

�
yT ;⇥

�
p (⇥) and perform a Bayesian

analysis. We can rely on clinical and experimental evidence to build informative priors.9

The posterior p
�
⇥|yT

�
can be sampled using a Markov chain Monte Carlo such as the

Metropolis-Hastings or the Hamiltonian Monte Carlo. When we combine the particle filter

to evaluate the likelihood with a Metropolis-Hastings to draw from the posterior, the joint

algorithm is often known as the PFMH. We follow this approach in this paper. One central

object of interest in our exercise will be the smoothed sequence of states conditional on the

posterior mode, since it will inform us about the epidemiological situation at any given moment,

a key input for policymakers and our causal assessment of mobility curtailments.

With the output of the Markov Chain Monte Carlo, we can integrate the likelihood function

p
�
yT ;⇥

�
with respect to the parameters ⇥. The resulting marginal likelihood p

�
yT
�
can

be used to build Bayes factors to compare di↵erent epidemiological models (for example, to

determine the best number of compartments). See Llorente et al. (2020) for an updated review

of methods for computing the marginal likelihood.

8There is an associated smoothing problem where we compute the sequence
�
p
�
Xt|yT ;⇥

� T
t=1

, that is, the
probability distribution of states conditional on all the data. In general, future observations are informative
about current states (as we will show in our application).

9If we adopt a uniform prior p (⇥), we can draw from a posterior that is proportional to the likelihood. By
looking at the parameter values ⇥⇤ that deliver the maximum value of p

�
yT ;⇥

�
in the Markov chain, we would

have obtained a maximum likelihood estimate that is often more reliable than the one that comes from traditional
optimization algorithms. We can also use ⇥⇤ as an (excellent) initial guess for an optimization algorithms.
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4 Our Application

As our application, we select a SIRD compartmental model of COVID-19 to be estimated with

data from Belgium. The application will highlight the importance of allowing for time variation

in i) the e↵ective contact rate among individuals; ii) the hospitalization rates; and iii) death

probabilities.

\�tSt�1

It�1

It Ht

Pt

Dt

CtCt

�H,t�

(1� �H,t)�

�H,t✓H

(1� �P,t)✓P

�P,t✓P

(1� �H,t)✓H

Figure 1: Outline of the model.

Figure 1 outlines the compartments’ structure. All individuals start as susceptible (S)

except for a small fraction of infectious individuals (I). Susceptible individuals meet with

infectious individuals and become, with some probability, infectious themselves. This probability

is controlled by �t, the time-varying e↵ective contact rate. Every day, a share � of infectious

individuals can recover in a hospital (H) or at home (P ). Here, “home” means all dwellings,

including private residences and retirement communities, outside of hospitals (unfortunately,

our data set does not distinguish between private residences and retirement communities, a

potentially important distinction). Of those, the share of individuals recovering in hospitals is

time varying and equal to �H,t. Hence, the share 1� �H,t recovers at home. Recovery ends with

death (D) or a return to a healthy status (C). Every day a share ✓H (✓P ) of individuals in a

hospital (at home) recover. Of those, �H,t (�P,t) die, while 1� �H,t (1� �P,t) return to healthy

status. These death rates are also time varying.

We assume that, once cured, an individual cannot become infectious again. We pick this

specification because the evidence is that re-infections with SARS-CoV-2 during 2020 (our data

sample) were possible but unlikely. However, it would be easy to extend the model to allow for

re-infections, perhaps after the (stochastic) waning of immunity or the arrival of new varieties

of the virus, a common concern later in the epidemic. Indeed, our causal analysis in Section 7

treats the emergence of new variants as a possible interpretation of a reproduction shock.

We move now to the detailed presentation of the model.

12



4.1 The Transition Equation

The transition equation of the model we will estimate is:

0

BBBBBBBBBBBBBBBB@
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gH,t
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1
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=
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��tSt�1It�1
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�h"h,t
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�n"n,t

1

CCCCCCCCCCCCCCCCA

, (7)

where we have a 9⇥1 vector of states Xt = {St, It, Ht, Pt, bt, gH,t, dH,t, dP,t, nt} and a 5⇥1 vector

of innovations E t = {"b,t, "g,t, "h,t, "p,t, "n,t}. Let us describe each of these variables.

Row one of Equation (7) tells us that the share of the population that is susceptible on day

t, St, is equal to the share of the susceptible population the day before, St�1, minus the new

infections as a share of the population, given by a matching function of the share of susceptibles

and infectious, It�1, yesterday: �tSt�1It�1.

The most relevant feature of row one, and a central aspect of our model, is that the e↵ective

contact rate, �t, in the matching function is time varying. In many textbook epidemiological

models, the e↵ective contact rate is a constant parameter. However, individuals respond to

the epidemiological situation for two reasons. First, individuals take voluntary precautionary

measures (lower mobility, wearing personal protection equipment, changed business protocols).

For this point to hold, we do not need to assume full agent rationality; we only require some

degree of endogenous reaction. Second, individuals change how often they e↵ectively interact with

each other in any given period because governments impose non-pharmaceutical interventions

(NPIs) in response to the health situation, such as curtailments on businesses and travel or

mandatory mask-wearing. By letting the e↵ective contact rate be time varying, the model can

capture these two mechanisms.

At this point, we could take two routes. First, we could introduce an explicit decision-theory

model of the individual and policy responses. This route would force us to impose a considerable

degree of additional structure. Alternatively, we can specify a flexible form for the evolution of

�t and let the data inform us about it.

We chose this second route by assuming that bt = log(�t) follows a random walk. More

concretely, in row five of Equation (7), bt = bt�1 + �b"b,t, where the innovation is a truncated

13



standard normal distribution:

"b,t | �t�1, It�1 ⇠ N (0, 1, lb(Xt,yt),���1
b

(log(It�1) + log(�t�1))).

The lower bound of the truncation, lb(Xt, yt), is imposed to avoid having more new cases in the

model (St�1�St) than in the data (notice that we are defining the function lb(Xt, yt) implicitly).

Later, we will argue that there will be a percentage of true cases of COVID-19 that are not

reported (for instance, because the cases are asymptomatic or due to insu�cient testing), but

that the situation where there are more reported cases than true cases is not relevant empirically.

The number of “false positives” is most likely trivially small and swamped, by at least an order

of magnitude, by the under-reporting of “false negatives.”10 The upper bound of the truncation,

���1
b

(log(It�1) + log(�t�1)), prevents St from becoming negative.

Row two of Equation (7) describes how the share of infectious, It, evolves. The new share is

equal to the share yesterday, It, plus the new infections �tSt�1It�1, minus the share of infectious

that move to the next compartment, �It�1.

Row three of Equation (7) determines the evolution of Ht, the share of the population

hospitalized on day t. The share evolves through inflows from the compartment of infectious

at a rate �H,t�It�1 and outflows at a rate ✓H . We allow �H,t to move to reflect the changing

availability of hospital beds and shifting decisions by patients (e.g., should I go to a hospital?)

and clinical protocols (e.g., should this patient be hospitalized or sent back home?).

As we did with the e↵ective contact rate, we specify a flexible law of motion for �H,t.

Specially, in row six of Equation (7), we define a random walk for gH,t, gH,t = gH,t�1 + �g"g,t,

where "g,t ⇠ N (0, 1) and �H,t =
e
gH,t

e
gH,t+1

. Hence, the mapping from �H,t to gH,t is:

gH,t = log

✓
�H,t

1� �H,t

◆
.

This mapping will be useful for interpreting gH,0 later on.

Row four of Equation (7) governs the evolution of the share of individuals recovering at home,

Pt. In parallel to Ht, the share evolves through inflows from the compartment of infectious at

a rate (1 � �H,t)�It�1 and outflows at a rate ✓P . Rows three and four implicitly assume that

individuals recovering in a hospital or at home do not switch between these two compartments.

This assumption is due to data limitations (as we do not observe how many patients previously

in a hospital die while recovering at home). Fortunately, this assumption does not cause too

many problems. If a patient is at home but later hospitalized, we can consider her as still

10Many clinical tests are designed to minimize “false positives” at the cost of “false negatives.” Nonetheless,
we could change the lower bound to allow for more reported cases than true cases (this might be helpful in other
applications). In a robustness analysis, we checked for the possibility of more cases reported than true ones, and
we only got a worse fit of the model.
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being in the infectious compartment. Conversely, individuals formerly hospitalized and currently

recovering at home are unlikely to be infectious and, hence, they could be considered as being

in the recovered compartment. Also, the measurement error will help us tackle, empirically,

deviations from this assumption in the data.

Rows seven to nine of Equation (7) describe the evolution of three random walks that will

be used in the measurement equation below, with innovations "i,t ⇠ N (0, 1) for i 2 {h, p, n}.
Finally, notice that the rows of Equation (7) define an implicit law of motion of Ct because:

St + It +Ht + Pt +DH,t +DP,t + Ct = 1, with C0 � 0. (8)

Hence, Ct = Ct�1 + (1� �H,t)✓HHt�1 + (1� �P,t)✓pPt�1.

4.2 The Measurement Equation

In our data set, we observe deaths in a hospital (Dobs

H,t
), deaths at home (Dobs

P,t
), and hospitalized

patients (Hobs

t
) at a daily frequency; new cases (Gobs

t
) at a weekly frequency; and the point

estimates of St from the seroprevalence surveys for some periods (see Section 5 for details). We

assume that the log of each of these five variables is measured with a normally distributed error

ui,t ⇠ N (0, 1) for i 2 {DH , DP , H,G, S}. The log form ensures that the model only predicts

positive values for the five observables. The measurement error arises for many reasons, from

administrative mistakes and delays in file keeping to the under-reporting of cases due to testing

bottlenecks. We will let the data tell us about the standard deviation of this measurement error.

Thus, the measurement equation is:
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1

CCCCCCA
. (9)

Row one of Equation (9) links the (log) first di↵erence of the observed share of deaths in

hospitals, �D
obs

H,t
, with the share of individuals in hospitals Ht�1 and the time-varying death rate

�H,t =
e
dH,t

1+e
dH,t

, where dH,t comes from row seven of Equation (7). For the first two observed series

in Equation (9) we add the term 1/Population because there are few days with zero deaths.

