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Abstract

A major operational task in city logistics is related to waste collection. Due to large problem sizes

and numerous constraints, the optimization of real-life waste collection problems on a daily basis

requires the use of metaheuristic solving frameworks to generate near-optimal collection routes

in low computation times. This paper presents a simheuristic algorithm for the time-dependent

waste collection problem with stochastic travel times. By combining Monte Carlo simulation with a

biased randomized iterated local search metaheuristic, time-varying and stochastic travel speeds

between different network nodes are accounted for. The algorithm is tested using real instances

in a medium-sized city in Spain.
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1 Introduction

Due to its high operational costs and numerous related negative externalities such as

air pollution, noise, and traffic congestion, waste management is among the most im-

portant public services (Strand, Syberfeldt and Geertsen, 2020). The complete process

of collecting and disposing different types of garbage is a complex task shaped by

various optimization problems related to facility location, clustering of service terri-

tories, and vehicle routing (Ghiani et al., 2014). Considering rising population num-

bers in urban areas around the world, especially waste collection processes need to be

organized in an efficient manner in order to ensure a sustainable, cost-efficient, and
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citizen-friendly metropolitan garbage collection (Bing et al., 2016). The waste collection

problem (WCP) is a rich extension of the well-known vehicle routing problem (VRP)

with the aim of minimizing a certain objective function, e.g.: distances, travel times,

CO2 emissions, etc. (Kim, Kim and Sahoo, 2006). Problem inputs include a set of waste

containers that hold a positive amount of waste, which has to be collected from a num-

ber of capacitated garbage collection vehicles located at a central depot. Moreover, the

problem setting includes one or more landfills at which collected waste is disposed if a

vehicle is full or before it returns to the central depot.

Given the practical nature of the WCP, realistic problem instances discussed in the

literature typically include several hundred waste containers and several constraints re-

lated to maximum route travel times, driver lunch breaks, time windows, etc. (Benjamin

and Beasley, 2010; Buhrkal, Larsen and Ropke, 2012). This imposes certain limits on the

use of exact methods to solve this NP-hard problem, calling for the application of meta-

heuristic algorithms that are able to generate near-optimal solutions to large-scaled and

realistic WCP settings in calculation times of only a few seconds or minutes. However,

most metaheuristic solving methodologies still make simplifying assumptions about the

nature of input variables. On the one hand, most routing optimization frameworks as-

sume travel times between different network nodes to be static over time. Especially

in the context of daily collection of waste, this is an unrealistic assumption due to the

natural time dependency of edge traversing duration and vehicle velocities (Gendreau,

Ghiani and Guerriero, 2015). On the other hand, a frequent drawback of many solving

approaches is that they do not consider uncertainty in input variables. In the context of

vehicle routing, information regarding travel times, demands, or customers themselves is

typically not perfectly known in advance. Indeed, they are more likely to be of stochastic

or even dynamic nature (Pillac et al., 2013; Ritzinger, Puchinger and Hartl, 2016).

Figure 1 illustrates the effects of time-dependent and stochastic travel speeds. Given

the distance of traversing any edge in a routing problem, the travel duration to pass this

edge can be calculated as the quotient of travel distance and the expected vehicle speed.

In time-dependent routing scenarios, driving velocities vary according to different time

periods within the route planning horizon. Apart from the expected travel speeds, realis-

tic problem settings should also consider travel time variances due to different levels of

planning uncertainty. The effects of different travel time assumptions are highlighted as

optimistic and pessimistic vehicle speeds below, showing that variances in vehicle ve-

locities can significantly impact the necessary time to visit a number of nodes, whereas

the traveled distance is the same in all cases. This input uncertainty naturally occurs

in most real-life routing problems, especially in metropolitan areas where actual travel

times between different points are almost impossible to predict. A solution for the time-

dependent VRP with time windows was already proposed by Figliozzi (2012), although

the work lacks of real time implementations as well as alternative route constructions.

In general, one of the main issues related to routing problems applied in an ur-

ban context with uncertainty related to the transportation costs is how to define real-

istic instances (Tadei, Perboli and Perfetti, 2017). Usually algorithms are compared bet-
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Figure 1: The effect of stochastic travel duration due to time-varying vehicle speeds in time-

dependent routing scenarios.

ween them by using a common database. Although this is very helpful to compare algo-

rithms, it is mandatory to connect the algorithm with real data from users to apply them.

This paper presents a simheuristic approach (Juan et al., 2018) to solve the time-

dependent WCP with stochastic travel times (TDWCPST). By integrating Monte Carlo

simulation into a metaheuristic framework, both time dependencies and stochastic travel

speeds can be accounted for. Our metaheuristic framework combines biased randomiza-

tion techniques (Quintero-Araujo et al., 2017) with an iterated local search algorithm

(ILS) by Lourenço, Martin and Stützle (2003). The inclusion of a simulation procedure

during the optimization process leads to a couple of advantages over traditional meta-

heuristic solving approaches. Apart from the consideration of stochastic travel times, it

allows for a closer statistical risk analysis of the obtained solutions. This enables the

creation of additional decision-making dimensions related to route robustness in un-

certainty scenarios, e.g.: standard deviations or different quartiles obtained during the

simulation phase. The implementation and performance of the solving methodology is

tested on a large-scale case study. This case study refers to the waste collection process

in the medium-sized city of Sabadell, which is located within the autonomous region of

Catalonia, in northern Spain. It is important to note that real data from the waste col-

lector department of the city is transformed to create real instances where to apply the

algorithm.

