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Abstract: This paper examines the structural flexible accelerator model of investment 
with time series model. The Box-Jenkins methodology of ARIMA specification is used 
for the estimated residuals of the multivariate Flexible Accelerator Model. I then re-
estimate the time series model and structural model simultaneously to model the 
Canadian investment over the period and see how the model forecasts and fits well. The 
results indicate that the combined structural and ARIMA modeling gives better fit to the 
actual investment forecast than structural or ARIMA modeling by itself. 
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1. Introduction 
 
   Expansion of investment has been considered as one of the main catalysts for the long 
term economic growth and employment.  However investment expenditures are typically 
volatile and therefore its movement has important consequences for productive capacity, 
employment demand, personal income and balance of payment. So it is critical that the 
trends and causes of variations in aggregate investment are well understood. However 
there is yet any convincing model to explain and forecast changes in aggregate 
investment expenditure to the desired degree of precision. Tevlin and Whelan (2000), for 
example, show that the existing time series model cannot explain the behavior of 
investment of U.S economy. In this paper I show that the traditional structural model is 
not able to capture the behavior of investment. This is also demonstrated in many of the 
recent empirical literature. The aim of this paper is therefore to contribute to the literature 
of investment by combining the structural model of investment with the time series 
model. The combined model turns out to forecast well and can explain the investment 
behavior of the economy better than simply applying the structural or time series model 
alone. 
 
   In the paper such as those written by Chenery (1952), Koyck (1954), Lucas (1967), 
Jorgenson (1971), Lovell (1971), Epstein and Denny (1983) and many others used the 
flexible accelerator model1 or gradual adjustment hypothesis of investment to link 
between a country or a firm’s “desired capital stock” or that level which would be 
predicted on the basis of economic theory and observed market conditions and observed 
series of actual capital stock. Some authors, e.g., Hay(1970) argues that it is inappropriate 
to assume that firms plan capital so as to adjust inventories by some fraction of the gap 
between their current magnitude and their equilibrium level. While I do not contend with 
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the suggestions of how the firms can close the gap between current and desired 
magnitude, instead in this paper, I examine the combined flexible accelerator model and 
time series model to account for investment of the Canadian economy.  
 
   The rest of the paper is organized as follows. Section 2 presents the basic model. 
Section 3 describes the data and presents summary statistics. In section 4 I estimate the 
flexible accelerator model and specify the ARIMA model. This section also presents the 
estimation results that combine the time series model with flexible accelerator model of 
investment. Section 5 goes with the model’s ability to forecast, and section 6 concludes.   
 
2. The Basic Model and Estimation Strategy 
 
2.1. The Basic Model: One of the earliest empirical models of aggregate investment 
behaviour is the accelerator model based on the assumption of a fixed capital/output ratio. 
A more general version of the original accelerator model is called the flexible accelerator 
model (FAM) and was put forward by Koyck (1954). The basic notion behind the flexible 
accelerator model is that the larger the gap between the existing capital stock and the 
desired capital stock, the more rapid a firm’s rate of investment. In its simplest version 
the FAM encompasses the hypothesis that investment It is proportional to the difference 
between desired capital, Kt*, and previous capital, Kt-1. The speed of adjustment is 
constant proportionality, η. That is- 
 
Kt- Kt-1= η[Kt* - Kt-1] + ut               (1)  
 

where 0<η≤1 is the adjustment parameter and ut is a random error term. 
 
According to equation (1), firms plan production so as to adjust capital by some fraction 
of the gap between their current magnitude and their equilibrium. Rewriting equation (1) 
as - 
 
Kt = K t-1+ η[Kt* - Kt-1] + ut                    [1(a)] 
 
Equation 1(a) implies that in order to increase the capital stock from K t-1 to the level of 
Kt, a country or firm has to achieve an amount of investment It = Kt- K t-1. Equation 1(a) 
can be written in terms of net investment as – 
 
It = η[Kt* - Kt-1] + ut             (2) 
 
The desired or target capital Kt* is strictly proportional to output Qt, Kt*= ϕQt (Jorgenson 
1971). Substituting Kt*=ϕQt in equation (2) we get – 
 
It = ηϕQt - η Kt-1+ ut 
 
Which we can write as – 
It = β0 + β1 Qt + β2 Kt-1 + ut            (3) 
 
