Vol. 17-2 (2017)

# EMPLOYMENT, WAGES AND ECONOMIC DEVELOPMENT IN MEXICO AND THE UNITED STATES, 1965-2015: IMPACT OF INDUSTRY AND THE EFFECTS OF NAFTA, GUISAN, Maria-Carmen\* AGUAYO, Eva

### Abstract

We present a comparison economic development, productivity, wages and employment in Mexico and the United States, for a period of 50 years (1965-2015). Accordingly to Kaldor's contributions and the empirical evidence we think that it is very important, for to improve industrial development. Mexico experienced an average increase, of industrial real value-added per capita, around 15 USD per year (at constant prices of year 2000) both before NAFTA (period 1964-1993) and after NAFTA (for the period 1994-2012). The U.S. experienced higher increases: 75 USD per year in the first period and 39 per year in the second one. We estimate two macro-econometric equations, for both countries, showing the positive impact of industry on non industrial production and employment. Our conclusion, on the evolution of Mexico after NAFTA. is that it had some positive effects but not enough to get an important and sustained increase of industry, income per capita and wages in this country. Regarding the U.S. NAFTA has had also some positive effects, and the economy has evolved with important and sustained increase of economic development, income per capita and wages, both before and after NAFTA. Our recommendation is to increase cooperation between both countries in order to foster economic development, increasing industrial development.

Keywords: Economic Development, Macroeconometric equations of Employment, Mexico and the United States, Effects of NAFTA, Industrial Development.

JEL Codes: C5, E2, E24, J23, L6, O5, O51, O54

# 1. Introduction

We analyze the evolution of employment and development in Mexico and the United States for a period of 50 years: 1965-2015, and the important impact of industry.

Section 2 presents a revision of the literature and includes a reference to some relevant studies related with the effects of NAFTA on the economic development of their country members. Section 3.1 analyzes the evolution of the rates of employment per one thousand people, for the period 1985-2015 in NAFTA countries. We notice that the USA and Canada present rates of employment in Services much higher than Mexico which is mainly due to the positive impact industry. In section 3.2, we compare the evolution of industrial and non-industrial production, foreign trade and development in Mexico and the USA, while in section 3.3 we analyze the evolution of productivity and wages. Section 3.3 analyses the differences in productivity and real wages, showing that, in order to achieve a higher degree of convergence of Mexico with the United States, is necessary to increase industrial production per head in Mexico. In section 4 we present the estimation of some econometric models that show the positive impact of industry, on development and employment, in both countries. Section 5 presents the main conclusions. We include and Annex.

<sup>&</sup>lt;sup>\*</sup> Maria-Carmen Guisan, Professor Ad Honorem, and Eva Aguayo, Associate Professor of Econometrics, Faculty of Economics and Business Administration, University of Santiago de Compostela, Spain. E-mails: mcarmen.guisan@usc.es, eva.aguayo@usc.es.

#### 2. Revision of the literature

In Guisan, Malacon and Exposito(2003) we analyzed the effects of NAFTA on Mexico, for the period 1994-2002, and we stated:

"After some years of hope in the effects of economic integration into NAFTA the results of the first period after the integration, 1994-2002, show several positive impacts on the Mexican economy, although economic policies in Mexico should also address other questions to solve problems that need some complementary economic policies, because economic integration is a help but not the only factor to have into account for improving economic development".

Forteen years later we confirm this view. Although NAFTA has had some positive effects in Mexico, as well as in the United States and Canada, the question for economic development of Mexico is that the degree of industrialization has evolved positively but too much slowly. Integration into NAFTA is not enough to guarantee a quick development of Mexico, and other supplementary economic policies are needed.