Thus, the contributions of this work are threefold: (i) motivated by a real-life case, a

rich TDWCPST is proposed; (ii) a large real-life data set, with several realistic routing

constraints, is used to show the applicability of the proposed optimization procedure;

and (iii) the potential of the simheuristic approach is illustrated in a range of computa-

tional experiments, hence yielding various managerial insights.
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The paper is structured as follows: relevant literature on metaheuristic approaches

for time-dependent routing problems and waste collection is reviewed in Section 2; the

TDWCPST and the real-life problem setting are detailed in Section 3; Section 4 out-

lines our simheuristic solving framework; Section 5 describes different computational

experiments and analyses obtained results; finally, Section 6 concludes this work and

discusses possible future research directions.

2 Literature Review

This section reviews recent literature regarding metaheuristic solving frameworks for

time-dependent VRPs and the WCP. For a more detailed overview on previous research

regarding time-dependent routing problems the reader is referred to the work of Gen-

dreau et al. (2015). A more extensive literature review on operational challenges and

optimization methodologies in waste management is provided by Beliën, De Boeck and

Van Ackere (2014) and Han and Ponce-Cueto (2015).

2.1 Metaheuristic solving methodologies for time-dependent

routing problems

In the field of vehicle routing optimization, time dependency was not considered up

to the early 2000s apart from a few exceptions. Malandraki and Daskin (1992) formu-

lated travel times as a step function of the time of the day. This approach has the major

drawback that the no-passing, first-in-first-out (FIFO) property is not guaranteed. Thus,

a vehicle leaving node i might arrive later at node j than a vehicle leaving node i at

a posterior starting time due to varying travel times. This drawback in the travel time

function was improved by Hill and Benton (1992), who developed the first travel time

model based on time-varying vehicle speeds, which implies the FIFO characteristic.

Later, Ichoua, Gendreau and Potvin (2003) used an improved version of this vehicle

speed model in combination with a parallel tabu search heuristic to show the bene-

fits of time-dependent vehicle routing compared to its static counterpart. The impact of

time-dependent travel times to avoid traffic congestion was also studied by Kok, Hans

and Schutten (2012), who showed that late arrivals at customers and extra duty times

through traffic jams can be significantly reduced through smart congestion-avoidance

strategies.

An iterated local search algorithm for the time-dependent VRP with time windows

(TDVRPTW) was presented by Hashimoto, Yagiura and Ibaraki (2008). Computational

experiments include a variety of problem instances with up to 1,000 nodes. The TD-

VRPTW was also addressed in the works of Balseiro, Loiseau and Ramonet (2011)

and Harwood, Mumford and Eglese (2013). The former developed an ant colony sys-

tem hybridized with insertion heuristics which is tested on problem instances with up

to 100 clients. The latter established quick estimates of time-dependent travel times for
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the traveling salesman problem. Their results show that their estimations can lead to

significant reductions in computation time. The TDVRP with simultaneous pickup and

deliveries was addressed by Zhang, Chaovalitwongse and Zhang (2014) through an in-

tegrated ant colony and tabu search approach. A total of 100 customers were considered

in their work. During the last decade, much attention has also been paid to the environ-

mental effects of routing, in the context of the so called pollution routing problem. Kuo

(2010) developed a simulated annealing algorithm for establishing emission minimizing

vehicle routes while taking into account varying edge traversing times. Computational

results are provided using benchmark instances with up to 100 customers. The trade-off

between travel times and CO2 emissions in time-dependent VRPs was analyzed by Ja-

bali, Van Woensel and de Kok (2012). The time-dependent pollution routing problem

was also analyzed in the work of Franceschetti et al. (2013). The authors proposed an

integer linear programming formulation for cases without any traffic congestion. Envi-

ronmental considerations are also included in the work of Soysal, Bloemhof-Ruwaard

and Bektas (2015), who addressed the time-dependent two-echelon VRP through a com-

prehensive mixed integer linear programming (MILP) formulation.

All previously cited works focused on the deterministic version of the TDVRP. For

stochastic problem settings the literature is more scarce. Lecluyse, VanWoensel and

Peremans (2009) developed a tabu search metaheuristic for the TDVRP with stochastic

travel times. Nahum and Hadas (2009) developed an extended version of the well-known

savings algorithm to address the stochastic TDVRP. Tas et al. (2014) proposed a tabu

search and adaptive large neighbourhood search metaheuristic for the TDVRP with soft

time windows and stochastic travel times.