Row two of (9) links the (log) first di↵erence of the observed share of deaths at home,

�D
obs

P,t
, with the share of individuals recovering at home Pt�1 and the time-varying death rate

�P,t =
e
dP,t

1+e
dP,t

, where dP,t is a random walk that comes from row eight of Equation (7).

Time variation of the death rates in a hospital and at home captures improvements in clinical
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protocols that raise the survival of patients, variation in hospital congestion (which may facilitate

or complicate the treatment of patients), and changes in the mix of recovering individuals across

di↵erent demographic groups.11

Row three of (9) tells us that the observed share of the population in hospitals is measured

with error. An interpretation of this measurement error (beyond administrative mistakes in

recording hospitalizations and discharges) is that some patients in hospitals are still infectious

because isolation measures have not been fully implemented. Thus, while measured as being in

a hospital, the individuals are still in the infectious compartment for the purposes of the model.

Row four of (9) gives us the observed share of cases, equal to the di↵erence of the share

of susceptible individuals times a factor �n,t =
e
nt

ent+1e
�µ

< 1 that determines the percentage of

cases that are reported. The rate of under-reporting depends on nt, which follows the random

walk defined in row nine of Equation (7).12 The parameter µ ensures that under-reporting

never goes to zero, for example, due to false negatives. As we discussed above, we let cases be

under-reported by the �n,t factor because this was a key factor at the start of the COVID-19

epidemic and we want to recover an estimate of the rate of reporting. At the same time, we

assume that cases cannot be over-reported. As we will explain in more detail in Section 5, we only

use row four every Friday by matching it to the new cases reported the following Wednesday.13

Row five of (9) links the point estimates of the susceptible share of the population from

Herzog et al. (2020) to the corresponding share from our model. As we will describe below in

more detail, this study is a prospective serial cross-sectional nationwide seroprevalence evaluation

conducted in Belgium using blood samples collected during five di↵erent periods. We only use

this equation for the dates for which the study is available. This row forces our smoothed

states to incorporate the high-quality information from seroprevalence surveys, but allowing for

di↵erences due to sampling uncertainty and possible measurement errors.

Rows four and five of Equation (9) illustrate how state-space representations parsimoniously

incorporate observables at di↵erent frequencies.

4.3 The Time-Varying Reproduction Numbers

A key state in our model is the e↵ective contact rate �t, the time-varying parameter that

determines the speed of contagion in the matching function of susceptible and infectious

11In a model with several compartments for individuals indexed by age, this last e↵ect would disappear.
However, in our model, given the data available, we have only one group of individuals.

12The degree of under-reporting is sometimes called in the epidemiological literature the multiplication factor
(MF). See Gibbons et al. (2014) for a survey of the somewhat ad hoc methods used to estimate the MF. A related
approach to our measurement of under-reporting, also using an epidemiological model, is in Chudik et al. (2020).

13We could generalize this assumption. For example, Li et al. (2020) use a separate observational delay model
and Arnon et al. (2020) assume 3 days from exposure to the onset of symptoms and 7 days from the onset of
symptoms to a positive result.
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individuals. When �t is high, the infection spreads quickly. When �t is low, the infection spreads

slowly and might eventually abate.

The basic reproduction number, R0,t, is a closely related concept. The popularity of this

measure is due to its straightforward interpretation: the basic reproduction number is the

expected number of cases generated by one case in a population where all individuals are

susceptible. In our model, R0,t =
�t

�
. Thus, the basic reproduction number inherits the same

time variability encoded in �t.

A similar measure to R0,t is the e↵ective reproduction number, Re,t, which considers the

changes in the share of the susceptible population over time:

Re,t = R0,tSt =
�tSt

�

By doing so, Re,t o↵ers a better measure of the instantaneous speed of the spreading of the

infection. In Section 6, we will report the estimated evolution of R0,t and Re,t.

4.4 Summary

We summarize all the variables and parameters of the model in Table 1. For ease of exposition,

we partition Table 1 into five parts. The first part outlines the model compartments, the second

part summarizes the model time-varying parameters, the third part presents observed variables,

the fourth part shows the constant parameters of the model, and the fifth part lists the initial

states. We assume that the initial states’ distribution, X0, is degenerate. As mentioned above,

we will treat these initial states as additional parameters and set priors over them.

5 The Data

We build daily frequency data, including data on deaths in hospitals, total deaths, hospitalizations,

and new cases from Sciensano, a public institution recognized as a research institution by the

Belgian Science Policy O�ce. All the data except for deaths in hospitals, which will be explained

below, were downloaded from Sciensano on December 17, 2020. Our data span the period from

March 15, 2020, to November 30, 2020. The starting date corresponds to the first day for which

we have data on COVID-19 hospitalizations, and the ending date is the latest day for which we

have data on deaths in hospitals. Deaths at home are computed as the di↵erence between total

deaths and deaths in hospitals. The latter was obtained upon request from Sciensano and it

is dated as of December 15, 2020. In a few days, the number of total deaths in hospitals was

above the number of total deaths. In such cases, we input zero deaths at home.

The raw data on new cases exhibit weekend and holiday e↵ects. Hence, we use the data from
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Table 1: Model Road Map

Model Compartments

St Share of the population that is susceptible at time t.
It Share of the population that is infectious at time t.
Ht Share of the population that is hospitalized at time t.
Pt Share of the population that is recovering at home (outside the hospital) at time t.
DH,t Share of the population that has died in a hospital as of time t.
DP,t Share of the population that has died at home as of time t.
Ct Share of the population that has recovered as of time t.
Model Time-Varying Parameters

�t E↵ective contact rate at time t.
bt Natural logarithm of the e↵ective contact rate, i.e., bt = log(�t).
�H,t Share of the population no longer infectious at time t because they are recovering in a hospital.
gH,t Inverse of the logit function mapping gH,t to �H,t, i.e., gH,t = log(�H,t/(1� �H,t)).
�H,t Share of those leaving the hospital at time t due to death.
dH,t Inverse of the logit function mapping dH,t to �H,t, i.e., dH,t = log(�H,t/(1� �H,t)).
�P,t Share of those no longer recovering at home at time t due to death.
dP,t Inverse of the logit function mapping dP,t to �P,t, i.e., dP,t = log(�P,t/(1� �P,t)).
�n,t Share of new cases at time t detected in the data.
nt Inverse of the logit function mapping nt to �n,t, i.e., nt = log(�n,t/(1� �n,t)).
Observed Variables

D
obs

H,t
Observed share of the population that has died at a hospital as of time t.

D
obs

P,t
Observed share of the population that has died at home as of time t.

H
obs

t
Observed share of the population that is hospitalized at time t.

G
obs

t
Observed new cases at time t as a share of the population.

S
obs

t
Observed share of the population that is susceptible at time t.

Model Constant Parameters

� Share of the population that is no longer infectious at time t.
✓H Share of the population that leaves the hospital at time t.
✓P Share of the population that is no longer recovering at home at time t.
�b Standard deviation of the innovation to bt.
�g Standard deviation of the innovation to gH,t.
�h Standard deviation of the innovation to dH,t.
�p Standard deviation of the innovation to dP,t.
�n Standard deviation of the innovation to nt.
�DH

Standard deviation of the innovation to the measurement equation of �DH,t.
�DP

Standard deviation of the innovation to the measurement equation of �DP,t.
�H Standard deviation of the innovation to the measurement equation of Ht.
�G Standard deviation of the innovation to the measurement equation of St�1 � St.
�S Standard deviation of the innovation to the measurement equation of St.
µ Upper bound of the share of detected cases.
Initial Values

S0, I0, H0, P0, b0, gH,0, dH,0, dP,0, n0
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new cases reported every Wednesday save for Wednesday, November 11, 2020, a public holiday

in Belgium (Remembrance Day). For this date, we use the reported cases on Tuesday, November

10, 2020. We consider that those cases were infected the previous Friday. Since Sciensano assigns

new cases according to the date on which the sample was taken, we impute new cases in the

model to 5-day-ahead reported new cases.14 Thus, we match an average incubation period of 5

days. As the CDC reports, symptoms may appear 2-14 days after exposure to the virus and

some studies consider day 5 as the typical day of the onset of symptoms (Kucirka et al., 2020).

We picked this specification after extensive testing of alternatives. In those preliminary tests,

we found that alternative approaches that seasonally adjusted for nonbusiness days not only

distorted the number of reported cases but, more importantly, required potentially dubious

assumptions to capture the nonlinear nature of the time series.15 Hence, we use the data for new

cases at a weekly frequency; this is the simplest and most transparent solution that we found.

Concerning the share of the susceptible population, we use the point estimates from Herzog

et al. (2020). This study is a prospective serial cross-sectional nationwide seroprevalence

evaluation conducted in Belgium using blood samples collected during the following five collection

periods: March 30-April 5, April 20-April 26, May 18-May 25, June 8-June 13, and June 29-July

3. In total, the collection periods include 33 days, i.e., about 15% of our sample. The population

data used to express variables in per capita terms correspond to 2019 and were obtained from

the World Bank’s website.

6 Results

We now present our results. First, we will describe the algorithm we employ for estimation.

Second, we will present our priors and report the posterior moments. Third, we will show that the

model fits the data extremely well. Fourth, we will report the time-varying reproduction numbers

implied by the model. Fifth, we will discuss the estimated time-varying death probabilities

(i.e., the time-varying death rates divided by ✓H and ✓P , respectively). Sixth, we will back up a

measure of which percentage of cases were reported. We will conclude with a brief discussion of

the findings regarding the other states of the model.

6.1 Algorithm

As described in Section 3, we implement a PFMH algorithm. To do so, we first need to evaluate

the likelihood function p
�
yT ;⇥

�
given a set of parameters ⇥ (we include X0 in ⇥ since we

14According to the data documentation from Sciensano, the diagnostics include molecular techniques (i.e.,
polymerase chain reaction or PCR) and rapid antigen tests.

15Similarly, the nonlinearity of the model made the use of cumulators to aggregate cases over the week
challenging to implement and generated results that were not transparent.
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take the initial states X0 as given) using the particle filter with the following pseudo-code:

Step 0, Initialization: Set t 1.

Step 1, Prediction: Sample {X̃ i

t
}N
i=1 from the conditional density p(X i

t
|⇥) if t = 1,

and p(X i

t
|X i

t�1;⇥) otherwise.

Step 2, Filtering: Let the weights !
i

t
= p(yt|X i

t
;⇥) for i = 1, . . . , N .