Regarding the effects of the integration into the North American Free Trade Agreement (NAFTA), those authors said that survey of the literature on integration into NAFTA shows a general positive evaluation although in same cases lower than expected, and cited the studies by Hanson (2003), on the impact on wages, Wall(2002) on foreign trade, Fukao, Okubo and Stern(2002) analysed the diversification of trade in some sectors. Chen and Martinez-Vazquez(2001) analized the impact on taxes and proposed an adaptation to improve exports of goods and services. Gruben(2001) suggests that fluctuation in the trade between USA and Mexico are explained mainly by other factors although NAFTA has a part in the explanation. Ianchovichina, Nicita and Soloaga(2001) analyse the effect of NAFTA in income distribution, by means of the Gini coefficient and other measures, and find increases of income in all the deciles of population. Dussel(2002) analyses the evolution of employment, productivity and foreign trade in Mexico since 1988 and found that in spite of some important increases of production, the results are below the expectations regarding economic development and employment.

We agree with many points of those interesting studies, particularly with Dussel(2002) regarding the need to improve industrialization in Mexico in order to foster some degree of convergence to the levels of the United States.

Scott(2014) shows concern for the increase of trade deficit in the United States, and says:

"Between 1993 and 2013, the US trade deficit with Mexico and Canada increased from \$17.0 to \$177.2 billion, displacing 851 700 US jobs. All of the net jobs displaced were due to growing trade deficits with Mexico. The number of US jobs displaced by trade deficits with Canada declined slightly between 1993 and 2013".

We must have into account also other positive effects of the integration for the United States. In this study we will see that the U.S. has experienced a positive balance in employment, wages and productivity after the creation of NAFTA.

Weisbrot, Lefebre and Sammut(2014) consider that Mexico could have got higher standards of real wages and income per capita, with a diminution of poverty if NAFTA would had been successful in restoring higher rates of growth.

#### Guisan, M.C., Aguayo, E. Employment And Development In Mexico And The U.S.: Industry And NAFTA

Blecker, Robert A. & Esquivel, Gerardo (2010) analyze the expectations and the realities about the economic impact of NAFTA on Mexico in terms of economic convergence, trade, investment, employment, wages, and income distribution. They show that NAFTA has basically failed to fulfill the promise of closing the Mexico-U.S. development gap.

Shahabuddin(2011) says that "the effect of NAFTA on the USA is unclear, i.e. it does not show a negative or positive effect on the US economy. Specifically, it is hard to establish a direct relationship on the employment rate or wage rate in the USA due to NAFTA. Therefore, more study is needed to determine whether the USA has lost jobs or lowered the wage rate in the USA"

Unger(2007) states that NAFTA has not benefited substantially economic growth nor opportunities for employment in Mexico, contrary to expectations.

Orrenius, Zavodny, Cañas and Coronado(2010) analyze the impact of remittances on economic development of Mexican states.

Our conclusion after the analysis of data and literature on the evolution of Mexico after NAFTA is that it had some positive effects but not enough to get an important and sustained increase of economic development, income per capita and wages in this country. This study shows the great importance that a higher level of industrialization would have to guarantee development and employment. Regarding the U.S. NAFTA has had also some positive effects, and the economy has evolved with important and sustained increase of economic development, income per capita and wages.

Gandolfi, Halliday and Robertson(2014) analyze the Wage convergence of Mexico with the United States for the period 1988-2011. Thy apply a panel approach and find no evidence of long-run wage convergence among cohorts with low migration propensities. They find some evidence of convergence for workers with high migration propensities.

#### 3. Industry, development and employment in NAFTA countries

Section 3.1 presents a comparison of the evolution of employment in four sectors (Agriculture, Industry, Building and Services) and real value-added per inhabit ant in two sectors (Manufacturing and Non-Manufacturing), in NAFTA countries, for the period 1985-2015.