2.2 Metaheuristic frameworks in the optimization of waste collection

Different metaheuristic approaches have been presented in the solution of various WCPs

and their extensions. Even though many works include a case study to show the real-life

potentials of their frameworks, to the best of our knowledge, time dependency in the

WCP has not yet been considered in the literature.

Baptista, Oliveira and Zúquete (2002) elaborated an extension of the Christofides

and Beasley heuristic for the multi-period WCP modeled as a periodic VRP (PVRP)

to combine vehicle scheduling over multiple time periods with route planning. The au-

thors used their approach to improve municipal waste collection in the Portuguese city of

Almeda. Also addressing a multi-period WCP, Teixeira, Antunes and de Sousa (2004)

developed a cluster-first route-second heuristic to schedule and plan waste collection

routes for different waste types in a case study in Portugal with over 1600 collection

sites. Nuortio et al. (2006) presented a guided variable thresholding metaheuristic to

solve a multi-period WCP with several thousand collection points in Eastern Finland.

Hemmelmayr et al. (2013) addressed the PVRP with different waste types and up to 288

containers, which they solved with a variable neighbourhood search metaheuristic. They

consider the landfills as intermediate facilities, which are inserted in pre-constructed
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routes using dynamic programming. In the same work, the authors also discussed the

single period WCP with multiple depots, in which the landfills serve as vehicle depots

and disposal sites at the same time. Ramos, Gomes and Barbosa-Póvoa (2014) extended

the typical objective of minimizing routing costs in order to include environmental con-

cerns, considering multiple waste types and numerous vehicle depots in a case study in

Portugal.

Only focusing on waste collection routing, Kim et al. (2006) developed an exten-

sion of Solomon’s insertion algorithm to optimize routes of a North American waste

management service provider, considering a capacitated vehicle fleet, time windows,

and driver lunch breaks. The authors reported reduced routing distances of up to 10%.

Furthermore, a benchmark set of 10 realistic instances based on the original case study

ranging from 102 TO 2,100 nodes is provided. Using the same benchmark set, Ben-

jamin and Beasley (2010) combined tabu search with a variable neighbourhood search

metaheuristic. By exchanging containers and landfills within and between routes, the

solution search space is systematically increased. Likewise, Buhrkal et al. (2012) put

forward an adaptive large neighbourhood search metaheuristic. Based on an initial so-

lution, their approach applies a range of destroy-and-repair methods to examine several

solution neighbourhoods. It is called adaptive since the choice of methods depends on

the solution quality obtained during the construction of earlier solutions. Moreover, an

acceptance criterion for new solutions based on simulated annealing is included. Like-

wise, Markov, Varone and Bierlaire (2016) presented a multiple neighbourhood search

heuristic for a real-word application of the waste collection VRP with intermediate facil-

ities. The authors consider a heterogeneous vehicle fleet and flexible depot destinations

in their approach. Gruler et al. (2017a) developed a metaheuristic algorithm to assess

the potentials of horizontal collaboration in urban waste collection.

Concerning the WCP under input uncertainty, the literature is more scarce with most

works focusing on stochasticity concerning expected waste levels. Ant colony optimiza-

tion and a hybrid approach based on a genetic algorithm and tabu search for a case study

with 50 containers in Malaysia is presented in Ismail and Irhamah (2008) and Ismail and

Loh (2009). After planning aprioristic routes, waste levels are simulated according to

a discrete probability distribution. Routes undergo a recourse action (i.e., an additional

disposal trip) whenever actual demand exceeds the planned collection amount. Nolz,

Absi and Feillet (2014) formulated a collector-managed inventory routing problem for

a case study on the collection of infectious waste. By using real information obtained

through radio frequency identification, their adaptive large neighbourhood search algo-

rithm is able to consider stochastic waste collection levels. Alshraideh and Abu Qdais

(2017) combined a multi-period WCP with time windows and stochastic demands in a

real case study of medical waste collection from 19 hospitals in Northern Jordan. They

used a genetic algorithm and a probability constraint regarding a pre-defined service

level to solve the problem. Also, Gruler et al. (2017b) presented a variable neighbour-

hood search based simulation-optimization approach for the WCP with stochastic de-

mands. Although metaheuristics are becoming the predominant methodology in solving
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WCP under rich and realistic scenarios (Hannan et al., 2018; Asefi et al., 2019), other

approaches such as mixed-integer programming are also being employed by some ex-

perts (Mohsenizadeh, Tural and Kentel, 2020).

3 Problem Description

This section outlines the real-life case study of collecting waste under different routing

constraints and travel time assumptions in the city of Sabadell. Furthermore, the time-

dependent WCP with stochastic travel times (TDWCPST) and the applied travel speed

model for different time periods is discussed in more detail.

3.1 The waste collection problem in Sabadell

Sabadell is a medium-sized city of roughly 200,000 inhabitants located within the au-

tonomous Spanish region of Catalonia. Collection vehicles are located at a central depot

and collected garbage is disposed in a single landfill. Expected waste levels in each con-

tainer, average service times at each node, and the average vehicle travel speeds during

different time periods are known. The problem settings consists of a total of 921 paper

waste containers which are currently visited on 9 different routes. The locations of the

vehicle depot, the landfill, waste containers, and the original route assignation can be

seen in Figure 2 (the central depot and the landfill are marked by the square symbols).