Where It = Kt- Kt-1= ∆Kt, β0= intercept, β1=ηϕ and β2= -η [∴ϕ = -β1/β2= desired capital 
output ratio, and β0, β1≥0, 1≤β2<0]. Equation (3) can be written more compactly as- 
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Yt = Xt′β + ut              (4)  

 
where Yt = [It], T×1 column vector of observations on the dependent variable, Xt′ = [1 Qt 

K t-1], T×3 matrix giving T observations on variable Qt  and K t-1, β =3×1 column vector of 
unknown parameters and ut = T×1 column vector of stochastic error term  
 
2.2. The Estimation Strategy. Equation (4) represents our structural model. The model has 
an additive error term, ut, that accounts for unexplained variance in It; that is, it accounts 
for that part of the variance of It that is not explained by Qt and K t-1. I first estimate 
equation (4) and then construct an integrated autoregressive-moving average (ARIMA) 
model for the estimated residual series ut of the regression (4). Then I substitute the 
ARIMA model for the implicit error term in the original regression equation and combine 
the two, and re-estimate all the parameters simultaneously. The combined regression 
time-series model is termed as Multivariate ARIMA or MARIMA model2. The 
MARIMA can be written as- 
 
Yt = Xt′β +θ -1(B) φ(B) εt               (5) 
 

where,   θ (B)= (1- θ1B - θ2B2-……….θpBp)      φ(B) = (1- φ1B - φ2B2-………. φqBq), B is 
the backward shift lag operator (for example, But= ut-1, B2 ut = ut-2), p and q are the order 
of AR and MA and εt is normally distributed error term which may have different 
variance from ut.. 

 
I use Box and Jenkins (1976) “identification” techniques to specify the order of ARIMA 
(p, d, q). Accordingly, in the first stage, I determine the correct order of differencing, d, 
and then the order of ARMA model (p and q). In the second stage, I estimate the 
parameters of β0, β1, β2 of the structural FAM and the parameters θ1, θ2,….θp, φ1, φ2,….,φq 
of the time series model simultaneously. The final step is to conduct some diagnostic 
checks and other model specification tests to examine if the model “makes sense” or 
“holds together. 
 
3. Data and Descriptive Statistics 
 
   The data are from statistics Canada, CANSIM II quarterly time series from 1961 to 
2000. Gross Domestic Product (GDP), Qt, and the business and government fixed capital 
formation, Kt, are at 1992 constant prices. The net investment, It, series is derived from 
the capital formation as indicated by the structural flexible accelerator model. 
 
   Table-1 summarizes the mean and standard deviation (S.D) of the key variables by 
different time periods. The averages of investment, capital formation and GDP for the 
entire time period are $287m, $135132m and $23315m with standard deviation of 
$2569m, $48767m and $11099m respectively.  
 
 
                                                 
2 The model is also called ARIMAX model to distinguish from ARIMA. 
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Figure 1: Net Investment in Canada from 1961:2-2000:4 (in million CD$) 

 
 
 

Table 1: Descriptive Statistics for Key Variables ( in million CD$) 
Time 
period GDP 

S.D 
(GDP) 

Investment 
(I) S.D (I) 

Capital 
Stock (K) S.D (K) 

1961-1970 72495.82 11300.71 176.36 1300.61 10592.23 1962.95 
1971-1980 114707.45 14390.64 261.53 2196.21 17536.90 3244.56 
1981-1990 155196.68 16757.47 211.63 3006.46 27640.33 4978.39 
1991-2000 196561.90 19704.60 493.98 3343.22 37171.68 6917.33 

 
   Figure 1 displays the net investment behaviour in Canada over the different quarters 
from 1961 to 2000. As shown in Figure the net investment is more volatile and showing 
oscillating pattern.  
 
Figure 2: Trends in GDP and Capital stock in Canada (in million CD$) 

 
 
   The time series of GDP and capital stocks are illustrated in Figure 2 and their 
autocorrelation functions are plotted in the appendix. Both the GDP and capital formation 
series show upward trend; but time series of capital shows more or less volatile. Visual 
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inspection indicates that the average value of I(t) is very different from the increase of the 
stock of capital. It might be surprising to see that the stock of capital increases during the 
decades 1981-90 and 1991-2000 are very alike, while the average values of it are very 
different. However this is true since the capital stock in 1981-90 were more volatile and 
there was a big reduction in capital stock in the early and late 1980. Since investment is a 
flow measure, the difference between K(t) and K(t-1), the reduction in capital stock in 
1981-90 did not affect much to its average value while that reduction affected mean value 
of investment. On the other hand, there has been a secular increase in capital stock from 
the mid-1990s and that contributed to increase in the average value of investment. 
 