In section 3.2, we compare the evolution of industrial and non-industrial production, foreign trade and development in Mexico and the USA, while in section 3.3 we analyze the evolution of productivity and wages. and in section 4 we present the estimation of some econometric models that show the positive impact of industry on development and employment in both countries

# 3.1. Rates of employment by sector in México, USA and Canada, 1985-2015

Tables 3 to 6 show the evolution of the rates of employment per one thousand people for the period 1985-2015. Se notice that the USA and Canada present rates of employment in Services much higher than Mexico which is mainly due to the positive impact of the highest levels of industrialization and development in USA and Canada.

| Country | 1985 | 1995 | 2005 | 2015 |
|---------|------|------|------|------|
| Canada  | 22   | 19   | 14   | 8    |
| Mexico  | 102  | 84   | 59   | 57   |
| USA     | 14   | 13   | 11   | 8    |

Table 3. Rates of Employment in Agriculture: North America, 1985-2015(number of employed persons per one thousand inhabitants)

Note: Agriculture includes farm activities, fisheries and forestry. Source: Elaboration from OECD LFS and other sources.

Table 4. Rates of Employment in Industry and Construction: North America, 1985-2015(number of employed persons per one thousand inhabitants)

| Country | 1985 | 1995 | 2005 | 2015 |
|---------|------|------|------|------|
| Canada  | 115  | 100  | 112  | 98   |
| Mexico  | 84   | 79   | 100  | 106  |
| USA     | 126  | 113  | 95   | 88   |

Note: Industry and Construction includes Building, Manufacturing and Energy. Source: Elaboration from OECD LFS and other sources.

Table 5. Rates of Employment in Services: North America, 1985-2015 (number of employed per one thousand inhabitants)

| Country | 1985 | 1995 | 2005 | 2015 |
|---------|------|------|------|------|
| Canada  | 311  | 337  | 380  | 404  |
| Mexico  | 146  | 206  | 247  | 266  |
| USA     | 309  | 343  | 371  | 378  |

Source: Elaboration from OECD LFS and other sources.

Table 6. Total rates of employment: North America, 1985-2015 (per one thousand inhabitants)

| Country | 1985 | 1995 | 2005 | 2015 |
|---------|------|------|------|------|
| Canada  | 451  | 457  | 507  | 510  |
| Mexico  | 347  | 358  | 396  | 429  |
| USA     | 456  | 474  | 482  | 474  |

Source: Updated from Guisan (2006). Elaboration based on OECD statistics and other sources. Provisional estimations in some cases.

Table 7 shows the evolution of Manufacturing (QMH) and non manufacturing (QNMH) real value added per head in NAFTA countries for the period 2010-2015.

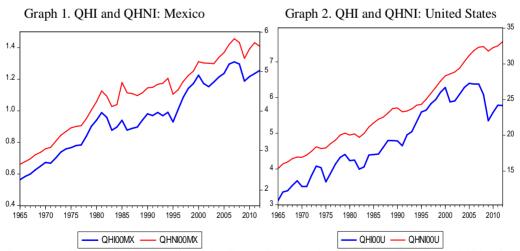
Table 7. Manufacturing (QMH) and Non-Manufacturing (QNMH) real value-added per head in North America, 2010-2015. (USD per head at 2011 prices and Purchasing Power Parities)

|               | 10. (052 | Per nea |       | nees and i | ai en asing |       |
|---------------|----------|---------|-------|------------|-------------|-------|
|               | QMH      | QMH     | QNMH  | QNMH       | PH          | PH    |
|               | 2010     | 2015    | 2010  | 2015       | 2010        | 2015  |
| Canada        | 4503     | 4625    | 36197 | 38358      | 40699       | 42983 |
| Mexico        | 2682     | 3126    | 12853 | 13542      | 15535       | 16668 |
| United States | 6145     | 6477    | 43228 | 46313      | 49373       | 52790 |

Note: PH=QMH+QNMH). Source: Elaborated by Guisan(2017) from WB(2017) Statistics, except for Canada (elaboration using data from OECD(2017).

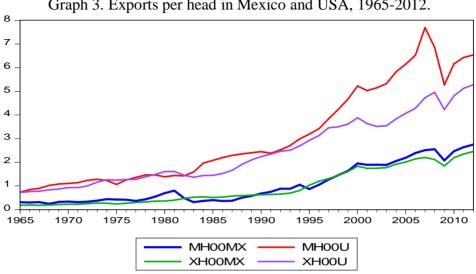
We may notice a positive evolution of QMH and QNMH in the three countries, we may also notice that QNMH generally increases with QMH.