According to the managers, in a scenario with dynamic travel times as the one being

considered, the total time required to complete the waste collection process is the main

key performance indicator. On the one hand, the operational times directly affect the

operational costs associated with the waste collection process in terms of wages and

vehicle usage costs. On the other hand, an important routing constraint is that collection

routes need to be completed between 9 a.m. and 4 p.m., as these are the opening hours of

the central depot at which the collection vehicles are stationed. Moreover, different time

periods within the daily planning horizon can be identified regarding expected traffic

speeds:

• Heavy traffic on all streets is expected during the rush hour from 9 a.m. to 10 a.m.

and from 1 p.m. to 2 p.m.

• Traffic jams are expected in streets close to primary schools in the time periods of

9 a.m. to 10 a.m., 12 p.m. to 1 p.m., and 3 p.m. to 4 p.m.

Especially the latter observation is of importance in the planning of waste collection

routes. Containers in the affected streets should not be visited within the depicted time

period. Due to parents picking up their children from primary schools, streets within a

certain distance radius of the school building should be avoided in the given period if
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Figure 2: Node locations and original route assignation.

possible. According to the experience of the decision-taker, a radius of 500 m around

primary schools is considered. Apart from delays in the collection process, visiting these

streets during the most busy hours affects many citizens and can even be dangerous due

to children exiting the primary school facilities. The influenced streets in the city centre

of Sabadell for which the additional constraints apply are highlighted in Figure 3.

3.2 A time dependent travel speed model for the WCP

The TDWCPST can be described on a graph G = (V,E):
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Figure 3: Streets to be avoided during highly occupied traffic periods.

• Node set V =V d ∪V f ∪V c includes:

(i) A central depot V d = {0} at which a homogeneous fleet of waste collection

vehicles, each of them with capacity C, is located.

(ii) A set V f = {1,2, . . . ,m} of m landfills at which collected waste must be dis-

posed if vehicle capacities are reached and before a vehicle returns to the

central depot (making more than one landfill trip per route possible if no

other route constraints are violated).
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(iii) A set of n waste containers V c = {m+ 1, . . . ,m+ n} with associated waste

levels qi > 0 (∀i ∈ V c). Service times for emptying any container and for

disposing collected garbage at any landfill are defined as si > 0 (∀i ∈V \V d).

• Edge set E = {(i, j)/i, j ∈V, i 6= j} describes all edges connecting any two nodes.

• Travel distances di j ≥ 0 between any two nodes in V are known.

• Additional routing constraints include a maximum amount of waste to be collected

during each route and the maximum route duration defined by the opening and

closing times at the central depot.

Our travel speed model for time varying vehicle velocities is based on the discus-

sions of Ichoua et al. (2003). The planning horizon (defined by the depot opening hours)

is divided into p time periods T1,T2, . . . ,Tp. Travel durations tteT to cross any edge

in e ∈ E can be calculated as the quotient of travel distances and vehicle speeds vT

(T ∈ {T1,T2, . . . ,Tp}), such that tteT = de/vT . In the specific case of waste collection

in Sabadell, different travel speeds can be defined for different edges, e.g., due to rush

hour traffic or other events such as opening or closing hours of schools. For this reason,

edge set E is partitioned into S subsets with Es (s = 1,2, . . . ,S). Thus, travel speeds can

be formulated as ttsT to show the travel speed of any edge of the edge subset Es during

time period T . This step-wise travel speed model along different times of the planning

horizon is a natural way of estimating travel duration of different edges in real-world

conditions. Furthermore, it implies the satisfaction of the FIFO property.

4 Solving Framework

The different stages of the proposed simheuristic solving methodology for the TD-

WCPST are summarized in Figure 4. By integrating simulation into a biased-randomized

iterated local search (BR-ILS) algorithm, a set of promising stochastic solutions are

constructed. These solutions are then refined in a more intensive simulation procedure.

Finally, the defined set of solutions undergoes a more detailed risk analysis according to

different criteria. All steps are outlined in more detail in the following subsections.

4.1 Constructing an initial time-dependent WCP solution

Our approach starts by constructing a feasible initial solution with an enhanced frame-

work of the well-known savings heuristic for routing problems (Clarke and Wright,

1964). In the original procedure, the savings si j of including any edge e connecting two

customers i and j in a constructed solution are calculated as si j = s ji = ci0 + s0 j− ci j.

However, this assumption does not hold in the special case of waste collection, as the

round trip costs between the central depot and any waste container are asymmetric due

to the additional landfill visit at the end of any completed route. Thus, the route travel
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direction influences the savings values assigned to each edge. In order to account for the

necessary landfill visit in every route, the expected savings of each edge are calculated as

average values of completing a route in both directions, such that E[si j] = (si j + s ji)/2.