   An examination of their autocorrelation function (see Appendix 1) shows that, for GDP 
and capital formation series, the autocorrelation functions decline as the number of lags 
becomes large, but only very slowly. The autocorrelation function for the investment 
series spike after each four lags.  
 
4. Estimation and Identification of the Model 
 
4.1. Estimation of the Structural form. I first estimate the flexible accelerator 
model of investment using ordinary least squares (OLS) and obtain the following result 
(standard errors are in parenthesis)- 
 
It = -4649.21 + 0.148Qt - 0.655K t-1 ;          R2=0.378     DW= 1.58     F=47.08              (6) 
       (661.8)     (0.015)   (0.068) 
 
   The R2 value indicates that a considerable variation of It can not be explained by Qt and 
Kt-1 i.e. the FAM given in equation (1) is not enough to account for investment. The 
Durbin-Watson statistic greater than R2 indicates that the estimated regression doesn’t 
suffer from spurious regression (Granger and Newbold 1974). The actual and fitted 
investment series and residuals are plotted in Figure 3.  
 
   It can be seen from Figure 3 that there is a large variation between actual and estimated 
value of investment. The residuals appear to have a high degree of positive 
autocorrelation, which is consistent with the Durbin-Watson statistic. The residual plot 
also shows that there is residual seasonality and there may be cycle in the residual, an 
impression confirmed by residual correlogram. The residual sample autocorrelation 
function has large spikes, far exceeding the Bartletts bands, at the seasonal displacement, 
4,8,12 and so on. The Augmented Engle-Granger (AEG) test (for three lags as determined 
by Akaike Information Criteria (AIC) and Schwartz information criteria (SIC) on the 
differenced series, et, rejects the hypothesis of unit root. The AEG test statistic is –7.74, 
which is significant at the 1% level.  
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Figure 3: Actual, fitted and Residual from the Regression 
10000 

 
 
4.2. Multivariate ARIMA Specification  
 
   I first determine the order of AR and MA process using the estimated residuals from the 
structural model. Then I determine the order of ARMA process (see Appendix 2 for 
details).3 After determining possible orders of ARMA, I specify an ARIMA for the 
estimated residuals and then estimate the combined regression-time-series model. This 
model is likely to provide better forecast than the regression equation alone or time series 
model alone since it includes structural (economic) explanation of that part of the 
variance of Yt that can be explained structurally, and a time-series explanation of that part 
of the variance of Yt that cannot be explained structurally. Equation (5) is referred to as a 
transfer function model or alternatively, a multivariate autoregressive-moving average 
(MARMA) model.  
 
   Now I combine the structural part and time series part of the model and reestimate all 
the parameter simultaneously. That is, I estimate the parameters of the following model: 
 

It = β0 + β1 Qt + β2 Kt-1+θ -1(B) φ(B) εt        
 
I specify an ARIMA (4, 0, 3) in Appendix 2, which is equivalent to writing as- 
 
θ(B)et = (1-θ1B-θ2B2-θ3B3-θ4B4) et        (7) 
  
So φ(B) = (1- φ1B- φ2B2 - θ3B3)  
 
   As shown in Appendix 2, in terms of our original residual series ut, there is a fourth 
differencing in the residual series of ut, so equation (7) is written as - 

 
3 Available at the journal web site: http://www.usc.es/economet/aeid.htm 
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θ (B)et  =  (1- θ1B- θ2B2 - θ3B3- θ4B4)(1- B4) ut      
 

   The error process is equivalent to- 
 

ψ(B) ut=  (1- ψ1B - ψ2B2-….-ψ8B8)ut      
 

   So, in this case I have ARIMA(8,0,3) model of ut which is equivalent to saying  
ARIMA(4,0,3) of et. I now estimate the MARIMA or ARIMAX model. 
 
