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A theorem for rigid motions in Post-Newtonian celestial
mechanics

J. M. Gambi, P. Zamorano, P. Romero and M.L. Garcı́a del Pino

Abstract. The velocity field distribution for rigid motions in the Born’s sense applied to Post-Newtonian
Relativistic Celestial Mechanics is examined together with its compatibility with the Newtonian distribu-
tion.

Un teorema para movimientos rı́gidos en mec ánica celeste Post-Newtoniana

Resumen. Se examinan la distribución del campo de velocidades para movimientos rı́gidos en el
sentido de Born aplicado a la mecánica celeste Post-Newtoniana junto con su compatibilidad con la
distribucíon Newtoniana.

1. Introduction

As is known, it is of common use the introduction of some concept of rigidity as an hypothesis to simplify
the equations and, then, to obtain solutions to the general problem of motion of extended bodies in Post-
Newtonian Relativistic Celestial Mechanics (PNRCM), both when global or local reference systems are
used to describe the motions, and particularly when these last systems are, at the same time, rigid reference
frames in an analogous way as they are in Newtonian Celestial Mechanics. The hypothesis most used at
the Post-Newtonian level (see, for example, [1], [4], [5], [7], [8], [10], [11], [12], [14], [16], [17]) is the
Newtonian hypothesis, which assumes in its most general form that the velocity fieldṽi of a bodyB in rigid
motion can be decomposed in the form

ṽi(x, t) = ṽi
B(t) + Ω̃ij(t)rj(x, t) (1)

for someṽi
B andΩ̃ij , with Ω̃ij antisymmetric, and whereri is the position vector, in the reference system

chosen, for an arbitrary pointx of the bodyB measured with respect to a comoving originxB(t), so that

ri(x, t) = xi − xi
B(t).

(In this paper the notations are as in Brumberg [1]; in particular, latin indices run from 1 to 3 and greek
from 0 to 3; comma denotes usual derivative, and semicolon covariant derivative; repeated indices imply
an Einstein summation; round brackets surrounding indices denote symmetrization, and square brackets
anti-symmetrization).
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But, since Eq.(1) preserves the fact that the Euclidean distance between any two points inB is constant,
and the concept of Euclidean distance is not covariant in General Relativity (GR), its use in PNRCM needs
to be justified. The aim of the present paper is to give a new velocity field distribution (Eq.(24) below)
which, because is derived from a covariant definition of rigidity in GR, and also because it reduces to Eq.
(1) in the sense we will see below, lets us justify, and also give the limitations for the use of Eq.(1) in the
two problems mentioned above. For this purpose we use the definition of rigidity given by Born (see, for
example, Synge [18]) because, although it allows only for three degrees of freedom in an arbitrary space-
time instead of the six allowed by Eq. (1) ([9], [18]) it is, besides covariant, the most natural extension to
GR of the rigidity definition for Classical Mechanics. This is so because this definition states, when it is
applied to a bodyB, that the relativistic distance between any of its neighbouring particles remains constant
([18]). In fact, if it is taken into account that any velocity gradient in GR can be decomposed in the form
([15])

uα;β = ωαβ + σαβ + Aαuβ , (2)

with

ωαβ = P ρ
αP σ

β u[ρ;σ] (3)

σαβ = P ρ
αP σ

β u(ρ;σ) (4)

Aα = uα;βuβ (5)

Pα
β = δα

β − uαuβ , (6)

mathematically Born’s definition can also be established onB by assuming in it that the rate-of-strain tensor
σαβ satisfies (see [18])

σαβ = 0. (7)

(Hereuα is the 4-velocity satisfyinguαuα = 1 andAα denotes the 4-acceleration of the particles inB).
The question, therefore, is in the search of the structure of the rigid motions of a bodyB when the

rigidity condition on it is given by the Post-Newtonian approximation of Eq.(7), i.e., for weak fields and
small velocities. According to Synge, although the Born criterion involves no difficulty when applied
to a one-dimensional body, difficulties accumulate with increase of dimensionality, and it must be stated
emphatically that the three-dimensional concept of rigidity does not pass from Newtonian physics into
relativity. The difficulties inherent in relativistic rigidity are, however, connected with non-integrability,
and are avoided if we work in an infinitesimal domain (Synge,[18], p.115) or with weak fields and small
velocities. In fact, we will see next how, under these hypothesis of the PNRCM, the decomposition of a rigid
motion at the Post-Newtonian level is given by a formula similar to Eq.(1) although, in general, this formula
does not reduce exactly to Eq.(1) at the Newtonian level. For general results, attempts and alternatives to
overcome the difficulties associated to the limited number of degrees of freedom given by Eq (7), both in
Special and General Relativity, see [9], [6], [18], [3] and references therein. These alternatives seem less
plausible because no one preserves the constancy of the relativistic distance between particles.