Step 3, Sampling: Sample with replacement {X i

t
}N
i=1 from {X̃ i

t
}N
i=1 using weights

!
i

t
.

Step 4, Recursion: If t < T set t t+ 1 and go to step 1. Otherwise move to

next step.

Step 5, Evaluation: Use {{X i

t
}N
i=1}Tt=1 to estimate the likelihood function as:

bp(yT ;⇥) =
TY

t=1

 
NX

i=1

!
i

t

N

!

Step 1 is implemented by sampling from the distribution of innovations (which, given their

normality, is straightforward) and, given the swarm of simulated states at t� 1, using Equation

(7) to get the swarm of simulated states at t. Notice how simple it would be to introduce

non-normal innovations; we would just need to switch the sampler of the innovations. Step 2 is

also straightforward. From Equation (9), we can plug in the observations and the states and

back up the measurement errors that make both the left- and right-hand side equal. Then, we

evaluate the probability of those measurement errors given a normal distribution. Because of

the sampling in Step 3, the estimated likelihood bp(yT ;⇥) in Step 5 is a random variable and

not di↵erentiable with respect to the parameter values.

We nest the particle filter with a random walk Metropolis-Hastings to approximate the

posterior distribution of interest. The following algorithm generates a Markov chain that

converges to the posterior distribution of ⇥.

Step 0, Initialization: Set ⇥
(0) ⇠ N(µ0,⌃0) and g  1

Step 1, Proposal: Draw ⇥
0
from a multivariate normal with mean⇥

(g�1)
and covariance

matrix ⌃⇥.

Step 2, Acceptance/Rejection: Set ⇥
(g) = ⇥0

with probability

↵(⇥|⇥(g�1)) = min

⇢
1,

bp(yT ;⇥0)p(⇥0)

bp(yT ;⇥(g�1))p(⇥(g�1))

�

and ⇥(g) = ⇥(g�1)
otherwise.

Step 3, Recursion: If g < G, set g  g + 1 and go to step 1. Otherwise exit

20



the algorithm with {⇥(g)}G
g=1.

In Step 1, we set µ0 as the posterior mode, and ⌃0 = ⌃⇥. Step 2 is based on the random-

walk proposal with covariance matrix ⌃⇥. In accordance with standard practice (Roberts and

Rosenthal, 2001), we select ⌃⇥ so that the resulting acceptance rate of the algorithm is close to

20%. We set G = 100, 000 with a burn-in of 10, 000. Using the draws from the algorithm, we

approximate the posterior moments of interest such as mean, 5%, and 95% quantiles of ⇥. We

approximate the posterior distribution of states by the marginalization

p(XT |yT ) =

Z
p(XT |⇥,yT )p(⇥|yT )d⇥

where p(⇥|yT ) is given by the algorithm above and p(XT |⇥,yT ) can be approximated by either

the particle smoother or the particle backward sampler (see Fernández-Villaverde et al., 2016).

6.2 Prior and Posterior Moments

We impose prior distributions for the parameters and initial states of the model that capture

previous existing knowledge about the features of COVID-19. For transparency, we use well-

known parametric families commonly applied in similar problems. These priors are described in

Table 2. The table also describes the posterior moments. We use N = 50, 000 to compute the

particle filter and 30 repetitions of the filter to compute the mean and the standard deviation of

the posterior mode estimates.

Prior Let us briefly discuss the rationale underlying the parametric choices for our priors, their

central tendency, and their tightness. We pick beta priors for the three parameters determining

transitions across compartments: �, ✓H , and ✓p. The prior for � is centered at 0.2 (implying that

the median time a person remains infectious is about five days) consistent with the evidence in

Bar-On et al. (2020). The standard deviation of � is 0.05, which implies an interdecile range

(IDR) of 4 to 7 days and attributes a 10% probability to average infectious periods beyond 7

days.16 The prior mean and standard deviation for ✓H are set to 0.10 and 0.02, respectively,

implying a median length of average stays in hospitals of about 10, an IDR of 6 to 13 days,

and a 10% probability of average stays longer than 13 days, broadly in line with the average

hospital stays in Belgium according to Catteau et al. (2020), who found a median stay of 9 days

with a 6–to-15-day interquartile range. Even so, our prior rules out neither average hospital

stays as short as five days nor average stays longer than 20 days. We set the prior mean for ✓P

16We are dealing with the average infectious period across the population, which may include longer and
shorter infectious periods. The standard deviation of � embodies uncertainty about the average duration of
spells of infectiousness, not about their dispersion in the cross-section of individuals.
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equal to 0.15, implying a median average home recovery of between 6 and 7 days and an IDR

of about 4 to 11 days. While less is known about home recoveries, our prior assumes that, on

average, individuals recovering outside of hospitals present less severe symptoms and hence are

more likely to recover faster. In any case, the standard deviation of this prior allows the model

to encompass a wide range of possibilities. Our choice of standard deviations for the priors of

✓H and ✓P highlights a quintessential benefit of following a Bayesian approach. We can take

advantage of the nationwide scope of the data in Catteau et al. (2020) and the observation that

most of the studies outside of China find an average stay in hospitals slightly below 10 days

(e.g., Lavery et al. 2020, and Rees et al. 2020) to discipline the estimation, while remaining more

agnostic about those parameters, such as the average duration of home recoveries, for which it

is harder to gather external data.

We pick inverse gamma priors for the parameters governing the law of motion of the time-

varying parameters �b, �g, �h, �p, and �n. Inverse gamma priors are popular choices for the

step size changes across a variety of applications. We set the prior mean equal to 0.2 for �b, �g,

�h, �p, and �n to allow for quick changes in behavior, policies, and medical treatments. In the

case of the e↵ective contact rate, our prior for �b implies that this rate varies, on average, by

about 20% from one day to the next, in line with the fast changes recorded after stay-at-home

orders. In the case of the law of motion governing the share of those infected recovering in a

hospital, our prior implies (up to first order) that the share of those infected recovering in a

hospital changes on average by about 20⇥ (1� �H,t�1)% from period t� 1 to period t.17 Thus,

when the share of the population hospitalized is small, we expect larger changes than when this

share is large. Similarly, the prior mean of �h to 0.2 implies (up to first order) that the death

rate at a hospital changes on average by about 20⇥ (1� �H,t�1)% from period t� 1 to period

t. This is a flexible specification that allows death death rates in hospitals to fluctuate more

when the death rate is low, capturing sharp increases in death rates. The persistence of the

death rate implied by the prior increases with its level, as it is likely to be subject to shocks

that are proportionally smaller when the death rate level is high. We impose an identical prior

for �p. With regard to �n, our prior implies that (up to first order) the share of detected cases

changes on average by about 20⇥ (1� �n,t�1)% from period t� 1 to period t. Thus, when the

detection rate is low, the day-to-day changes are larger than when the detection rate is large.

Importantly, the standard deviation of the prior for �b, �g, �h, �p, and �n is set to 0.2. Hence,

our prior allows for either extremely slow or fast changes in the time-varying parameters.

Next, we discuss the prior for the initial value of the states. We set the prior mean for

S0 equal to 0.98. This is a value that is about one percentage point above the share of the

population susceptible to the virus as of March 30, 2020, according to the point estimates in

17This follows from linearizing �h,t =
e
gH,t

e
gH,t+1 around �h,t�1 and dividing the resulting expression by �h,t�1,

that is, �H,t��H,t�1

�H,t�1
= (1� �H,t�1)(gH,t � gH,t�1).
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Herzog et al. (2020). The standard deviation is set equal to 0.01, which is about two times

the standard deviation associated with the 95% confidence interval for the seroprevalence of

COVID-19 in Belgium as of March 30, 2020, reported in Herzog et al. (2020). The prior mean

for I0 is 0.001, which implies that 0.1% of the Belgian population was infectious on March 15,

2020. Notice that assuming a contagion rate of 0.6 (a value we will describe below), then the

number of new cases on March 16, 2020 implied by this assumption is 6,752, which is broadly

consistent with the order of magnitude implied by inflating the reported cases under our implied

prior for the share of detected cases as will be discussed below. The standard deviation of I0 is

set to 0.001, which is also in line with our assumptions on the detection rate. Since the priors

for S0 and I0 are independent, and hence to make sure that the constraints in equation (8) are

satisfied, we discard any draw of S0 and I0 that violates such restrictions.

The prior mean for b0 is set equal to log(0.6), so that prior belief about R0,t is around 3 on

March 15, 2020, a value consistent with other assumptions in the literature, e.g., D’Arienzo and

Coniglio (2020). The standard deviation for b0 is set to 0.5, so that if we were to use values of b0

one standard deviation below and above the mean, we would obtain values of R0 in the interval

[1.8, 5.9]. The prior mean for gH,0 is set so that when mapped to �H,0 it implies that 1% of

those recovering from COVID-19 were doing so in a hospital on March 15, 2020. This number is

computed as follows. We sum the “true COVID-19” cases embedded in our prior as implied by

a detection rate of 5.5% (a plausible value according to our prior) from March 11 until March

15. The result is 27,054. Since 266 individuals were hospitalized on March 15, we have that

266/27, 054 ⇡ 0.01. The standard deviation for gH,0 is set equal to 2, which is large enough

to cover an interval of hospitalized individuals between [15; 800], which is quite wide given the

reported 266. The prior mean for dH,0 is set equal to log(0.15/(1-0.15)). This number is obtained

by the measurement equation assuming that deaths in hospitals are measured without error

on March 15, 2020; thus �H,0 =
�DH,0

H0✓H
= 4

266⇥0.1 = 0.15. The standard deviation for dH,0 is set

equal to 2 so that the prior for the probability of those leaving the hospital because of death is

concentrated in the interval [0.02, 0.56]. The prior mean and standard deviation for dP,0 is set

equal to the ones for dH,0.

The prior mean for n0 is set equal to �1.00 and the standard deviation is set equal to 1.00.

This choice, together with the prior over µ (described below), implies a fairly flat prior over the

share of detected cases on March 15, 2020 as shown in Appendix A.1.

We have degenerate priors for H0 and P0. In particular, we set H0 = 2.31⇥ 10�5 (that is,

266 hospitalized expressed as a share of the Belgian population the day before the start of our

sample) and P0 = 0. The first is given to us by the data and the second is just for convenience,

since its e↵ects on the estimation are trivially small.