   Table 2 shows that MARIMA (8,0,5) has a chi-square value of 37.99, and it is 
statistically significant at the 95 percent confidence level and so it does not pass the 
diagnostic test. MARIMA (8,0,3) has the chi-square of 28.79 and so it is insignificant 
with (4,25) degrees of freedom and, therefore, we can accept the hypothesis that residuals 
are white noise. We see that the MARIMA (8,0,3) is more promising because it has the 
lowest chi-square statistic. Furthermore it has the smaller AIC and SIC value compared to 
ARIMA (8,0,5). So we can choose MARIMA (8,0,3) by all the available criteria. 
          

Table 2: Test statistic value for MARIMA 
    (8,0,3) (8,0,5) 
    Chi-square   28.79 37.99 
    Akaike info criterion 16.03 16.07 
    Schwarz criterion 16.32 16.42 

 
   The results of the Multivariate ARIMA (8, 0, 3) estimation are as follows: 
 

It =-5631.08 - 0.7167*K t-1 + 0.16587Qt +{(1- 0.5285B -1225B2- 0.5685 B3)/(1+ 0.0805B  
      (677.42)    (.070)              (0.0159)  
   +   0.4572B2 - 0.1332B3+ 0.6664 B4 - 0.0889 B5- 0.4401 B6 + 0.1155 B7 + 0.2836B8)} εt 
     R2=0.935                 DW=2.018                       F=149.86                            
 
  Note that R2 is very higher, and the DW is very close to 2. The sample autocorrelation 
for the residuals of this equation are all very small, so that the residuals appear to be 
white noise (see Appendix 1, Figure A4). The histogram of residual looks symmetric as 
confirmed by the skewness near zero. The residual kurtosis is higher than 3, but does not 
reject the hypothesis of normal distribution at the 5% or 10% level. 
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   Figure 4 and Figure 5 show the residual sample autocorrelation and partial 
autocorrelation, which displays no patterns, and mostly inside the Bartletts bands (not 
shown in figure). 
 
Specification Test:  
 
   I carry out the specification test through most appropriate and widely used two test 
statistic, Wald Test and Lagrange Multiplier test. The Wald test rejects the hypothesis that 
all the AR or MA or ARMA terms are zero. The values of the test statistic which are 
distributed as chi-square with 1 degree of freedom are as below: 
                

Table-3: Value of Wald test statistic 
 Chi-square P-value 
AR 2015.86 0.0000 
MA 2290.43 0.0000 
ARMA 62.849 0.0000 

 
   To see if there is any possibility that the errors exhibit autocorrelation, I conduct LM 
test. The LM test rejects the hypothesis of serial correlation. 
 
5. Forecasting:  
 
   I now investigate whether the model forecast well. For this I reestimate the equation by 
changing the sample to 1961:2-1996:4 and forecast for the period from 1997:1 to 2000:4. 
I choose here two types of forecast; dynamic forecasts, which calculates multi-step 
forecasts starting from the first period in the forecast sample. That is forecast for the 
1997:1 uses the forecasted value for 1996:4, and so on for the later periods. After that I 
make the static forecasts, which calculate a sequence of one-step-ahead forecasts, using 
actual, rather than forecasted values foe lagged dependent variable. That is, static forecast 
uses the actual value of investment in earlier period, rather than the earlier forecasts.  
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   In dynamic forecasting, I start at the beginning of the forecast sample, and compute a 
complete set of n-period ahead forecasts for each period in the forecast interval. Thus, I 
start at period t and forecast dynamically to t+n, and compute a one-step ahead forecast 
for t+1, a two-step ahead forecast for t+2, and so forth, up to an n-step ahead forecast for 
t+n . It may be useful to note that as with n-step ahead forecasting, I simply initialize a 
Kalman filter at time t+1 and run the filter forward additional periods using no additional 
signal information. For dynamic forecasting, however, only one n-step ahead forecast is 
required to compute all of the forecast values since the information set is not updated 
from the beginning of the forecast period. 
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   The static forecasts are the forecast that one would have made in real life if one uses 
this equation every quarter since 1996:4. Not surprisingly, the static forecasts are a lot 
more accurate than are the dynamic forecasts. The forecasted actual series for investment 
are shown in Figure 6 and Figure 7 Our model has generated forecast that are more 
accurate in case of static forecast. It picks up the broad seasonal cycle. This model may 
be acceptable as a forecasting tool. 
 
