ID50- CORRELATION PATTERNS OF MULTI-INFLUENCE MEASUREMENTS FROM CRUISE SHIPS IN THE MEDITERRANEAN SEA F. Javier Rodrigo-Saura⁵², A. Sanchez-Garcia⁵⁰, E. Moya-De Rivas⁵¹ Abstract. - The increasing human interaction with the marine environment is bringing about a continuous growth in the ambient noise levels, which aggregates to the traditionally existing noises produced by natural sources and can affect, sometimes in a severe way, to the wellbeing of the marine fauna. To date studies have centered on the acoustic radiation, leaving in a second place the rest of radiations which also have a proven effect on marine life. In order to help to fill this gap, this study centers on analyzing the levels and correlations patterns of several types of energy radiations in the marine environment: acoustic, electric, magnetic and seismic. The study is based on measurements with a multi-influence range system of a kind of vessels of increasing presence and importance worldwide as are the cruise ships. Results show not only a significant level of correlation between acoustic and seismic radiations by one side and electric and magnetic by other side, but additionally a correlation degree among the four analyzed radiations. Keywords: Multi-influence measurements, underwater ambient noise, acoustic level, seismic level, electric field level, magnetic field level, correlation patterns # **ID51-** COMPREHENSIVE FRAMEWORK FOR THE DEVELOPMENT OF CONTROL AND NAVIGATION SYSTEMS OF AUTONOMOUS UNDERWATER VEHICLES: THE MISSION-SICUVA PROJECT F.J. Ortiz¹¹⁸, A. Guerrero¹⁰¹, J.Gilabert¹⁰⁴, D. Alonso¹¹⁵, F.Garcia-Cordova¹²¹, F. Rosique¹¹⁶ F. Sánchez-Ledesma¹¹⁷ Abstract- This paper presents an overview of coordinated project MISSION-SICUVA, and the results achieved at its recent completion. A prototype of UUV has been built with an orientation to oceanographic research and test of new control algorithms. It consist of an underwater vehicle towing a surface buoy, with applications such as monitoring water quality, high resolution bathymetry of the seabed and its map projection. New biological inspired navigation algorithms have been implemented using a comprehensive component based development framework. Keywords- Unmanned Underwater Vehicles, Biological Inspired Controller, Oceanographic Monitoring, Component Based Software Development, Software Framework. ### I. INTRODUCTION The SICUVA project (Control and Navigation Systems for Autonomous Underwater Vehicles in missions of Oceanographic Monitoring), began in 2010 and ended in December 2014 aiming for the construction of a prototype of underwater vehicle towing a surface buoy with scalable and reusable software oriented oceanographic research, with applications such as monitoring water quality, high resolution bathymetry of the seabed and its map projection. To do this, the researchers signing this article have developed innovative sensing and control structures neurobiologically inspired to provide autonomy to underwater vehicles. This project was funded in coordination with the MISSION Project (Comprehensive Framework for Software Development of Autonomous Underwater Vehicles based on Models, Components and Frameworks) in order to provide an enhanced development environment for software control of such vehicles so that (1) the integration and reuse of existing code is promoted, (2) the most advanced principles and techniques of Software Engineering in the domain of AUVs are systematically applied and (3) specific requirements of underwater robotics are taken into account: efficiency, reliability, lack of computational resources and energy constraints. In the MISSION project a set of software tools have been built following the CBSE (Component Based Software Engineering) and MDSD (Model Driven Software Development) paradigms that facilitate the reuse of proven designs and software components and permit to raise the level of abstraction in software developments. To that end, the FraCC component-based framework has been defined to automatically interpret high-level design (graphical models and components) generating an executable. The model-driven toolchain C-Forge [1] provides support to define new components encapsulating algorithms and existing drivers. Thus, new applications are built simply selecting and assembling the right components in each case. The basis of design of these tools have been recently exposed in prestigious specialized international