As seen in several studies as Guisan(2013) there is a strong empirical evidence favourable to Kaldor's perspective: industry is usually very important to foster non industrial development (particularly in Services sectors) and to guarantee improvements in productivity, real wages and rates of employment.


3.2 Industrial Real valued Added and Exports per head In Mexico and the U.S., 1965-2012.

Graphs 1 and 2 present the evolution of real value added of industry (QHI) and nonindustrial sectors (QHNI) in Mexico and the USA, expressed in thousand Dollars per capita at 2000 prices and exchange rates.

In the case of the USA we notice an increase of QHNI in the period 2005-2012 in spite of the diminution of QHI. This was due to the effects of foreign trade as we will show in the econometric models of the next section.


In graph 1, we may notice a positive evolution of QHI in Mexico, for the period 1965-1981, almost stagnation for the period 1982-1995, and a trend to increase after 1995. There was a positive impact of NAFTA on QHI but not enough to speed the convergence of real income per head of Mexico with more developed countries. We may notice that the percentage of Mexico, with respect to the value of this variable in the United States is only around 22%.

In graph 4 we may notice that exports per head of Mexico have increased since year 1995 as consequence of a positive evolution of industry. There was also an important increase in the exports per head of the USA. The values of the United States are much higher than those of Mexico mainly due to higher levels of industrial development.



Source: Elaborated by authors from OECD statistics. Values in thousand USD at 2000 prices and Exchange Rates. Dual graph: left axis for QHI and right axis for QHNI.

Graph 3 shows the evolution foreign trade (real Exports and Imports per head (USD at 2000 prices and exchange rates) in Mexico and the United States.



Graph 3. Exports per head in Mexico and USA, 1965-2012.

Source. Elaborated by authors from OECD statistics.

In the period 1995-2007 there was an increasing deficit in foreign trade per capita in the United States, with Imports increasing much more than Exports, but we must not blame to the effect of NAFTA nor to Mexican economy. The increase of imports and exports per capita in Mexico has been much more moderated than in the U.S.

We suggest to have into account the macro-econometric relationships of supply and demand published in Guisan(2011) and(2013), which among other factors (human capital. physical capital, social capital and other ones) emphasize the important role of industry and foreign trade (when there is a sustainable evolution of Exports and Imports) to increase real-value added and employment in services.

Figure 1 in Guisan (2009) presents an interesting summary of direction of causality between industry, foreign trade, non industrial production and employment. Foreing trade has several direct and indirect impacts on economic development, with a final result positive if it is sustainable, as to say when the deficit is small or supported by secure investments or relationships.

From a supply point of view, production of Services, and other non-industrial activities, depends positively on the availability of industrial products in the domestic market and thus QHI amd MH are expected to have a direct positive impact, while XH may have a direct negative impact on QHNI. Besides XH may have an indirect positive impact, because Exports increase capacity to Import and, from the demand side, have a positive e impact on QHI. Both effects of Exports on Imports and QHI usually have a positive impact on QHNI.

#### 3.3. Employment, productivity and wages in Mexico and the U.S., 1965-2015

Mexico has experienced a positive evolution of the degree of convergence with the United States in the rate of employment but not enough in productivity and real wages.

Graph 5 presents the evolution of the rates of employment in Mexico and the USA while graph 6 shows the evolution of real productivity and real wage. Graph 6 shows the evolution of real productivity and real wage.



Graph 5. Rates of employment in Mexico and USA, 1965-2015 (employments per one thousand inhabitants)

Source: elaborated by authors from OECD statistics and other sources. Data in USD at prices and PPPs of year 2000.

In graph 5 we may notice a positive evolution for that period, with employment rates much higher in 2015 in comparison with 1965. In the case of the U.S., data show a strong diminution in the period 2008-2011 and a recovery afterwards. In the case of Mexico, we may notice that there was a clear increase for the period 1995-2015.