Next, we justify our choice of prior for µ, i.e., the parameter controlling the share of false

negatives. The prior mean of µ is 0.175, the mid-point of the 2 to 33% interval of false
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negatives in PCR tests reported by Arevalo-Rodriguez et al. (2020) when the type of specimen is

nasopharyngeal or oropharyngeal. In our model, this implies that as the permanent component

of the share of detected cases approaches one, a false negative rate of 17.5% is the most likely

outcome. The standard deviation for µ is set equal to 0.05. This choice for the standard

deviation of µ implies an IDR range for the false negative rate of 11 to 24%. Although rare, our

prior does not completely rule out false negative rates below 5% or above 35%. We allow for

this wide range of possible values because there can be di↵erences between the accuracy of PCR

tests as measured in a lab and when applied widely in a myriad of di↵erent situations.

Finally, we impose degenerate priors over the parameters governing the standard deviation of

the measurement errors of observables, �DH
, �DP

, �H , �G, and �S. We use the data to calibrate

�DH
, �DP

, �H , and �G by applying a Hodrick-Prescott filter to the observed variables. We tune

the frequency of the filter so that the cyclical component is nearly serially uncorrelated. Then,

we set the mean of the parameters in question equal to the standard deviation of the serially

uncorrelated cyclical component. This procedure results in �DH
= 0.29, �DP

= 0.32, �H = 0.017,

and �G = 0.16.

The prior mean for �S is set equal to 0.02, which is roughly about 5 times the average

standard deviation across collection periods implied by Herzog et al. (2020). Serological studies

are a useful guide, but likely to be subject to large measurement error, as is evident in the

variation in the share of individuals infected by the virus throughout the collection periods.

Columns two to four of Table 2 summarize the priors of each parameter.

Posterior We now discuss the posterior moments reported in Table 2 (mode, mean, and the

90% posterior probability interval).18 For ease of exposition, we focus on the posterior mean,

save for a few parameters where the 90% posterior probability interval is of particular interest.

The posterior mean and 90% posterior probability interval for � are 0.070 and [0.055; 0.105],

respectively. This suggests that the implied posterior mean estimate of the average length a

person remains infectious is between 13 and 14 days and the 90% posterior probability interval

is between 9 and 19 days (we compute the statistics regarding days by inverting every draw of �,

not by inverting the mean �; the same will apply to all other statistics regarding time). Hence,

according to our estimates, an infected person remains contagious for a longer period than in

the mean of our prior beliefs. The posterior mean and 90% posterior probability interval for ✓H

are 0.193 and [0.161; 0.229], respectively. Hence, the posterior mean of the average length of

stay in hospitals is between 5 and 6 days and the 90% posterior probability interval is between 4

and 7 days, which is a shorter duration than our prior. The posterior mean and 90% posterior

probability interval for ✓P are 0.144 and [0.084; 0.215]. The implied posterior mean of the average

18Appendix A.2 shows the prior and posterior distribution for all the estimated parameters. While some
parameters are more sharply identified than others, the contrast between the prior and posterior distribution
shows that the data are informative about the estimated parameters.
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Table 2: Prior and Posterior Moments

Parameter/ Prior Posterior
Initial State Dist. Mean Std Mode Mean 5% 95%

� B 0.20 0.05 0.070 0.075 0.055 0.105
✓H B 0.10 0.02 0.208 0.193 0.161 0.229
✓P B 0.15 0.05 0.122 0.144 0.084 0.215
�b IG 0.20 0.20 0.161 0.186 0.126 0.263
�g IG 0.20 0.20 0.153 0.175 0.139 0.221
�h IG 0.20 0.20 0.078 0.091 0.065 0.122
�p IG 0.20 0.20 0.152 0.149 0.116 0.188
�n IG 0.20 0.20 0.224 0.307 0.168 0.485

S0 B 0.98 0.01 0.973 0.976 0.959 0.99
I0 B 0.001 0.001 0.0009 0.0013 0.0006 0.0024
b0 N log(0.60) 0.50 log(0.357) log(0.362) log(0.232) log(0.562)
gH,0 N logit(0.01) 2.00 logit(0.225) logit(0.149) logit(0.068) logit(0.325)
dH,0 N logit(0.15) 2.00 logit(0.121) logit(0.138) logit(0.101) logit(0.192)
dP,0 N logit(0.15) 2.00 logit(0.041) logit(0.024) logit(0.009) logit(0.072)
n0 N -1.00 1.00 -0.954 -1.478 -2.611 -0.220
µ G 0.175 0.05 0.121 0.124 0.082 0.170

Mean bp(⇥|yT ) 281.91 281.27
Std bp(⇥|yT ) 1.35 1.04

Note: This table is based on an MCMC chain with 90,000 posterior draws obtained after a burn-in period of 10,000
draws. The number of particles used in the estimation is 50,000. The acceptance rate is about 16%. The mean and
standard deviation of the log posterior density are based on 500 evaluations at the posterior mean and mode, respectively.

length of stay at home is between 7 and 8 days, and the 90% posterior probability interval is

between 4 and 12 days. The likelihood overturns the prior for ✓H and ✓P : our point estimates

suggest a longer recovery at home, perhaps due to higher-quality treatments given in hospitals.

Now we turn to the parameters controlling the step size of changes in behavior, policies, and

medical treatments. The posterior distribution for �b is centered around the prior mean, 0.20,

but it is more concentrated than our prior, ruling out small and abrupt changes in daily behavior.

A similar conclusion emerges for the parameter controlling the share of infected individuals

recovering in hospitals, �g. In contrast, the posterior mean for �h, 0.091, is much lower than

the prior mean of 0.20. Hence, according to our model, moderate-to-large step sizes (such as a

value of about 0.2) in the transmission rate are more plausible than in the transmission rate or

in the share of infected individuals recovering in hospitals than in the share of mortality rates

in hospitals, �h. In the case of the mortality rates at home, �p, the posterior mean is 0.149,

which is a step-size value somewhat higher than in the case of mortality rates in hospitals. The

posterior mean for changes in the share of detected cases is 0.307, which is larger than our prior

mean. This is consistent with expedited increases in testing capacity.

Finally, we describe the posterior mean for the initial conditions, which in our estimation
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corresponds to March 15, 2020, as well as the posterior mean of the share of false negatives.

The posterior mean and 90% posterior probability bands for the initial share of the population

susceptible to the virus are 0.976 and [0.959; 0.99]. Consequently, our posterior estimates indicate

that, with high probability, about 2% of the Belgian population had come in contact with the

virus by mid-March 2020. The posterior mean and posterior probability bands for the initial

share of the population that was infectious are 0.0013 and [0.0006; 0.0024]. Hence, according to

our estimates, about 0.1% of the Belgian population was infectious with high probability by

around March 15. The posterior mean of the initial log of the transmission rate is log(0.362),

implying a basic reproduction number, R0,t, of around 4.8.

The posterior mean of the process driving the initial share of the population hospitalized

is logit(0.149) so that 14.9% of those infected with COVID-19 were recovering in hospitals at

the beginning of our estimation sample. The posterior mean of the share of those no longer

recovering in hospitals due to deaths is 13.8% and the posterior mean of the share of those

no longer recovering at home due to deaths is 2.4%. These numbers imply an initial death

probability of 2.6% conditional on being hospitalized and an initial death probability of 0.35%

conditional on recovering at home. These findings suggest that, by mid-March 2020, very sick

patients were being admitted to hospitals for COVID-19 treatment. As documented in Appendix

A.2, the posterior distribution n0 is very similar to the prior distribution, with roughly the same

mean. However, our choice of prior for n0 was an educated guess: since this parameter was

hard to identify, we conducted multiple optimizations of n0 starting our Monte Carlo simulation

at di↵erent initial values. The optimizer consistently delivered values concentrated around the

mean of our prior.

The posterior mean of the share of false negatives implied by our model is 12.4%, which

is smaller than our prior. The posterior mean of parameters µ and n0 imply a 90% posterior

probability interval for the initial share of detected cases of between 9 and 31%. Thus, according

to our estimates, as of March 15, 7 out of 10 cases were being undetected in Belgium.

6.3 Data Fit

Figures 2 and 3 show the fit of the model to the data at the posterior mean. The left panel of

Figure 2 plots, in a continuous black line, the (log) first di↵erence of the share of (daily) deaths

in hospitals in Belgium from mid-March until late November (i.e., the share of new deaths). We

can see two large peaks, one in early April and one in early November, corresponding to the

first and third waves of COVID-19 in Belgium, plus a smaller wave in mid-August. In red, we

plot the median of the one-step-ahead forecast of the model, evaluated at the posterior mean,

together with a 90% probability band. The right panel plots, following the same formatting

as the left panel, the (log) first di↵erence of the share of the deaths outside of hospitals, the
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one-step-ahead forecast, and the 90% probability band.

(a) Death in hospitals (b) Deaths at home

Figure 2: Deaths: One-step-ahead forecast and data, Belgium

(a) Population in hospitals (b) New reported cases

Figure 3: Hospitalized population and new cases: One-step-ahead forecast and data, Belgium

The main lesson from Figure 2 is that the model fits the data remarkably well, capturing the

three waves of deaths. The observations fall within the 90% probability band on most days. The

only misses are during the summer of 2020, when deaths were fewer than ten a day. During this

time, small random di↵erences between one period to the next are extremely di�cult to forecast.

The model also accounts for the observation that deaths in hospitals had reached, by early

November, the same level as in early April, but deaths at home had not. This might reflects

Belgian hospitals’s better ability to cope with severe COVID-19 patients due to additional

available beds: hospitals can admit more patients and, therefore, more deaths occur there.19

This hypothesis is supported by the left panel of Figure 3, where we plot the (log) share of

hospitalizations following the same formatting as in Figure 2. As can be seen, hospitals had more

19We could also plot the one-step-ahead forecast integrating over the whole posterior. This alternative exercise
makes little di↵erence in practice, but complicates the interpretation of the figures.
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patients at the end of the sample. This left panel also shows that the model can account for

hospital utilization. Finally, the right panel of Figure 3 draws the (log) share of newly reported

cases. The data indicate many more cases in the last peak than in the first. However, recall

that this panel plots reported cases and our forecast of those recorded cases, not actual cases.