conferences [2] [3]. Because it is a coordinated project, both the software tools developed and new bio-inspired control algorithms have been validated through its application to real case studies. ## II. THE BIOLOGICAL INSPIRED CONTROLLER. IMPLEMENTATION USING CFORGE. The UUV controller integrates a Self-Organization Direction Mapping Network (SODMN) and a Neural Network for the Avoidance Behaviour (NNAB) both biological inspired [4]. The SODMN is a kinematic adaptive neuro-controller and a real-time, unsupervised neural network that learns to control the underwater vehicle in a nonstationary environment. The NNB is a neural network based on animal behaviour that learns avoidance behaviours based on a form of animal learning known as operant conditioning. This algorithms has been implemented as a module of the framework. To implement the SODMN and NNAB algorithms, the designer simply fill a number of methods predefined methods in a software component. The interaction of this component with the other components conforming the application architecture is automatically managed by the FraCC framework. The designer is only concerned to build each component and link them graphically through their ports. The control software deployment on different hardware nodes and software processes and threads is performed also using a graphical tool which in turn validates the real-time behavior of the system. The deployment can be easily modified it if necessary depending on the schedulability tests. The application of the same approach to develop a different AUV in collaboration with OSL of HWU is presented in [5] #### III. SEA-TRIALS To carry out an evaluation of the UUV with this control software architecture, several tests in Mar Menor coastal Lagoon were carried out. One set of test to Fig 1. The underwater vehicle towing a surface buoy (left) and a graphical model of a software component (right) evaluate the performance of SODM and other to evaluate the performance of the NNB algorithm. Conclusions of these trials are presented in next number or journal RIAI and in international conferences [6]. #### REFERENCES [1] C-Forge toolchain [online]. http://www.dsie.upct.es/cforge/ [2] Ortiz FJ, Sánchez F., Alonso D., Rosique F, Insaurralde, C, "A Model-Driven Toolchain for Developing Component-Based Robotics Software", Proceedings of IEEE ICRA 2013 – Workshop Software Development and Integration in Robotics (SDIR VIII), Karlsruhe, Germany. May 2013. [3] Ortiz FJ, Alonso D., Rosique, Sánchez F., Pastor J., "A Component-Based Meta-Model and Framework in the Model Driven Toolchain C-Forge", Proceedings of the International Conference on Simulation, Modeling and Programming for Autonomous Robots (SIMPAR IV), Bergamo, Italy, Oct. 2014. [4] Garcia-Cordova, F., Guerrero-González, A., "Intelligent Navigation for a Solar Powered Unmanned Underwater Vehicle", International Journal of Advanced Robotic Systems", ISSN 1729-8806, DOI: 10.5772/56029. Published: April 2, 2013. [5] Ortiz, F.J., Insaurralde, C., Alonso, D., Sánchez-Ledesma, F., Petillot, Y. "Model-Driven Analysis and Design for Software Development of Autonomous Underwater Vehicles". ROBOTICA ISSN 0263-5747, Cambridge University Press Vol. 3. DOI: 10.1017/S0263574714001027. Published: April 29, 2014. [6] Guerrero-González, F. García-Cordova, J. Gilabert-Cervera. "A biologically inspired neural network for navigation with obstacle avoidance in autonomous underwater and surface vehicles". DOI: 10.1109/Oceans-Spain.2011.6003432 Conference: OCEANS. IEEE – Spain. 2011. # **ID52-** RENEWABLE ENERGY SUPPLY TO SHIPS AT PORT Esteve-Pérez, J84; Gutiérrez-Romero, J.E.85 Abstract. Maritime industry requires the environmentally friendly operation of ships. This fact has significant importance when the ships call at port and especially in those cities whose basins are near to urban centres. This work presents a study about supplying electrical energy from renewable sources when the ships call. This approach is called Onshore Power Supply. Then, an empirical application for the Cartagena Port is presented. In this particular case, the facility has dual character, with both solar and wind energy farms. The facility is sized basing on port traffic data of three years. Furthermore, the greenhouse gases reduction obtained with the application of this approach on the basins of the Cartagena Port is estimated. Keywords: Onshore power supply, ports, renewable energies.