Graph 6 shows the evolution of productivity and average real wage of Mexico, in USD at constant prices and Purchasing Power Parities (PPPs) of year 2000) and the United States (USD at constant prices of year 2000) for the period 1965-2015. Data of productivity per worker have been calculated as Gross Domestic Product divided by

Labour (number of employed people, both employees (wage earners) and selfemployed people). Data of wages for the United States have been elaborated from OECD National Accounts and Labour Force statistics (Compensation of Employees divided by number of employees). Data for Mexico have been elaborated by authors, from several sources and estimations, as indicated in the Annex.

# 4. Econometric models: Impact of industry on GDP, Foreign Trade and Employment in Mexico and USA

In this section we present the estimations of several equations that show the positive impact of industry of exports, of exports on imports capacity and of industry on non industrial production. In the Annex we include analysis of causality and comments on the role of demand and supply, and the possible presence of feedback and/or interdependence.

Accordingly to Kaldor's these equations show the positive impact that industry usually has as a great motor of development an employment. We also present the estimation of equations that relate employment with production and other variables. Data used in the estimations are included in the Annex.

We present the estimation of equations of Non-Industrial Production per head (QHNI) and Employment (LT) for Mexico (MX) and the United States (US). As PH is the sum of industrial and non-industrial production (QHI+QHNI), we notice the positive effect of industry on real GDP and on Employment.

Equation 1 relates Non-Industrial real-value per head (QHNI) with Industrial real value-added per head (QHI) and foreign trade given by real Exports per head (XH) and real Imports head (MH).

| Equation 1. Non-Industrial Floddedon in Mexico. QTIN |                  |            |                   |           |  |  |  |  |  |  |
|------------------------------------------------------|------------------|------------|-------------------|-----------|--|--|--|--|--|--|
| Dependent Variable:                                  |                  |            |                   |           |  |  |  |  |  |  |
| Method: Least Squar                                  | es               |            |                   |           |  |  |  |  |  |  |
| Sample (adjusted): 19                                | 961 2012         |            |                   |           |  |  |  |  |  |  |
| Included observation                                 | s: 52 after adju | ustments   |                   |           |  |  |  |  |  |  |
| Variable                                             | Coefficient      | Std. Error | t-Statistic       | Prob.     |  |  |  |  |  |  |
| QHNI00MX(-1)                                         | 1.003839         | 0.003249   | 308.9317          | 0.0000    |  |  |  |  |  |  |
| D(QHI00MX)                                           | 2.963899         | 0.483478   | 0.483478 6.130374 |           |  |  |  |  |  |  |
| D(XH00MX)                                            | -0.368130        | 0.180719   | -2.037035         | 0.0472    |  |  |  |  |  |  |
| D(MH00MX)                                            | 0.355513         | 0.160875   | 2.209862          | 0.0319    |  |  |  |  |  |  |
| R-squared                                            | 0.993202         | Mean dep   | pendent var       | 4.245058  |  |  |  |  |  |  |
| Adjusted R-squared                                   | 0.992777         | S.D. depe  | endent var        | 1.029773  |  |  |  |  |  |  |
| S.E. of regression                                   | 0.087519         | Akaike ir  | nfo criterion     | -1.960109 |  |  |  |  |  |  |
| Sum squared resid                                    |                  |            |                   |           |  |  |  |  |  |  |
| Log likelihood                                       | Quinn criter.    | -1.902566  |                   |           |  |  |  |  |  |  |
| Durbin-Watson stat                                   | 1.890627         |            |                   |           |  |  |  |  |  |  |

Equation 1. Non-Industrial Production in Mexico: QHNI

The results of the estimation of this equation indicates a positive impact of QHI on QHNI. In equation 1, the sum of the coefficients of XH and MH would be expected to be greater than zero, accordingly to other international experiences, which does not occur in this case. This may be due to the effect of missing variables, and a more detailed model would contribute to improve the results.