2. Post-Newtonian rigid motions

The kinematics of a material system in an arbitrary space-time, which as is known deals with the relative be-
haviour of neighbouring stream-lines, may be discussed in various ways. For our purposes the expressions
(2)-(6) are enough. It is easy to see that, according to them, the rate-of-strain tensor is given by:

σαβ =
1
2
[uα;β + uβ;α −Aαuβ −Aβuα], (8)

with
σαβuβ = 0. (9)

114



A theorem for rigid motions

Since, on the other hand, and accordingly to PNRCM, we shall restrict our attention only to N-body
systems which are in slow motion and have weak gravitational fields (everywhere including the interiors of
the bodies) the two fundamental factors relevant to our problem that characterize this situation (i.e;v ¿ c,
v being the characteristic velocity of the bodies;U ¿ c2, U being the Newtonian potential) enable the

introduction of the small parameterε ∼ v

c
∼

(
U

c2

)1/2

¿ 1 so that, since in most practical problems of

PNRCM it is required to know the metricgαβ at the first post-Newtonian level, we may assume that ([1])

ds2 = gαβ(t, xi)dxαdxβ , (10)

where

g00(t, xi) = 1 + h
(2)
00 (t, xi) + h

(4)
00 (t, xi) + O(ε6), (11)

g0i(t, xi) = h
(3)
0i (t, xi) + O(ε5), (12)

gij(t, xi) = −δij + h
(2)
ij (t, xi) + O(ε4), (13)

with

h
(2)
00 (t, xi) = −2c−2U(t, xi), (14)

h
(4)
00 (t, xi) = 2c−4((U(t, xi))2 −W (t, xi)), (15)

h
(3)
0i (t, xi) = 4c−3U i(t, xi), (16)

h
(2)
ij (t, xi) = −2c−2δijU(t, xi), (17)

and whereU i(t, xi) andW (t, xi) are the vector and complementary potentials respectively, and the symbols
h

(k)
αβ (k = 2, 3, 4) on the left-hand sides of Eqs.(14)-(17) stand for terms of the orderεk in the respective

expansions ofgαβ .
For our purposes we need first to expand the componentsu0 and ui of the 4-velocity up toO(ε6)

andO(ε7) respectively, and then the componentsA0 andAi of the 4-acceleration toO(ε7) andO(ε6)
respectively; next, the appropriated expansions for the Christoffel symbols and, finally, the corresponding
expansions for the covariant derivatives appearing in (8). Then, from these expansions, and according to
Eqs.(10)-(17) we find that (c = 1):

σαβ =
(

σ00 σi0

σ0i σij

)
=


 σ

(3)
00 + σ

(5)
00 σ

(2)
i0 + σ

(4)
i0

σ
(2)
0i + σ

(4)
0i σ

(1)
ij + σ

(3)
ij


 +

(
O(ε7) O(ε6)
O(ε6) O(ε5)

)
, (18)

where

σ
(1)
ij = −1

2
(ṽi

,j + ṽj
,i), σ

(2)
i0 =

1
2
(ṽi

,k + ṽk
,i)ṽ

k, σ
(3)
00 = −1

2
(ṽ2),kṽk, (19)

σ
(3)
ij = −1

2

[
(v̄i

,j + v̄j
,i)− (6U + ṽ2)σ(1)

ij + ṽi(ṽj
,0 + 2σ

(2)
j0 ) + ṽj(ṽi

,0 + 2σ
(2)
i0 ) + 2δijU̇

]
, (20)

σ
(4)
i0 =

1
2

[
ṽ2ṽi

,0 + (6U + 3ṽ2)σ(2)
i0 + 2σ

(2)
i0 v̄k + (v̄i

,k + v̄k
,i)ṽ

k + ṽi(U̇ − σ
(3)
00 )

]
, (21)