6. Conclusion 
  
   In this paper I model the Canadian investment over a period of more than 40 years and 
found that the popularly known flexible accelerator model cannot predict the investment 
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behavior of the Canadian economy. So, I model the investment through multivariavte 
approach of autoregressive and moving average model of time series econometrics. The 
results of the multivariate model shows that one can better count the investment by 
combining structural flexible accelerator model with that of time series ARIMA model 
and the model forcasts very well. So, the empirical evidence suggests that a model builder 
should go for the ARIMA specification of the investment when the structural model 
cannot properly account the time series behavior of the data. 
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 Figure- A4: Histogram for Residual of ARMAX model
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Appendix 2 
 
This appendix discusses the stationary property of the estimated residuals from 
the flexible accelerator model.  It then specifies an ARIMA model for the residual 
series. 
 

Stationarity of the Residuals 
 
Here I first test unit root to determine the stationarity property of the estimated residual. 
The appropriate test statistic is the Augmented Engle-Granger (AGE)4  test. The value of 
the AGE statistic is 0.579. The Engel-Granger 1%, 5% and 10% critical values of the τ 
statistic (t-statistic) are, respectively, -2.59, -1.94, and –1.62.  
In the above instance, the AEG test is in the above case is carried out by the following 
procedure: 
 
∆ut= µ+γut-1+δ1∆ u t-1+δ2∆ ut-2+ δ3∆u t-3+ δ4t + ξt ………………………(7) 
Or in general- 
∆ut= µ+γut-1+∑k

j=1δj∆ u t-j+ ξt 
where,  k is the number of lag  
  µ,γ and δ are parameters, 

 
4 Since the estimated residual is based on the estimated parameters, the Augmented Dickey-Fuller 
(ADF) test critical significance values are not quite appropriate. Engle and Granger (1987) have 
calculated these values and ADF test in our context is known as AEG test. 
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ξt is assumed to be white noise and γ = ρ-1. 
The null and alternative hypothesis are- Ho: γ = 0, H1:  γ < 0. The order of the lag of AEG 
test has been chosen by the AIC and SIC criteria, i.e. I choose the minimum AIC and SIC 
value for the AEG test (in all cases). 
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Figure A5: Sample Autocorelation functio

 
From Figure A5 it is obvious that there are seasonal cycles in the residuals for every four-
lag. To make the residual series stationary, we take a four-quarter difference and obtain 
the following-                                                           

 et=ut-ut-4=(1-B4)ut  
 

where B is the backward shift lag operator. As can be seen in figure-4, the sample 
autocorrelation function for this 4-quarter differenced series doesn’t exhibit seasonality. 
The autocorrelation function for et falls down to zero after four lags and it also shows that 
the et is stationary. The AEG test (for three lags as determined by AIC and SIC) on the 
differenced series et rejects the hypothesis of unit root. The AGE test statistic is –7.74, 
which is significant at the 1% level.  
 
Determining the order of ARMA 
At first I try to determine the order of AR(p) process. The partial auto correlation function 
jumps down to zero after three lags indicate the order of the autocorrelation may be three 
or four. AIC suggest the order of AR to be five while SIC suggest the corresponding AR 
order should be four (Table A1). At this stage I retain the both possibilities and try to 
estimate MA(q) models. The sample autocorrelation function drops down to zero after 
four lags is an indicative of the order of MA. Here AIC suggest that the order of MA 
should be five, in contrast, SIC indicate that the order should be three. So, I keep both 
possibilities to investigate the order of ARMA. 
 
  Table A1: AIC and SIC value for AR and MA 

 AR MA 
Order AIC SIC AIC SIC 
5 16.119 16.241 16.031 16.130 
4 16.137 16.237 16.067 16.146 
3 16.365 16.445 16.059 16.118 
2 16.368 16.428 16.301 16.341 
1 16.376 16.415 16.507 16.527 
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I now turn to the ARIMA specification of the differenced residual series et. I employ 
portmanteau test (Q-test), in addition to AIC and SIC, to diagnose the inadequacy of 
fitted ARIMA model. The portmanteau statistic that is frequently used to test H0 is- Q =T 
∑K

i=1 ĥ2
i, where ĥi is an estimate of the ith order autocorrelation of the residuals from 