| Equation 2: Employment in Menteo depending on OD17 (1) and other variables |                       |            |              |          |  |  |  |  |  |
|----------------------------------------------------------------------------|-----------------------|------------|--------------|----------|--|--|--|--|--|
| Dependent Variable: LTMX                                                   |                       |            |              |          |  |  |  |  |  |
| Method: Least Squares                                                      | Method: Least Squares |            |              |          |  |  |  |  |  |
| Sample (adjusted): 1966 20                                                 | )12                   |            |              |          |  |  |  |  |  |
| Included observations: 47 a                                                | after adjustme        | nts        |              |          |  |  |  |  |  |
| Variable                                                                   | Coefficient           | Std. Error | t-Statistic  | Prob.    |  |  |  |  |  |
| LTMX(-1)                                                                   | 1.002162              | 0.002268   | 441.8043     | 0.0000   |  |  |  |  |  |
| D(GDP00MX/W00MX3)                                                          | 74.40052              | 2.951895   | 0.0050       |          |  |  |  |  |  |
| D(PAMX)                                                                    | 0.692217              | 0.090651   | 7.636110     | 0.0000   |  |  |  |  |  |
| R-squared                                                                  | 0.999329              | Mean dep   | endent var   | 29340.96 |  |  |  |  |  |
| Adjusted R-squared                                                         | 0.999299              | S.D. depe  | ndent var    | 10029.45 |  |  |  |  |  |
| S.E. of regression                                                         | 265.6257              | Akaike in  | fo criterion | 14.06376 |  |  |  |  |  |
| Sum squared resid                                                          | 14.18185              |            |              |          |  |  |  |  |  |
| Log likelihood                                                             | 14.10819              |            |              |          |  |  |  |  |  |
| Durbin-Watson stat                                                         | 1.763031              |            |              |          |  |  |  |  |  |

Equation 2. Employment In Mexico depending on GDP/W and other variables

Note: Mixed dynamic model that relates Employment in Mexico with its lagged value and the in crease of the ratio GDP/Wage and the increase of Active Population (PAMX). GDP00mx in billion USD2000 (Dollars at 2000 year prices and Exchange rates). W00MX in thousand USD2000 per employee.

| ł | Equation | n 3, | Non | ind | ustrial | proc | luction | in the | US | A: QHNI |  |
|---|----------|------|-----|-----|---------|------|---------|--------|----|---------|--|
|   | P        |      |     |     | 0.11    |      |         |        |    |         |  |

| Dependent Variable:   |                  |            |               |          |
|-----------------------|------------------|------------|---------------|----------|
| Method: Least Squar   |                  |            |               |          |
| Sample (adjusted): 19 | 961 2012         |            |               |          |
| Included observation  | s: 52 after adju | ustments   |               |          |
| Variable              | Coefficient      | Std. Error | t-Statistic   | Prob.    |
| QHNI00U(-1)           | 1.013596         | 0.001799   | 563.4935      | 0.0000   |
| D(QHI00U)             | 1.027699         | 0.237487   | 4.327393      | 0.0001   |
| D(XH00U)              | -0.300959        | 0.311253   | -0.966925     | 0.3384   |
| D(MH00U)              | 0.300792         | 0.166640   | 1.805041      | 0.0773   |
| R-squared             | 0.998080         | Mean dep   | bendent var   | 22.86761 |
| Adjusted R-squared    | 0.997960         | S.D. depe  | endent var    | 5.794125 |
| S.E. of regression    | 0.261700         | Akaike ir  | nfo criterion | 0.230567 |
| Sum squared resid     | criterion        | 0.380663   |               |          |
| Log likelihood        | Quinn criter.    | 0.288111   |               |          |
| Durbin-Watson stat    | 1.555284         |            |               |          |

In equation 4, the sum of the coefficients of XH and MH would be expected to be greater than zero, accordingly to other international experiences, which does not occur in this case. This may be due to the effect of missing variables, and a more detailed model would contribute to improve the results.