σ
(5)
00 = −1

2

[
ṽ2(2U̇ + ṽ2

,0)− σ
(3)
00 (6U + 5ṽ2) + 2(ṽi

,kv̄i + ṽiv̄i
,k)ṽk + ṽ2

,kv̄k
]
, (22)

with vµ = dxµ

dt = (1, v1, v2, v3), vi = ṽi + v̄i + O(ε5), ṽi = O(ε), v̄i = O(ε3) andU̇ = U,0 + U,kvk.
Notice here that, since Eq.(9) is an identity, the integration ofσαβ = 0 may greatly be simplified

since this integration reduces to the integration ofσij = 0. Notice also that since the principal part ofσij

corresponds to the Newtonian rate-of-strain tensor then, when we integrate the equationsσij = 0 for the
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velocity field distribution of an extended bodyB in rigid motion at the Newtonian level, that is to say, the
equations̃vi

,j + ṽj
,i = 0, we shall have Eq.(1) as solutions of them in the Newtonian approximation.

Now, in order to prepare the integration at the Post-Newtonian level and according to these last obser-
vations, the Post-Newtonian definition of rigid motion can easily be achieved by means of the the following
definition:

Definition 1 A motion is rigid in the Post-Newtonian Born’s sense whenσij = O(ε5).

Now, taking into account that from the vanishing ofσij we have that the expansionθ ≡ uα
;α also

vanishes, and, since at the Post-Newtonian level it results that the expansion is given byθ = θ(1) + θ(3) +

O(ε5), with θ(1) = ṽk
,k, θ(3) =

(
1
2
(ṽ)2 + U

)
θ(1) + v̄k

,k +
d

dt

(
1
2
(ṽ)2 + 3U

)
, then, from Def. 1 and the

conditionθ = O(ε5) we necessarily have that
d

dt

(
1
2
(ṽ)2 + 3U

)
= 0.

Therefore, the equations to integrate at the Post-Newtonian level for a rigid motion at this level are

v̄i
,j + v̄j

,i = −(ṽiṽj
,0 + ṽj ṽi

,0 −
2
3
δij ṽ

kṽk
,0), (23)

whereṽi are the solution of a rigid motion at the Newtonian level,σ
(1)
ij = 0, so that they are given by

Eq. (1), that is to say, in vector notation byṽ(xi, t) = ṽB(t) + Ω̃(t) × r, whereΩ̃ = (Ω̃1, Ω̃2, Ω̃3)T =
(Ω̃32, Ω̃13, Ω̃21)T .

3. The velocity field

We may state the following theorem:

Theorem 1 The velocity field distribution (1) is compatible with the system (23) if, and only if,Ω̃ij(t) =
Cnt. Moreover, in this case, the velocity field distribution for a general rigid motion in the Post-Newtonian
Born’s sense is given by:

v(xi, t) =
(

1− 2
3
(r · ṽ,0)

)
ṽB +

(
1− 2

3
(r · ṽ,0)

)
(Ω̃× r)+

1
3
(Λ× ṽ,0)+ v̄B + Ω̄× r+O(ε5), (24)

where

Λ(xi, t) = (ṽ × r) +
1
2
(r · r)Ω̃ = O(ε). (25)

PROOF. The first part is a direct consequence of the conditions of compatibility of Saint-Venant (see, for
example, Love [13]). In fact, from these conditions we have:

Ω̃1 ˙̃Ω
1

+ Ω̃2 ˙̃Ω
2

= 7Ω̃3 ˙̃Ω
3

, Ω̃2 ˙̃Ω
2

+ Ω̃3 ˙̃Ω
3

= 7Ω̃1 ˙̃Ω
1

, Ω̃1 ˙̃Ω
1

+ Ω̃3 ˙̃Ω
3

= 7Ω̃2 ˙̃Ω
2

,

from which we havẽΩ = Cnt. This fact simplifies the system (23) since now we haveṽ,0(t) = ˙̃vB(t) −
Ω̃× ṽB(t).