After each merge, this initial estimate is updated to account for the real travel times

depending on the hour of the day.

Figure 4: Simheuristic solving methodology.

Apart from this algorithm adaption to the problem setting, we enhance the greedy

edge selection process of the savings procedure through a probabilistic construction be-

haviour based on biased randomization techniques (Ferone et al., 2019). As highlighted

in Algorithm 1, a candidate set of edges is ranked according to their respective sav-

ings value. In the following, a feasible waste collection route is created by iteratively

adding solution elements from the eligible edges. Selection probabilities follow a geo-

metric distribution defined through parameter α (0 < α < 1), which depicts the prob-

ability of the most promising solution element to be chosen. This process is similar to



296 A simheuristic algorithm for time-dependent waste collection management...

the GRASP procedure discussed in the work of Resende and Ribeiro (2010). However,

while GRASP is based on a restricted candidate list and a uniform selection probabil-

ity, selection probabilities are inclined to more promising solution elements –which are

all potentially eligible at each solution construction step– in this biased randomization

approach. In a biased-randomized algorithm, the choice of the skewed probability dis-

tribution has an impact on the quality of the final solution. As discussed in Grasas et al.

(2017), the geometric and the decreasing triangular probability distributions have been

successfully used in previous work, but other probability distributions (either theoretical

or empirical) are possible as well.

Algorithm 1: Biased randomization to create an initial TDWCP solution

Input: Skewed probability distribution f, parameter α, edge set E
1 sol← /0
2 initialize candidate set: CL← E
3 sort CL according to savings value
4 while solution sol is not complete do
5 Randomly select pos ∈ CL according to distribution function f (α)
6 sol← sol ∪ pos

7 CL← CL \ pos
8 sort CL

end
9 return TDWCP solution sol

4.2 A simheuristic framework for the time-dependent WCP

with stochastic travel times

Our simheuristic procedure to solve the TDWCPST is outlined in Algorithm 2. Once

an initial solution is constructed and set as the current incumbent baseSol and bestSol

solutions, an iterated local search algorithm is started (Lourenço et al., 2003). During

a predefined stopping criterion, new TDWCP solution neighbourhoods are created by

perturbating the current baseSol. Each perturbated solution newSol then undergoes a

local search phase to find the local minimum within the current solution structure. As

perturbation operator a double-bridge move is applied. Hereby, a solution is partitioned

into four pieces of random size, which are subsequently joined in an arbitrary order. As

local search movement, a 2-opt operator is employed (Muyldermans et al., 2005).

Up to this point, deterministic (expected) travel duration between difference net-

work nodes are considered. In order to account for uncertainty in input variables, Monte

Carlo simulation is applied to any promising solution found in the metaheuristic search.

A TDWCP solution newSol is deemed promising if its deterministic travel duration out-

perform those of the currently incumbent baseSol or if if a simulated annealing-like

acceptance criterion is met. The travel duration between all edges of a promising so-

lution are simulated from a log-normal probability distribution during nSim simulation

runs. At this stage any other probability distribution could be applied, but the log-normal

one is a “natural” choice to model non-negative random variables, such as travel times
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in routing problems or times-to-failure in reliability studies (Faulin et al., 2008). Dur-

ing each simulation iteration, expected travel duration ttsT between any two points are

defined as distribution mean of the probability function. Variance factor k defines travel

duration variance levels. With E[ttsT ] = ttsT and Var[ttsT ] = k · ttsT , the location param-

eter µi and scale parameter σi defined for the probability function can be formulated

as:

µi = ln(E[ttsT ])−
1

2
· ln

(
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As a result of time varying travel speeds, the variability in solution waste collection

durations estimated after each simulation run can be expected to increase with higher

variance levels. In particular, waste collection close to primary school locations is pe-

nalized by significantly reduced travel speeds during predefined time periods. After the

simulation phase, the stochastic travel durations of newSol are defined as the average of

all simulation results.

If the stochastic costs of the considered solution outperform the estimated stochastic

travel durations of the incumbent baseSol and/or bestSol, they are updated respectively.

Moreover, each solution that is defined as incumbent baseSol during any stage of the

simheuristic procedure is included in a TDWCPST solution set eliteSols. After the al-

gorithm stopping criterion is reached, solutions included in this exclusive set of elite

solutions undergo a more intensive simulation phase defined by a higher number of sim-

ulation runs. This allows a more accurate estimation of the best found WCP solutions in

stochastic travel time scenarios.