We will come back to this point below.
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(a) Forecast error, deaths in hospitals
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(b) Forecast error, deaths at home
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(c) Forecast error, population in hospitals
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(d) Forecast error, new reported cases

Figure 4: One-step-ahead forecast errors, Belgium

An alternative way to assess the fit of the model is Figure 4, where we plot the one-step-

ahead forecast errors for our four observables. The errors are well grouped around zero (except,

partially, reported cases), although they present heteroscedasticity. The clustering of forecast

errors around zero is another indication that the model fits the data well. The heteroscedasticity

is not a problem for our Bayesian approach. Still, it suggests an important avenue for a future

extension of the model to account for this time-varying volatility.
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6.4 The Estimated Time-Varying Reproduction Numbers

From our posterior distribution, we can recover the smoothed value of the unobserved states (or

related variables) and their probability distribution. These are, often, the most relevant objects for

policymaking, as they describe the epidemiological situation of a given area (country/region/...)

under study and can be used, as inputs, in a loss function to pick an optimal policy.

A key variable to monitor in an epidemic is the basic reproduction number R0,t. The left

panel on Figure 5 plots the smoothed R0,t and the 90% smoothed band. We see that the basic

reproduction number started in mid-March slightly above 4, around the values that several

clinical studies have suggested. For example, see Table 1 in Katul et al. (2020) for a list of

estimates (the authors conclude that their best estimate of an unmitigated R0,t for COVID-19

is 4.5, quite close to our result). However, R0,t fell very rapidly and, by mid-April, it was well

below 1. In May and June, R0,t stabilized around 0.5 and increased back to 2 during the summer

of 2020, fluctuating until late October between 2 and 1. After November, the basic reproduction

number is again at a much lower level, with the whole 90% smoothed band below 1.

(a) R0,t = �t/� (b) Re,t = R0,tSt

Figure 5: Reproduction numbers, Belgium

The right panel of Figure 5 reports our smoothed median and 90% probability estimates

of Re,t, the e↵ective reproduction number. While Re,t starts at the same level as R0,t, as time

passes by and the share of the suspectible populations shrinks, Re,t moves toward lower values.

The di↵erence, however, between R0,t and Re,t is not large. Figure 6, which draws our

smoothed estimate of the share of susceptibles (and the 90% probability band), tells us why.

Even as late as November, our model estimates that only around 12% of the population had

ever been infected. By early December, our estimates suggest that Belgium was far away from

herd immunity.

Figure 6 also plots, in red squares, the point estimates of the seroprevalence studies reported

by Herzog et al. (2020) and, in black crosses, the 95% confidence interval of the studies. Figure
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Figure 6: Share of susceptible population, Belgium

6 illustrates our argument regarding the power of state-space representations to incorporate

disparate data sources. Our model can account for those seroprevalence studies: in all cases, our

90% probability band and the 95% confidence interval of the studies overlap.

6.5 Time-Varying Death Probabilities

Another central state variable in our model is the time-varying death probabilities. Those

probabilities can change for many reasons. We can enumerate a few. First, medical protocols

vary. As health workers learn more about an infection, they can handle patients better, even in

the absence of e↵ective treatments. Second, hospitals experience di↵erent occupancy rates, with

variations in the inflows and total capacity, as the supply of beds and ICU units responds to the

crisis. Third, the demographics of patients can change, by varying either in terms of age or in

terms of comorbidity levels.20

The left panel of Figure 7 shows the in-hospital death probability (median smoothed, plus

the 90% probability band), which went down from over 2.5% in March to less than 1% by early

July. The sizeable third peak of COVID infections in the fall of 2020 increased that probability

only around 1.5%, suggesting a considerable degree of improvement in clinical outcomes.

The right panel of Figure 7 shows the at-home death probability, which fell from around

0.5% in March to less than 0.1% by early July. Here the changing conditions at retirement

communities, which were unprepared for the virulence of COVID-19 in the late winter of 2020,

are probably at the core of the estimated variation in death probabilities.

20Imagine, for example, that individuals with a high probability of infection (e.g., due to their social networks)
and high fatality rate (e.g., smokers) got infected in the first wave. As there are fewer of these individuals in the
population when the second wave arrives, the measured death rates will mechanically fall.
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(a) In-hospital death probabilities, Belgium (b) At-home death probabilities, Belgium

Figure 7: Death probabilities, Belgium

6.6 New Cases

Figure 8 plots, in blue, the smoothed median and 90% probability bands of the true new cases,

and, in black, the reported new cases in Belgium. We can clearly see that the first peak is much

smaller, with either measure, than the third one (with a minor second peak in the middle). The

fall in death probabilities explain why deaths did not reach the first wave levels.

Figure 8: New cases, Belgium

In addition, the reported cases and the estimated cases were very di↵erent during the first

wave. Figure 9 makes this point clearly by showing, in the left panel, our median smoothed

estimate of the share of reported cases and, in the right panel, the permanent component of

this share. By late March, less than 20% of all cases were being reported, while by the summer

of 2020, after testing became more prevalent, around 88% of cases were being reported. The

31



permanent component of this share suggests that this increase in reported cases is very persistent.

(a) Share of reported cases, Belgium (b) Permanent component of the share of
reported cases, �n,t, Belgium

Figure 9: Share of reported cases, Belgium

6.7 Other States

Finally, we present the smoothed estimates of the share of the population that is infectious,

the share of the population that is recovering (in hospitals and at home), and the inflow of

hospitalizations as a share of those that are no longer infectious.

Figure 10 shows the time series of these smoothed variables throughout our sample. The

share of infectious increases to 1.8% by the end of March: more than twice as large as the March

15 estimate of 0.7%. This sharp increase in the share of infectious may provide a rationale for

the first nationwide lockdown imposed by the Belgian government on March 18, 2020. These

measures appear to have had an e↵ect as the number of infectious dropped at the beginning of

April and continued to decline, reaching a trough at the end of June 2020. After that, the share

of infectious began to increase but at a moderate pace up until the first week of September, when

we observe a second exponential increase in the share of infectious, leading to a reintroduction

of lockdown measures on November 2, 2020.

The shares of the population recovering in hospitals and at home broadly track the contour

of the share of infectious with a lag. For example, the first peak of infections occurs on March

30, and the first peak of hospitalizations occurs on April 7. A similar pattern emerges for the

share of the population recovering outside of hospitals. Notice that while the peak of the third

wave of infections and the one of those recovering at home is more than twice as high as the

peak of the first wave, during the second wave, hospitalizations peak at a level only marginally

higher than the one of the first wave. This is consistent with the decline in the share of those

recovering from COVID-19 in hospitals during the third wave relative to the first one.
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(a) bIt, Belgium (b) bHt, Belgium

(c) bPt, Belgium (d) �H,t, Belgium

Figure 10: Other state variables, Belgium

7 Causality and Policy Trade-o↵s

This section illustrates how to exploit the outcomes from the estimated epidemiological model in

Section 4 for causality and policy trade-o↵ analysis. We measure, with two di↵erent approaches,

the e↵ects of mobility curtailment policies on the spread of the virus, the death toll, and economic

activity using the smoothed estimates of variables such as the e↵ective reproduction number,

new cases, deaths in hospitals, and deaths at home. These exercises gauge the trade-o↵ between

slowing down the spread of the virus and decreasing economic activity that policymakers face

when enacting shelter-in-place and/or compulsory business closure orders.

Why do we need a causality assessment? Starting in March 2020, individuals’ mobility

in most countries plummeted due to COVID-19, slowing down the virus’s spread at the cost of

lower economic activity. Some of the reductions in mobility were voluntary, as individuals took

extra precautions to avoid getting infected (or were a↵ected by other individuals taking such

measures; for instance, a household canceling its home cleaning services to avoid having third
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parties come inside its dwelling reduces the mobility of the workers of the cleaning service).21

Some of the reductions in mobility were triggered by government mandates, such as orders to

shelter-in-place or compulsory business closures.

Since both mechanisms coincided in time, in order to ascertain the causality e↵ect of these

government mandates on deaths and economic activity, we need to disentangle voluntary and

policy-induced changes in mobility, the virus’s spread, the death toll, and economic activity.

Knowing by how much governments can a↵ect current and future epidemiological conditions

and gauging their cost in terms of economic activity are key factors when designing the length

and severity of mobility curtailments.

Why are the outputs from the estimated epidemiological model useful? One of the

challenges when performing the above described exercises is that some of the relevant variables

needed, such as the e↵ective reproduction number, are not directly observable. Furthermore,

other variables, such as the number of reported cases, are subject to large, persistent, biased, and

time-varying measurement errors. These problems either preclude the application of standard

techniques to assert causality in time series or generate flawed results.

The structure imposed by an epidemiological model allows us to tackle these challenges.

The dynamics of an epidemiological model discipline the data by enforcing the cross-equation

restrictions among the model’s states implied by the transitions among compartments dictated by

the disease’s biological and clinical properties. The likelihood of the model tells us, for example,

that in the case of COVID-19, relatively high seroprevalence rates and low reported new cases in

Belgium during the first half of 2020 can only be reconciled with large under-reporting of cases.

Likewise, the parallel evolution of hospitalizations, deaths in hospitals vs. deaths at home, and

the reported new cases during 2020 informs us of the evolution of under-reporting and changes

in mortality probabilities. Thanks to our use of an epidemiological model, we transform noisy

and biased observations of new cases, new deaths in hospitals and at home, and seroprevalence

surveys into useful unobserved outputs, such as smoothed estimates of the e↵ective reproduction

number or the (true) number of new cases.

In contrast, one could try to estimate the e↵ective reproduction number using purely

statistical methods (e.g., comparing newly reported cases along a moving window), but such an

exercise could not correct the changing share of unreported cases. Another option would be to

perform the causality and policy analysis exercises without the e↵ective reproduction number,

but such a policy analysis would su↵er from an omitted variable bias, which we know from other

environments (like studying the e↵ects of monetary policy) can be a fatal flaw.

21Arnon et al. (2020) estimate that the bulk of reductions in U.S. contact rates and employment came from
voluntary changes in behavior. Gupta et al. (2020), Maloney and Taskin (2020), and Andersen (2020) report
similar results.
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Two procedures for causality assessment We address the e↵ects of government-mandated

mobility curtailments on both the spread of the virus and economic activity using the two most

salient methods for assessing causality in time series: structural vector autoregressions (SVARs)

and local projections (LPs).