ARIMA or Multivariate ARIMA and K is constant typically chosen to be 36. Box and 
Pierce (1970) demonstrated that Q is asymptotically distributed as chi-square with K-p-q 
degrees of freedom5. The result is based on the two important properties of ĥi : (1) the 
distribution of vector (ĥ1…ĥk) is asymptotically nonsingular normal (0,T-1ω) and (2) 
(ĥ1…ĥk)=(h1… hk)ω, where hi is the ith order autocorrelation of true disturbances and the 
(k× k) covariance matrix ω is idempotent of rank (K-p-q)6. However, Ljung and Box 
(1978) propose the modified Q statistic, Q = T (T+2)∑K

i=1(T-i)-1
 ĥ2

i, which has been 
shown to have better finite sample properties than the Box-Pierce test in the context of 
ARIMA model.  
 
The previous specification of AR and MA terms reflect that the et can be modeled as 
ARIMA(4,0,3) or ARIMA(4,0,5) or ARIMA(5,0,3) or ARIMA(5,0,5). We begin with 
ARIMA (5, 0, 3) model. The result is- 
 
ARIMA(5,0,3): 
 
(1-.892B+. 404B2+. 0594B3-.297B4-.139B5) et=(1-.606B-.318 B2-.465 B3) εt  ……(8) 

 

AIC=16.07                         SIC=16.23                       χ2(8,36)= 30.72 
 
With 28 degrees of freedom, the chi-square value is below the critical 95 percent level. 
Thus one can conclude that residuals from ARIMA (5, 0, 3) model are not autocorrelated. 
But one needs to consider other ARIMA order term and choose on the basis of lowest 
value of the statistic e.g., AIC, SIC and χ2. 
 
As a next step I increase the number of MA terms and estimate ARIMA (5, 0, 5) model. 
The result is- 
ARIMA (5, 0, 5): 
 
(1+. 729B- .360B2-.195B3-.148B4-.0193B5)et=(1-.258B-.695 B2-.588B3- .001B4-.660B5)εt   
..........  (9) 
 

 
5 If there is original data series then the Q statistic is chi-square with K df. Since the residuals 
from ARIMA model are estimated, Q will be chi-square with K-p-q df. For the original data series, 
p=q=0. 
6 These properties, which hold true for AR and ARMA series, do not necessarily hold true for the 
dynamic linear models. For instance, Dezhbakhsh (1990) argue that portmanteau (Box-Pierce or 
Ljung- Box) tests are inappropriately applied to linear models with lagged dependent variable and 
exogenous regressors. 
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AIC=16.02                       SIC=16.22                                χ2(10,36)= 24.996 
 
The chi-square statistic has dropped, and it is also insignificant, leading to accept this 
specification too. 
 
I now try specifications that are lower order, beginning with ARIMA (4, 0, 3): 
ARIMA(4,0,3): 
 
(1+. 129B+.397B2-.08B3-.338B4) et=(1-.387B-.201 B2-.463B3) εt       (9) 
 
AIC= 16.05                       SIC=16.19                               χ2(7,36)= 29.726 
 
The chi-square statistic has increased, however, there are now 29 degrees of freedom and 
this value is insignificant at the 95 percent level.  Furthermore, the value of SIC decreases 
compared to earlier two specifications. So, we can also select ARIMA (4, 0, 3). 
 
In the next step, I increase the number of moving average terms, and estimate an ARIMA 
(4,0,5) model, and the results are shown below: 
ARIMA (4,0,5): 
 
(1+. 791B- .351B2-.252B3-.118B4) et=(1-.320B-.657 B2-.594B3- .048B4-..640B5) εt   (10) 
AIC= 15.99                       SIC=16.17                               χ2(9, 36) = 22.89 
 
Here the magnitudes of the three statistics have reduced, but the degree of freedom here is 
lower compared to ARIMA (4, 0, 3). The chi-square statistic is 22.89, which, with 27 
degrees of freedom, is insignificant. 
 
All of these chi-square statistics are insignificant even at the 90 percent level, allowing 
me in each case to accept the hypothesis that the residuals are white noise. It is, however, 
clear a low-order ARIMA model can describe the differenced residual of the model. Of 
these four ARIMA (p.d.q), ARIMA (4,0,3) and ARIMA (4,0,5) models look promising. 
But ARIMA(4,0,3) has the highest degrees of freedom and this should also be taken into 
account.  
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