The described combination of simulation with metaheuristics leads to several advan-

tages over deterministically focused optimization approaches. Firstly, the search phase

is driven by the stochastic solution estimates obtained during the simulation (i.e., the

baseSol is updated according to the cost estimates provided by the simulation com-

ponent). Secondly, TDWCPST solutions can be realistically evaluated under different

uncertainty scenarios. Finally, the simheuristic methodology allows the evaluation of

different solutions according to additional criteria instead of simply focusing on the

defined objective function. Due to the stochasticity in real-life travel duration, the com-

pletion of waste collection plans is likely to vary with respect to the predicted driving

times. For this reason, decision-makers need a more insightful decision support than

simply focusing on the minimization of expected travel times. Thus, we implement a

final risk analysis for the elite solutions in our simheuristic procedure. At this stage,

additional dimensions related to the robustness of a considered solution, such as the

standard deviation or the quartiles, are computed.
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Algorithm 2: A simheuristic for the TDWCPST

Input: f , E, α, nSimshort , nSimlong, k
1 nodes← getNodes(E)
2 costMatrix← getCostMatrix(E)
3 initSol← generateBRSolution(f, α, E) // Biased-Randomized Algorithm

4 baseSol← initSol
5 stochDuration(baseSol) ← infinite
6 bestSol← baseSol
7 elitSols← /0
8 while stopping criterion not reached do
9 newSol← perturbate(baseSol, costMatrix) // perturbation stage

10 newSol← localSearch(newSol, costMatrix) // local search stage

11 delta← detDuration(baseSol) − detDuration(newSol)
12 if delta ≥ 0 then
13 credit ← delta

14 stochDuration(newSol)← simulation(newSol,nSimshort ,k)
15 if stochDuration(newSol) ≤ stochDuration(baseSol) then
16 includeInEliteSolutionSet(newSol)
17 baseSol ← newSol // simulation driven baseSol

18 if stochDuration(newSol) < stochDuration(bestSol) then
19 bestSol← newSol

end

end

end
20 else if −delta≤ credit then
21 credit ← 0

22 stochDuration(newSol)← simulation(newSol,nSimshort ,k)
23 baseSol← newSol

end

end
24 for eliteSol ∈ eliteSols do
25 stochDuration(eliteSol)← simulation(eliteSol,nSimlong,k)

end
26 return bestSol

4.3 Creating a real-life distance matrix

In this subsection we show the process followed to generate a real-life distance matrix.

The data was obtained through a collaboration agreement between the Internet Comput-

ing and Systems Optimization (ICSO@IN3) research group and the company SMATSA,

which is responsible for the collection of waste in the inner-city area of Sabadell. The

problem dealt in the present paper involves the waste disposal vehicle routing in order

to design efficient routes between 886 paper waste containers. A single depot and land-

fill are considered. Locations are given as Longitude/Latitude (Long/Lat) and postal ad-

dresses are also available. The goal is to create a real-life distance matrix from these data.

In the creation of this distance matrix only open software has been used. In par-

ticular, we have used: QGIS 2.18 (https://www.qgis.org) as a geographic infor-

mation system (GIS); PostGIS (https://postgis.net), which is the geographic ex-

tension of the database PostgreSQL (https://www.postgresql.org); and pgRouting

(https://pgrouting.org) to obtain the distances between pairs of locations. In ad-

dition, Open Street Map or OSM (https://www.openstreetmap.org) has been em-

https://www.qgis.org
https://postgis.net
https://www.postgresql.org
https://pgrouting.org
https://www.openstreetmap.org
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ployed as a base map. The first step is to download the base map for the zone of Sabadell

from OSM. This downloaded file is then processed with osm2po (https://osm2po.de)

to transform it into a routable file. One of the outputs of the program is an SQL file that

can be executed in PostgreSQL with the PostGIS extension. The output is a table that

can be visualized in QGIS with the Add PostGIS table function.

At this step the map is available in a GIS and, although the aspect is visually correct,

it does not have topology, which is required to connect nodes and to obtain real distances.

The topology can be created with the pgrouting query pgr createTopology, which can

be run from QGIS thanks to the database manager plug in. Once the map has a topology,

pgRouting can be run to obtain the shortest path between two given points. Figure 5

shows the uploaded map with the route between two points.

Figure 5: Route between two points obtained with pgRouting in QGIS after uploading the base

map and having introduced the topology.

After this process, we had the map of the working area in a GIS and prepared to

obtain the distance between any two points. The next step is uploading the location of

the 886 containers, the depot and the landfill. Although the location is quite precise, there

https://osm2po.de
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may be some errors and it is important to verify out-layer nodes. Usually these points

can be visually located in the map and corrected using the postal address (Figure 6).

Figure 6: Network nodes and imported point location layer.

On the other hand, the position of the nodes does not correspond to the street lines

of the map in QGIS, since the streets have a width and they are represented as a line

axe. Therefore, every point has to be linked to its corresponding street axis. It has been

done with the NNJoin QGIS plug in, which obtains the nearest neighbour between every

single point and the start / end node of street axes. Figure 6 shows the nodes within

the network and the imported nodes. Thus, it has been possible to obtain the closest

point from the axes to every single container, which generates a new list of points, but

this time, within the routable network. This introduces a little error in the position of

the containers if they are not in the end node of the street axe. A more precise solution

would have been to locate the nearest point of the axe and split the axe at that point.

However, since containers are usually located at the corner of the streets, and according

to the managers’ opinion, the error introduced can be considered as a non-relevant one

for the purposes of this study.
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Finally, we can obtain the distance matrix using PostgreSQL (with the extensions

PostGIS and pgRouting). The distance in km is set as cost, and a distance matrix of the

first 10 nodes is established. The name of the output file is sabadel 2po 4pgr.