First, we build on the tradition of SVARs and identify a government stringency shock by

restricting the systematic component of the government stringency policies rule that maps health

and economic conditions into mobility curtailments. A stringency shock should be thought as

an unexpected change in the mobility curtailment policy. The identification assumptions are

motivated by the observation that health policymakers have continuously emphasized that their

mandates follow a data-driven approach when imposing mobility curtailments. In situations

where we can impose credible restrictions on the systematic component of policy, SVARs have

been shown to o↵er reliable answers (Wolf, 2020).

Second, we work with LPs to identify a reproduction shock and analyze how it a↵ects the rest

of the variables (including deaths in hospital and at home and economic conditions) depending

on the level of government mobility curtailments. A reproduction shock can be thought of as a

shock that changes the contagious properties of the virus. This can be due to biological factors

(e.g., the spreading of a variant of the virus) or social mechanisms (e.g., the distribution of

better facial masks, improvements in ventilation in public spaces, better organization of social

distancing). More concretely, we want to measure whether government mobility curtailments

a↵ect the transmission of the reproduction shock. LPs are a very flexible approach that allows

us to address state dependencies without making strong parametric assumptions.

While our selection of methods is illustrative, it is not exhaustive. Many other methods

for assessing causality can use the output from our estimated epidemiological model, such as a

vector error correction model, regression discontinuity designs that exploit local variations in

government mandates (e.g., Goolsbee and Syverson, 2020), synthetic controls (e.g., Cho, 2020),

event studies (e.g., Gupta et al., 2020), or many of the other ideas in Imbens and Rubin (2015).

We could also generalize our SVAR analysis to a Markov-switching SVAR à la Sims and Zha

(2006). We skip all those additional experiments to keep our study tightly focused.

7.1 Government Stringency Shock

We write our SVAR as:

y0
t
A0 = x0

t
A+ + "0

t
for 1  t  T,

where yt is an n ⇥ 1 vector of endogenous variables, x0
t
=
h
y0
t�1 · · · y0

t�p
z0
t

1
i
, zt is a

z ⇥ 1 vector of exogenous variables, "t is an n⇥ 1 vector of structural shocks, A0 is an n⇥ n

invertible matrix of parameters, A+ is a (np + z + 1) ⇥ n matrix of parameters, p is the lag

length, and T is the sample size. The vector "t, conditional on past information and the initial
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conditions y0, ...,y1�p, is Gaussian with mean zero and covariance matrix In (the n⇥ n identity

matrix). The matrices A0 and A+ are the structural parameters.

One of the equations in the SVAR characterizes the policymaker’s behavior when imposing

mobility curtailments aimed at slowing the transmission of the virus. Consequently, we call such

an equation the government stringency policy rule.22

We summarize the decisions of the policymakers using a government stringency policies

indicator that we will describe below. We will call this indicator the policy instrument. We

assume the indicator reacts to other variables in the system such as new cases and the e↵ective

reproduction number. Without loss of generality, we assume that the first equation of the SVAR

characterizes the policy rule. This implies that:

y0
t
a0,1 = x0

t
a+,1 + z0

t
g + "1t for 1  t  T,

is the policy equation, where "1t denotes the first entry of "t, a+,1 denotes the first column

of A+ for 0  `  p, and as,ij for s 2 {0,+} denotes the (i, j) entry of As and describes the

systematic component of the policy rule. Thus, restricting the systematic component of the

policy rule is equivalent to restricting as,ij for s 2 {0,+} and identifies a policy shock that we

call the stringency shock.

Next, we describe the SVAR specification in more detail and how we restrict the policy

rule. Our baseline SVAR sample runs from March 21 through November 30 and contains seven

endogenous variables. Three of these seven endogenous variables come from outside sources.

First, we use the Oxford Stringency (OS) index for Belgium as our mobility curtailment policies

indicator (Hale et al., 2020). The authors of the OS index compile information on when and

which measures governments take. The particular index we use is a simple average of nine

individual component indicators. Each component is an ordinal measure of closings of schools

and universities, closings of workplaces, canceling of public events, limits on gatherings, the

closing of public transportation, orders to shelter-in-place, curtailments on internal movement

between cities/regions, prohibitions on international travel for non-citizens, and the presence of

public information campaigns. Due to data limitations, we do not consider non-mobility-related

NPIs such as face-masks or improved ventilation.

Second, we use a mobility index for Belgium from the Google COVID-19 Community Mobility

Reports, available at https://www.google.com/covid19/mobility/. This measure of mobility

is a simple average of the measures of nonresidential mobility categories in the Google Mobility

Reports (excluding parks): i) Retail and recreation; ii) Grocery and pharmacy; iii) Transit

stations; and iv) Workplaces. The mobility measure is expressed in percentage points and it

22We could have several policy equations, each capturing one di↵erent containment policy as a function of
public health variables, as in Chernozhukov, Kasahara, and Schrimpf (2021). We keep our analysis to one policy
equation to avoid overparameterizing the SVAR.
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corresponds to daily changes in mobility relative to a baseline value for that day of the week,

which is the median value observed during the 5-week period Jan 3–Feb 6, 2020.

Third, we use a daily economic news sentiment (ENS) indicator for Belgium constructed

by Algaba et al. (2021) using natural language processing as a daily index of economic activity.

This indicator is based on the media archive of the national Belgian News Agency. When

aggregated at a monthly frequency, the index is positively correlated with the National Bank of

Belgium’s monthly consumer confidence survey and other measures of economic activity such

as construction, manufacturing, business-related services, and industrial confidence in the euro

area, among others. The daily ENS indicator was obtained in two formats: a latent daily series

and a 14-day moving average of the series. We use the latter because the former is too noisy.

The other four endogenous variables come from the estimated epidemiological model: i) the

model-implied point-wise median smoothed estimate of the e↵ective reproduction number; ii)

the model-implied point-wise median smoothed estimate of new cases (as reported in Figure

5); iii) the model-implied point-wise median smoothed estimate of daily deaths per capita in

hospitals; iv) and the model-implied point-wise median smoothed estimate daily deaths per

capita at home (the two estimates of deaths per capita as reported in Section 6).

The stringency index, the e↵ective reproduction number, and new cases are expressed in

log percent. Daily deaths enter in levels so that we can compute the impulse response function

(IRF) of cumulative deaths to a stringency shock. The SVAR includes 14 lags, a constant

term, and, as an exogenous variable, the average daily temperature to control for the e↵ect

that weather conditions might have on the variables of interest. The observable corresponds

to the temperature measured at the Brussels Airport Station and it was downloaded from

https://www.wunderground.com/. While in general weather conditions are heterogeneous

within a country, our measure is representative of the weather conditions for Belgium as a

whole given that this nation’s territory is only about 30,689 km2 and most of the population is

concentrated in the flat coastal plain and central plateau.

The SVAR is estimated with a Bayesian approach following Arias, Rubio-Ramı́rez, and

Waggoner (2018). We impose a normal-generalized-normal (NGN) prior distribution over the

structural parameters (A0,A+). The NGN prior is a conjugate prior characterized by four

parameters (⌫,�, ,⌦). The parameters ⌫ and � govern the marginal prior distribution of

vec(A0): if ⌫ = n –as will be the case in our application– vec(A0) is normally distributed with

mean zero and variance ��1. The remaining parameters  and ⌦ govern the prior distribution

of vec(A+), conditional on A0. Such a distribution is normal with mean  vec(A0) and variance

⌦. We set ⌫ = n, � = 0n,n,  = 0mn,n2 , and ⌦�1 = 0mn,mn.

The policy equation is identified with sign restrictions on the systematic component of the

policy actions in line with Arias, Caldara, and Rubio-Ramı́rez (2019) and the SVAR tradition of

Leeper, Sims, and Zha (1996). The identification restrictions are:
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Restriction 1. The stringency index is the mobility curtailment policies indicator, and it reacts

contemporaneously and positively to the e↵ective reproduction number, mobility, new cases,

deaths, and the index of economic activity.

Restriction 1 embodies the idea that policymakers react to current public health conditions

and economic activity. For example, on March 17, 2020, the Belgian government announced

the first nationwide lockdown arguing that: “The situation has evolved and forced us to take

severe measures to stem the spread of the virus.”23 On April 15, the government relaxed some

measures since: “We are aware that the measures taken will have serious long-term consequences,

both psychologically and economically. We plead that the measures last as long as necessary.”24

On October 16, the Belgian government ordered bars and restaurants to close, justifying the

measure with sentences such as: “The number of confirmed cases is rising, every day, and not

just by a few percentage points.” Other sentences such as: “This virus is a↵ecting our country

in a very hard way,” “Thirty-five people died yesterday from the e↵ects of COVID-19,” and “In

the days to come, the news will be bad” make clear that policymakers were reacting to public

health conditions in real time.25

Figure 11 plots (in brown lines) the IRFs to a positive (increase) stringency shock and

(in yellow bands) the 68% point-wise posterior probability bands. The stringency shock is

normalized such that, upon impact, the posterior median increase in the stringency index equals

7.4%. This is equivalent to a one-unit increase in one of the ordinal measures that composed

the OS index. For instance, this change corresponds to a nationwide measure that unexpectedly

increases the “shelter-in-place” component of the index from 1 (which recommends not leaving

the house) to 2 (which requires not leaving the house, with exceptions for daily exercise, grocery

shopping, and essential trips). Other examples include an unexpected nationwide increase in

the limits on gatherings from 2 (curtailments on gatherings between 101-1000 people) to 3

(curtailments on gatherings between 11-100 people).

A positive stringency shock leads to a drop in the e↵ective reproduction number for more

than a month. This drop is beyond the fall triggered by individuals’ endogenous responses due

to changed risk conditions (which are controlled for by the coe�cients in the SVAR). Mobility,

new cases, and deaths also decline, albeit with di↵erent degrees of persistence. In the case of

mobility, the decline is more transient than in the case of the e↵ective reproduction number,

suggesting an exhaustion e↵ect among individuals: after around three weeks, mobility is back to

its baseline value without a stringency shock. The decline in deaths in hospitals and at home

23See the March 17, 2020 Reuters article “Belgium to impose coronavirus lockdown from Wednesday.”
24See the April 15, 2020 EURACTIC article “Belgium extends COVID-19 lockdown until 3 May, but relaxes

some measures.”
25See the October 16, 2020 Reuters article “Belgium to close all bars and restaurants for a month, imposes

night curfew,” and the AP article “Belgium imposes Covid curfew, closes bars and restaurants,” on the same day.
Notice that, in comparison with Chernozhukov et al. (2021), we allow for policy to react to behavior.
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Figure 11: IRFs of a one standard deviation positive stringency shock. The solid curves
represent the point-wise posterior medians, and the shaded areas represent the 68% equal-tailed
point-wise probability bands. The figure is based on 10,000 independent draws.

lasts much longer, reflecting the illness’s lag e↵ects. We measure that a positive stringency shock

leads to roughly 1, 000 fewer deaths (500 in hospitals and 500 at home) after 2 months. This

represents about 6% of the total number of deaths in our sample, 16, 840.