Then, integrating Eq.(23) fori = j we have forv1(xi, t)

v1(xi, t) =
1
3

(
ṽ2

,0

[
ṽ2

Br1 +
1
2
Ω̃3(r1)2 − Ω̃1r1r3

]
+ ṽ3

,0

[
ṽ3

Br1 − 1
2
Ω̃2(r1)2 + Ω̃1r1r2

]
(26)

− 2ṽ1
,0r

1
[
ṽ1

B + Ω̃2r3 − Ω̃3r2
])

+ α1(x2, x3, t),
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and similar expressions forv2(xi, t) andv3(xi, t), whereαi are functions (smooth enough) to be deter-
mined. Now, from these last equations and using Eq.(23) fori 6= j, it can be seen thatα1 is given by

α1 = − ṽ2
,0

[
ṽ1

Br2 − 1
2
Ω̃3((r2)2 + (r3)2) + r3(Ω̃2r2 + Ω̃3r3)

]
+

1
6

(
ṽ3

,0Ω
2 + 2ṽ2

,0Ω
3
)
(r2)2 (27)

− ṽ3
,0

[
ṽ1

Br3 +
1
2
Ω̃2((r2)2 + (r3)2)− r2(Ω̃2r2 + Ω̃3r3)

]
− 1

6
(
ṽ2

,0Ω
3 + 2ṽ3

,0Ω
2
)
(r3)2

having similar expressions forα2 andα3.
Now, from (26) and (27) another set of functions may be determined so that, finally, we have:

v1(xi, t) =
1
3

(
ṽ2

,0

[
ṽ2

Br1 − ṽ1
Br2 − (Ω̃krk)r3 +

1
2
(rkrk)Ω̃3

]
− 2(ṽk

,0r
k)

[
ṽ1

B + Ω̃2r3 − Ω̃3r2
]

+ ṽ3
,0

[
ṽ3

Br1 − ṽ1
Br3 + (Ω̃krk)r2 − 1

2
(rkrk)Ω̃2

])
,

v2(xi, t) =
1
3

(
ṽ1

,0

[
ṽ1

Br2 − ṽ2
Br1 + (Ω̃krk)r3 − 1

2
(rkrk)Ω̃3

]
− 2(ṽk

,0r
k)

[
ṽ2

B + Ω̃3r1 − Ω̃1r3
]

+ ṽ3
,0

[
ṽ3

Br2 − ṽ2
Br3 − (Ω̃krk)r1 +

1
2
(rkrk)Ω̃1

])
,

v3(xi, t) =
1
3

(
ṽ1

,0

[
ṽ1

Br3 − ṽ3
Br1 − (Ω̃krk)r2 +

1
2
(rkrk)Ω̃2

]
− 2(ṽk

,0r
k)

[
ṽ3

B + Ω̃1r2 − Ω̃2r1
]

+ ṽ2
,0

[
ṽ2

Br3 − ṽ3
Br2 + (Ω̃krk)r1 − 1

2
(rkrk)Ω̃1

])
,

which, written in vector notation, give the result (24) when the solution of the homogeneous systemαi
,j +

αj
,i = 0 is added to them.¥

4. Conclusions

Since, as is known, the relativistic distances involved in the Born’s criterion between the particles of a body
B have a chronometric measure, i.e., half (c = 1) the trip-time from emission and return of photons from
any particle to every other ofB which, for rigidity, are required to be constants, the validity of the two
alternatives Eq.(1) and Eq.(24) may, ideally, be tested by means of an interferometer, which instrument is
essentially a device for comparing trip-times. This will either give a model with euclidean or relativistic
distances, provided thatB is accepted close enough to rigid by interferometry. In effect, as a consequence
of this theorem it must be concluded that, the Newtonian velocity distributions (1) applied to PNRCM is
compatible with the Post-Newtonian approximation of the Born’s rigidity condition (7), that is to say, with
(23), only whenΩ̃ij(t) in (1) is constant. On the other hand, taking into account precisely that Eq.(24)
reduces to Eq.(1) for a bodyB if this is in stationary motion, it should be desirable to use Eq.(1) in the
manner made, e.g., by Brumberg in dealing with the N-body problem ([1]) since, under this hypothesis, the
general covariance principle of GR is respected and, according to theorem 1, the total number of degrees of
freedom generally allowed by Born’s definition does not restrict the solution to this problem as is stated in
the present paper.

Finally, in the type of solutions like those of [1], [12] and [2], there still remains the possibility of
apply Eq.(24) to study motions more general than the stationary motions. This possibility may simplify
some of the calculations in the N-body problem, both in the construction of local rigid reference frames
at the Post-Newtonian level from their standard covariant definitions in GR (to describe the motions) as
well as in simplifying the own equations of motion (being, these last, referred to some local rigid reference
frame or to any other local or global reference system) since, as far as we know, the only similar available
simplifications so far have been Eq.(1).
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