5 Computational Experiments and Analysis of Results

The proposed simheuristic solving framework is applied to the real-life waste collec-

tion problem setting described in section 3. The algorithm is implemented as a Java

application and tests are run on a personal computer with 4GB RAM and an Intel Pen-

tium®processor with 2.16GHz. The necessary algorithm parameters to complete the

described tests are specified as follows. These parameters have been obtained after a

quick calibration based on the methodology proposed by Calvet et al. (2016):

• Skewed probability distribution f : geometric with parameter α = 0.3.

• nSimshort : 100.

• nSimlong: 1000.

• BR-ILS stopping criterion per instance: 30 seconds.

According to the observations of the decision maker, the average vehicle speed in

normal traffic conditions is 25 km/h. The travel speed is divided by 5 and 25 dur-

ing heavy traffic and traffic jams, respectively. Average vehicle service times at each

container are set to 90 seconds, while 45 minutes are necessary to empty a vehicle at

the landfill. Stochastic travel times are generated with three different variance factors,

k = 1,2.5,10, representing different (low / medium / high) uncertainty levels. All vari-

ance scenarios are represented in Figure 7, showing the travel times of edge subset s

during time period T with an expected traversing time of E[ttsT ] = 25 time units. The

shadowed area under each curve represents 95% of the simulated values. In the low-

variance scenario (k = 1), 95% of actual driving times fall between 16.64 and 36.15 time

units with a high density around the expected value. As the variance level is increased,

the maximum density of the simulated times for all edges decreases and a higher vari-

ability can be observed. Note that the overall driving duration of a solution will increase

as the expected travel time uncertainty increases. Moreover, the special case of k = 0 is

equivalent to the deterministic routing case.

5.1 Experimental results

In order to evaluate the performance of our simheuristic algorithm, its results are com-

pared to the nine waste collection routes currently completed on a daily basis in Sabadell.

The comparison of the current routes (i.e., those built by SMATSA) and the best found

solution of the BR-ILS algorithm in different variance scenarios is listed in Tables 1
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(deterministic case and low variance) and 2 (medium and high variance). A total of 10

independent executions were run (each one using a different seed for the random num-

ber generator), and the best-found solution was returned by the algorithm. Each route

holds between 79 and 122 waste containers to be emptied. To allow a fair comparison,

the current order of visiting waste containers is evaluated in accordance with the neces-

sary algorithm parameters described before. Since the distance matrix has been created

using real-life distances, it is possible to make the comparison in order to know if the

cost function is actually improved.

Figure 7: Log-normal distribution of different variance levels around an expected travel time of

25 time units.

It is important to note that comparing the nine routes separately, instead of designing

new routes, allows us to compare our algorithm with the current situation in a real prob-

lem. The comparison is performed in terms of total time employed in completing the

collection process, since this is the main key performance indicator for the managers.

In all travel duration variance scenarios, the BR-ILS is able to significantly out-

perform the current waste collection routes (by over 12% on average). Moreover, the

solution travel duration in different uncertainty scenarios provided by our metaheuristic

show that estimated travel duration increase with higher variance levels. The best re-

sults with the simheuristic BR-ILS algorithm are obtained when considering all 921

waste containers in a “global” waste collection instance. In this case, new route-to-

containers assignments are established instead of solely focusing on reordering pre-

established waste collection routes. For example, in the deterministic routing case, and
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using a running time of 120 seconds, the global solution yields a overall driving dura-

tion of 2,820.5 minutes, with only 8 necessary garbage collection routes, thus saving

one route to the company. Regarding the solution to the stochastic version of the prob-

lem, the proposed simheuristic has been run for a maximum time of 5 minutes before

returning the best-found solution. This maximum computational time was suggested by

the managers, who have to plan the collection routes every morning.

Table 1: Driving duration in minutes of current routes compared to our best found solution (de-

terministic case and low variance scenario).

Route
k = 0 Diff (%)

([2]-[1])/[1]

k = 1 Diff (%)

([4]-[3])/[3]Current

[1]

Our Best

[2]

Current

[3]

Our Best

[4]

1 392.5 357.3 −9.0 391.3 362.7 −7.3

2 379.9 265.0 −30.2 381.3 271.6 −28.8

3 470.8 345.5 −26.6 455.5 346.0 −24.0

4 386.4 342.3 −11.4 384.2 341.8 −11.0

5 374.3 335.1 −10.5 387.9 342.7 −11.7

6 396.2 371.4 −6.2 397.1 388.7 −2.1

7 372.8 340.4 −8.7 364.2 340.6 −6.5

8 393.9 326.7 −17.0 399.8 342.1 −14.4

9 407.9 323.0 −20.8 411.1 323.6 −21.3

Total 3,574.5 3,006.7 –15.9 3,572.3 3,059.9 –14.3

Table 2: Driving duration in minutes of current routes compared to our best found solution

(medium and high variance scenario).