To interpret the e↵ects of a positive stringency shock in terms of output, we scale the ENS

indicator following Lewis et al. (2020). We aggregate the daily ENS indicator to quarterly

frequency, denote the resulting series by ENSq, and run a regression of four-quarter real GDP

growth 1 quarter ahead on a constant and ENSq over the sample 2000Q1-2019Q4, i.e.,

RGDPq4q4
q+1 = ↵ + �ENSq + ut, where q 2 {2000Q1, . . . , 2019Q3} .

We estimate this regression by OLS and obtain ↵̂ = 1.6 and �̂ = 1.2. Based on these point

estimates, we can express the news sentiment indicator in terms of real GDP: A decline of 0.2

standardized units in sentiment implies that, if such a value were to persist for an entire quarter,
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we would expect (on average) real GDP in the next quarter to be about 0.25% lower than in the

absence of the shock.

The pointwise posterior median IRF of the ENS indicator to a stringency shock is on average

about 0.04 during the first 90 days, with a 68% probability interval of [�0.1459, 0.2298]. If we

take the posterior median 0.04 and compute the equivalent in terms of the Belgian GDP per

capita, we find that a stringency shock brings a net per capita gain of e4.2. Repeating the same

exercise for the two extremes of the probability interval, we obtain the result that the per capita

cost(-)/benefit(+) of a stringency shock is between �e14.7 and +e23.1.26

This finding suggests that the e↵ect of a positive stringency shock on economic activity is

negligible (given the uncertainty, it is hard to tell whether there is a net cost or benefit). In other

words: in our sample, and given the systematic component of the health policy of the Belgian

government and the voluntary changes in behavior, a marginal and unexpected tightening of

mobility curtailments would have saved many lives with close to a zero impact on income per

capita. By controlling the virus’s spread, a positive stringency shock has a short-term output

cost for 15 days, but increases economic activity later. As the stringency measures improve

public health conditions, the policy’s systematic component drives the stringency index below

zero 25 days after the initial increase. In comparison, the reproduction number starts to increase

only 40 days after the shock. This di↵erence in timing is consistent with the presence of transient

precautionary behavior by the public.

The systematic component of the health policy rule Beyond the analysis of IRFs,

SVARs provide useful information regarding the systematic component of the government-

mandates policy implied by our identification scheme.27 More specifically, the contemporaneous

coe�cients correspond to ratios of entries in the vector a0,1. Thus, abstracting from lags and

the constant term, the health policy equation can be written as:

strt =  Rret +  Mmt +  ��Snct +  DH
ndht +  DP

ndp
t
+  nsnst + �"1,t,

where str denotes the stringency index in log-percent, rt denotes the e↵ective reproduction

number expressed in log-percent, mt denotes mobility in percentage points, nct denotes the log of

new cases in log-percent, ndht denotes the number of new deaths in hospitals, ndp
t
denotes the

number of new deaths at home, and nst denotes the ENS indicator. Accordingly, the coe�cient

26See Table A.1 in Appendix A.3 for the regression results and see Figure A.5 in Appendix A.3, which plots
the ENS indicator in real GDP units along with one-quarter-ahead four-quarter real GDP growth. Given the
short time span (90 days) and the low real interest rates prevailing at the moment, discounting the GDP flows to
put them in present terms does not make any quantitative di↵erence. Notice that we cannot measure the welfare
e↵ect of the positive stringency shock.

27This is a common practice when identifying monetary or fiscal policy equations in SVARs: e.g., Leeper and
Zha (2003), Sims and Zha (2006), and Caldara and Kamps (2017).
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 R = �a0,11/a0,31 denotes the contemporaneous response of the stringency index to the e↵ective

reproduction number,  M = �a0,21/a0,31 denotes the contemporaneous response of the stringency

index to mobility,  ��S = �a0,41/a0,31 denotes the contemporaneous response of the stringency

index to new cases,  DH
= �a0,51/a0,31 denotes the contemporaneous response of the stringency

index to new deaths in hospitals,  DP
= �a0,61/a0,31 denotes the contemporaneous response of

the stringency index to new deaths at home,  ns = �a0,71/a0,31 denotes the contemporaneous

response of the stringency index to economic conditions as measured by the ENS indicator, and

� = 1/a0,31 is the standard deviation of the health policy shock.

Table 3: Contemporaneous Coe�cients in the Health Policy Equation

Coe�cient  R  M  ��S  DH
 DP

 ns

Median 0.86 3.32 0.49 5.37 1.83 34.05

68% Prob. Int. [0.21;3.37] [0.78;13.06] [0.12;1.68] [1.43;18.78] [0.43;6.73] [9.24;115.54]

90% Prob. Int. [0.06;10.06] [ 0.24;42.53] [0.04;4.45] [0.45;51.47] [ 0.12;19.56] [2.85;321.06]

Note: The table’s entries denote the posterior median estimates of the contemporaneous coe�cients in the health policy
equation under our identification. The 68% and 90% equal-tailed posterior probability intervals are reported in brackets.
The table is based on 10,000 independent draws.

Table 3 reports the posterior distribution of the contemporaneous coe�cients in the health

policy equation. The posterior median of  R equals 0.93, which implies that the stringency

index increases by about 9.3% in response to a 10% increase in the reproduction number. As a

reference point, recall that a 7.4% rise in the index is equivalent to a one-unit increase in one

of the ordinal measures that composed the OS index. The posterior median of  M equals 3.3,

indicating that the stringency index increases by about 16.5% (where 16.5=3.3⇥ 5) in response

to a 5 percentage point increase in daily mobility. The posterior median of  ��S equals 0.5, that

is, the stringency index increases by about 5% in response to a 10% rise in the daily new cases.

The posterior median of  DH
, 5.73, suggests that the stringency index increases by about 57.3%

in response to 10 new daily deaths in hospitals. The posterior median of  DP
, 1.94, means that

the stringency index increases by about 10.94% in response to 10 new daily deaths at home.

The posterior median of  ns, 34.05, means that the stringency index decreases by about 17.02%

in response to a half-standard-deviation decrease in the ENS indicator. In terms of output, this

means stringency increases 17.02% (i.e., about a one-unit increase in two of the ordinal measures

that composed the OS index) in response to a drop of around 0.6% in next quarter real GDP.

Overall, the coe�cients are plausible given the behavior of health authorities in 2020 across

the advanced economies. The 68% and 90% probability intervals are wide, but one could easily

extend our analysis to impose bounds on coe�cients based on external evidence or judgment; see

Arias, Caldara, and Rubio-Ramı́rez (2019). We skipped this venue because we want to present

our result as free of prior e↵ects as possible.
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7.2 A Reproduction Shock and Government Stringency Level

We next identify a reproduction shock and analyze whether its e↵ects on the virus’s spread,

deaths, and economic activity depend on the level of government stringency. To answer this state-

dependency question we use the LP approach proposed by Jordà (2005) and further developed

by Ramey and Zubairy (2018), Stock and Watson (2018), and Plagborg-Møller and Wolf (2021),

among others. In particular, we use LPs with interaction terms as in Ramey and Zubairy (2018)

to study how a reproduction shock propagates depending on the level of government stringency.

Our identification scheme consists of sign and zero restrictions implemented as described in

Plagborg-Møller and Wolf (2021). Consider the following LP specification:

wi,t+h = It�1

 
µH,i,h + �0

H,i,h
wt +

⌫X

`=1

�H,i,h,`wt�` + � 0
H,i,h

st

!

+ (1� It�1)

 
µL,i,h + �0

L,i,h
wt +

⌫X

`=1

�L,i,h,`wt�` + � 0
L,i,h

st

!
+ ⇠i,h,t

(10)

for i = 1, . . . , n, and h = 0, . . . , H, where wt is the w ⇥ 1 vector of endogenous variables equal

to yt defined in Section 7.1 save for the OS index, which is excluded from wt, wi,t+h denotes

the value of the i-th variable in wt+h, and st is an s⇥ 1 vector of exogenous variables.

The exogenous variables include zt (defined in Section 7.1), the point-wise median smoothed

death probability in hospitals, and the point-wise median smoothed death probability at home.

It�1 is a dummy variable that indicates whether Belgium is in a high government stringency

regime. The high government stringency regime is determined based on whether the OS index

is above its median level over the sample (58.33). The parameters µH,i,h, �0
H,i,h

, �H,i,h,`, and

� 0
H,i,h

correspond to the high government stringency regime and the parameters µL,i,h, �0
L,i,h

,

�L,i,h,`, and � 0
L,i,h

correspond to the low government stringency regime, i.e., the stringency index

is below its sample median. The innovation term for h = 1, ⇠1,t = (⇠1,1,t, . . . , ⇠w,1,t)
0, is assumed

to be mean zero with covariance matrix Et(⇠1,t⇠01,t) = ⌃.
28

All told, the LP specification is similar to the SVAR specification used above with a few

modifications tailored to the question at hand. First, we do not include the stringency index

because it is the variable we use to split the sample. Second, we use 3 lags to reduce parameter

uncertainty. Third, we add death probabilities as exogenous variables to control for any e↵ect

related to the sample split. In particular, it could be the case that high (low) government

stringency episodes are correlated with high (low) mortality rates. In fact, the death probability

was higher at the beginning of our sample as better treatments and refined clinical protocols for

the disease were not ready yet. The restrictions to identify the reproduction shock are:

28We have also experimented with the case in which the covariance matrix is regime specific. The main
conclusions of this section remained unchanged.
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Restriction 2. The reproduction number increases for at least three days in response to a

positive reproduction shock. Mobility decreases for at least three days in response to a positive

reproduction shock. The impact response of mobility in percentage points is bounded to be smaller

than the percentage point increase in the reproduction number. In addition, the reproduction

shock does not a↵ect deaths, new cases, and the ENS indicator contemporaneously.