Route
k = 2.5 Diff (%)

([2]-[1])/[1]

k = 10 Diff (%)

([4]-[3])/[3]Current

[1]

Our Best

[2]

Current

[3]

Our Best

[4]

1 391.6 363.0 −7.3 392.7 367.5 −6.4

2 381.4 281.3 −26.2 388.1 293.4 −24.4

3 457.9 349.8 −23.6 460.2 363.3 −21.0

4 383.9 342.6 −10.7 384.2 340.2 −11.4

5 389.7 342.7 −12.0 395.4 355.2 −10.2

6 397.2 386.9 −2.6 397.3 387.5 −2.5

7 362.3 337.7 −6.8 360.4 340.1 −5.6

8 398.8 344.0 −13.8 398.9 355.0 −11.0

9 410.6 329.4 −19.8 414.0 346.5 −16.3

Total 3,573.3 3,077.3 –13.9 3,591.1 3,148.7 –12.3

5.2 Risk analysis of different TDWCPST solutions

For each waste collection plan (i.e., for each solution to the TDWCPSD), our simheuris-

tic algorithm not only generates information about its expected travel duration and ex-
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pected driving distance, but it can also provide the plan’s probabilistic profile (including

risk and reliability analyses). Thus, statistical values such as the standard deviation of

travel duration, the median, or the third quartile can be obtained during the simulation

runs without increasing the computing effort.

Table 3 shows different attributes of three elite solutions of the global TDWCPSD

with all garbage containers in a high variance scenario (k = 10). The deterministic and

stochastic travel duration, driving distance, standard deviation, median, third quartile,

and the number of waste collection routes of each TDWCPST solution are provided. As

highlighted in the radar chart shown in Figure 8, each solution outperforms the others in

a different decision-making dimension. While solution B is the most promising solution

regarding deterministic travel duration, solution A shows the best results in terms of

expected travel times and overall travel distance. However, the standard deviation of

travel duration obtained during the long simulation run (which can be seen as a reliability

indicator of a given solution) is the lowest for solution C. This solution behaviour is

also observed in the multiple boxplot shown in Figure 9. It can be clearly seen that

the most promising deterministic solution B yields the highest travel duration variance,

suggesting a low reliability of the constructed waste collection routes. Likewise, the

median and third quartile could be considered in a closer risk analysis according to

the preferences of the waste collection route planner. Since this work is addressed to a

real situation scenario, it is important for the planner this degree of freedom that allows

to find different solutions. In this experiment we offered three solutions to the planner

or decision maker. In other settings, the specific number could be adjusted taking into

account the magnitude of the differences among solutions and the preferences of the

planner.

Figure 8: Ranking of TDWCPST solutions according to different quality dimensions.
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Table 3: Analysis of different TDWCPST solutions (high variance scenario).

Solution

Det.

Duration

(min)

Stoch.

Duration

(min)

Distance

(km)

Stand.

Dev.
Median

Third

Quartile

#

Routes

A 2,879.61 2,936.05 264.58 31.98 2,932 2,956 8

B 2,827.49 2,938.67 278.45 64.59 2,930 2,969 9

C 2,897.58 2,952.18 280.27 26.46 2,951 2,967 8

Figure 9: Comparison of simulation results of different TDWCPST solutions.

6 Conclusions

This work presents a simheuristic algorithm for the time-dependent waste collection

problem with stochastic travel times to improve the real-life case of the waste collection

process of several hundred waste containers in the Spanish city of Sabadell. The algo-

rithm works by integrating simulation into a metaheuristic framework, which is based

on a biased-randomized iterated local search. Uncertainty in travel duration between

different nodes in a the city logistics network is considered as well.

The work also shows the process followed to obtain the real-life distances. Work-

ing with real-life distances allows the comparison of the algorithm results with the real

routes that are used in Sabadell nowadays. Results suggest significant travel duration

reductions in different variance scenarios. Furthermore, a risk analysis of obtained so-

lutions along different dimensions such as the standard deviation of travel duration is

performed. The results underline the importance of risk aware route planning in the

process of waste collection.
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The research completed in this paper can be extended in several directions. Although

a simheuristic algorithm has been used to obtain garbage collection routes with real-life

distances to compare then with the routes of Sabadell, other standard algorithms of the

literature could also be tested and compared with them. This work would allow to see

the relative difference between several algorithms in a real situation. Moreover, different

procedures to generate the initial solution can be tested and their effect on the global

performance of the algorithm can be assessed.

In addition, our simheuristic procedure could be extended to consider additional in-

put variables that are typically shaped by some kind of stochastic behaviour, e.g.: waste

to be collected or even waste containers themselves. Similarly, the problem setting could

be enriched by including historical data to construct a more realistic travel speed model

for the study area. An interesting concept in this context is the emerging technique of

learnheuristics (Calvet et al., 2017), which complements the simheuristic solving frame-

work by including machine learning techniques to consider problem dynamic inputs

–e.g., varying traffic conditions at different times.
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