Restriction 2 identifies what we call a reproduction shock, that is, an exogenous variation

in the transmission rate of COVID-19. As we explained above, such an exogenous variation

could occur when people relax their compliance with social distancing measures or when a more

contagious variant of the virus emerges. The positive sign restrictions on the reproduction

number’s impact response is a normalization; the positive sign restrictions on the subsequent

days are imposed to sharpen identification. We impose just three days to be cautious and let the

data dictate the response’s shape as much as possible while keeping identification. The negative

sign restriction on mobility is imposed based on the notion that, on average, people will stay at

home in response to an unexpected increase in reproduction numbers.

The elasticity bound is imposed to discipline the identified set of mobility. In the absence of

such a bound, the identified set would include a decline in mobility of 100 percentage points as

equally likely to no decline in mobility following an unexpected 10% increase in the e↵ective

reproduction number. Such a result is implausible. Hence, we use a bound to rule out dubious

IRFs as in Kilian and Murphy (2012) and Arias, Caldara, and Rubio-Ramı́rez (2019). The zero

restrictions on deaths and new cases are predicated on the CDC’s reports that it takes more

than one day for the symptoms to develop, and on evidence showing that it takes more than

one day to die from COVID-19. For example, Wortham, Lee, Althomsons, et al. (2020) report a

median clinical course of the disease of 10 days with an interquartile range of 6 to 15 days. The

zero restriction on the impact response of the ENS indicator is that it takes at least one day

to have broad coverage of the mobility restrictions following the shock and for the audience to

process it.

Given the sign and zero restrictions described above, we compute the identified set by

numerically solving the quadratic program described in the supplement to Plagborg-Møller and

Wolf (2021). In particular, let S1 be a 7xw matrix that selects the IRFs that we restrict to be

either positive or negative, and let Z1 be a 4xw matrix that selects the IRFs that we restrict to

zero. Then, for each regime r 2 {H,L}, we draw 1 million orthogonal matrices Qr that satisfy:

"
S1Ĉ0,rB̂Qre1⇣

e0
2Ĉ0,rB̂Qre1/e0

1Ĉ0,rB̂Qre1

⌘
� 1

#
� 0 and Z1Ĉ0,rB̂Qre1 = 0 (11)

where Ĉ0,r =
⇣
�̂r,1,0, . . . , �̂r,w,0

⌘0
, �̂r,j,0 denotes the OLS estimate of �r,j,0 for j = 1, . . . , w,

B̂ = chol(⌃̂)0, chol is the upper triangular Cholesky decomposition of ⌃̂, ⌃̂ is the OLS estimate
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of ⌃, e0
2Ĉ0,rB̂Qre1/e0

1Ĉ0,rB̂Qre1 denotes the ratio between the impact IRF of mobility and

the reproduction number, and ei denotes the i-th column of the identity matrix.

The numerical computation of the identified set is similar to Algorithm 2 of Giacomini and

Kitagawa (2018): given B̂ and Ĉ0,r, we draw Qr K times and let {Qr,k : k = 1, . . . , K} be the

draws that satisfy the sign and zero restrictions in Equation (11). Then, letting qr,k,1 denote

the first column of Qr,k the identified set for variable i at horizon h is given by

h
minke

0
i
Ĉ0,rB̂qr,k,1,maxke

0
i
Ĉ0,rB̂qr,k,1
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Figure 12: IRFs of a reproduction shock

Figure 12 reports the identified set following a reproduction shock. We show the IRFs from

horizon 0 up to horizon 15. The shorter horizon relative to the horizon of the IRFs shown in

the SVAR is due to the length of our sample and the parameter uncertainty associated with

LPs. Notice, in particular, that the LP looks at the variation in the systematic regime, while

the SVAR focuses on the e↵ect of a shock within the regime. Figure 12 truncates the horizon at

15 days, which encompasses the illness duration of patients who died from COVID-19 reported

in Wortham, Lee, Althomsons, et al. (2020), who find a median duration of 10 days and an

interquartile range of 6 to 15 days, and it is a tad below the findings of Sousa et al. (2020), who

report a median illness duration of 19 days and an interquartile range of 12 to 23 days.

In response to a reproduction shock that increases the reproduction number by 10%, the

average decrease in the mobility index in the high government stringency regime, �41.3 percentage
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points, is larger than the average mobility index in the low government stringency regime, �17.0

percentage points. Consequently, new cases increase by less in the high government stringency

regime, leading to fewer deaths (both in hospitals and at home). Another factor explaining

the higher level of new cases and deaths in the low government stringency regime is that the

increase in the e↵ective reproduction number is much more persistent in such a regime. Our

results imply that high government stringency could save up to about 250 deaths in the first

two weeks after the reproduction shock. This is around 1.5% of the deaths in our sample. Let

us now assess the e↵ects on economic activity of the reproduction number shock under the high

and low stringency regimes. In response to the shock, the ENS indicator decreases by about 0.2

to 0.4 standardized units after 7 days in the high stringency regime and increases by about 0 to

0.2 standardized units in the low stringency regime.

As in Subsection 7.1, it is useful to map the standardized units to real per capita GDP terms.

After a reproduction shock, a high stringency regime saves 250 lives at a cost of between e2

and e4 per capita. The cost of preventing a death is higher in the case of LPs, but note that

the horizon of the IRFs in the case of LPs is 15 days, while in the case of the SVARs it is 60

days, when there is more room for a recovery of economic activity. In any case, the economic

cost of a high stringency regime is negligible.

8 Conclusion

This paper has presented methods to estimate epidemiological models using Bayesian methods

and applied the results to address causality and policy questions. There are many venues in which

to generalize our results. First, we could implement a formal identification analysis along the lines

suggested by Poyiadjis et al. (2011). Second, we could introduce a rich network structure between

di↵erent compartments (for example, reflecting heterogeneity by age, gender, occupation, and

location) and estimate how the parameters governing the movements among those compartments

evolve (do e↵ective contact rates between regions drop more persistently than e↵ective contact

rates within regions?). Examples of these richer data structures appear in Acemoglu et al.

(2020) and Aguirregabiria et al. (2020). Third, we could integrate our epidemiological model

within a more economic model and estimate how individuals make decisions regarding mobility

instead of imposing a random walk variation. Fourth, we could consider how one infectious

disease interacts with other contagious diseases. For instance, it has been noted that changes in

behavior due to COVID-19 have also caused a dramatic drop in flu contagion; see, e.g., Hills

et al. (2020) and Olsen et al. (2020). Fifth, we could study how the introduction of new medical

treatments, like a vaccine, a↵ects the spread of the disease, both in terms of changed biological

considerations (vaccinated individuals are less likely to get infected) and in terms of endogenous

decisions (vaccinated individuals are less likely to follow precautionary behavior).
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A Online Appendix

A.1 Implied Density over the Initial Share of Detected Cases

Figure A.1 plots the prior and posterior distributions of the initial share of detected cases, �n,0,

implied by our model. While the prior assigns substantial probability mass to values as high as

0.6, the posterior distribution is concentrated in values below 0.4, indicating that, according to

our model, the share of detected cases on March 15, 2020, was below 40% with high probability.

Figure A.1: Prior histograms (yellow) are based on 100,000 independent draws from the prior
distribution presented in Table 2. Posterior histograms (red) are based on the MCMC chain
with 90,000 posterior draws obtained after a burn-in period of 10,000 draws.

A.2 Prior versus Posterior

Figure A.2 shows the prior and posterior distributions for �, ✓H , and ✓P . These parameters are

inversely related to the average duration a person remains infectious, the average duration of

stay in hospitals, and the average duration of stay at home while recovering from COVID-19.

Figure A.2 reveals that the data are very informative about � and ✓H and less informative about

✓P . Figure A.3 shows the prior and posterior distributions for �b, �h, �p, �g, and �n. These

parameters govern the step size of the time-varying parameters of our model. Clearly, the data

are informative about them. Finally, Figure A.4 shows the prior and posterior distributions

for b0, dH0 , dP0 , gH0 , S0, I0, n0, and µ. These parameters are the initial-value parameters and

the share of false negatives parameter in the case of µ. Figure A.4 documents that data are

informative about these 8 parameters as well. The prior for n0 is truncated at 1 to rule out

large values of the permanent component of detected cases. Even so, the posterior indicates

that there is not much probability mass near the truncation, suggesting that the upper bound

for the prior could be relaxed without a↵ecting our conclusions.
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Figure A.2: Duration Parameters. Table 1 presents definitions of these parameters. Prior
histograms (yellow) are based on 100,000 independent draws from the prior distribution presented
in Table 2. Posterior histograms (red) are based on the MCMC chain with 90,000 posterior
draws obtained after a burn-in period of 10,000 draws.
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Figure A.3: Step-size Parameters. Table 1 presents definitions of these parameters. Prior
histograms (yellow) are based on 100,000 independent draws from the prior distribution presented
in Table 2. Posterior histograms (red) are based on the MCMC chain with 90,000 posterior
draws obtained after a burn-in period of 10,000 draws.
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Figure A.4: Initial-value Parameters and Share of False Negatives Parameter. Table 1 presents
definitions of those parameters. Prior histograms (yellow) are based on 100,000 independent
draws from the prior distribution presented in Table 2. Posterior histograms (red) are based on
the MCMC chain with 90,000 posterior draws obtained after a burn-in period of 10,000 draws.
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A.3 Sentiment and Real GDP Growth Units

Table A.1 shows the OLS coe�cients, the 95% confidence intervals for the coe�cient esti-

mates (in brackets), and the R
2 of a regression of four-quarter real GDP growth 1 quar-

ter ahead on a constant and ENSq over the sample 2000Q1-2019Q4, i.e., RGDPq4q4
q+1 =

↵ + �ENSq + ut, where q 2 {2000Q1, . . . , 2019Q3}.

Table A.1

Regressors Coe�cients
Constant 1.61 [1.36;1.87]
Economic News Sentiment 1.17 [0.84;1.51]
R

2 = 0.39

Figure A.5 plots the quarterly average of the daily economic news sentiment index expressed

in GDP units along with one-quarter-ahead four-quarter real GDP growth.
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