| Equation 4. Employment in the Onited States |                  |            |              |          |  |  |  |  |  |
|---------------------------------------------|------------------|------------|--------------|----------|--|--|--|--|--|
| Dependent Variable:                         |                  |            |              |          |  |  |  |  |  |
| Method: Least Square                        | es               |            |              |          |  |  |  |  |  |
| Sample (adjusted): 19                       | 961 2012         |            |              |          |  |  |  |  |  |
| Included observations                       | s: 52 after adju | ustments   |              |          |  |  |  |  |  |
| Variable                                    | Coefficient      | Std. Error | t-Statistic  | Prob.    |  |  |  |  |  |
| LTU(-1)                                     | 0.986686         | 0.002349   | 419.9560     | 0.0000   |  |  |  |  |  |
| D(GDP00U/W00U)                              | 259.3174         | 52.11933   | 4.975456     | 0.0000   |  |  |  |  |  |
| D(PAU)                                      | 1.310710         | 0.128875   | 10.17038     | 0.0000   |  |  |  |  |  |
| R-squared                                   | 0.998807         | Mean dep   | endent var   | 109877.3 |  |  |  |  |  |
| Adjusted R-squared                          | 0.998759         | S.D. depe  | ndent var    | 25674.66 |  |  |  |  |  |
| S.E. of regression                          | 904.6139         | Akaike in  | fo criterion | 16.50885 |  |  |  |  |  |
| Sum squared resid                           | criterion        | 16.62143   |              |          |  |  |  |  |  |
| Log likelihood                              | Quinn criter.    | 16.55201   |              |          |  |  |  |  |  |
| Durbin-Watson stat                          | 1.646072         |            |              |          |  |  |  |  |  |

Equation 4. Employment in the United States

# 5. Conclusions

Mexico experienced an average increase of industrial real value-added per capita, around 15 USD per year (at constant prices of year 2000) both before NAFTA (period 1964-1993) and after NAFTA (for the period 1994-2012). The U.S. experienced higher increases: 75 USD per year in the first period and 39 per year in the second one. It is clear that the diminution of the increase in the U.S. after NAFTA was not caused by an increase of industry in Mexico, but to other problems of industrial delocalization.

We present our estimation of econometric models for Mexico and the United States showing the important impact of industry. Our conclusion, after the analysis of the literature, on the evolution of Mexico after NAFTA is that it had some positive effects but not enough to get an important and sustained increase of income per capita and wages in this country. Regarding the U.S. NAFTA has had also some positive effects, and the economy has evolved with important and sustained increase of economic development, income per capita and wages, both before and after NAFTA.

Our conclusion, on the evolution of Mexico after NAFTA, is that it had some positive effects but not enough to get an important and sustained increase of income per capita and wages in this country, because Mexico needs to reach a higher degree of industrial production per head.

Regarding the U.S. NAFTA has had also some positive effects, and the economy has evolved with important and sustained increase of economic development, income per capita and wages, both before and after NAFTA. Our recommendation is to increase cooperation between both countries in order to foster economic development having into account the convenience of increasing industrial development in Mexico in order to reach a higher degree of convergence

# Bibliography

Blecker, R.A., Esquivel, G. (2010). NAFTA, Trade, and Development Focus. CESIFO. http://www.cesifo-group.de/DocDL/forum4-10-focus3.pdf

Chen, D. and Martinez-Vazquez, J.(2001). The impact of NAFTA and Options to Tax Reform in Mexico. World Bank Working Papers in Domestic finance. Saving, financial systems, and stock markets. with number 2669.<sup>1</sup>

Dussel, E.(2002). Employment, Productivity and Foreign Trade in the Mexican Economy (in Spanish). Investigación Económica. Revista de la UNAM, Mexico.

Dussel, E. (2007). Foreign Direct Investment in Mexico. (In Spanish: La inversión extranjera directa en México: desempeño y potencial : una perspectiva macro, meso, micro y territorial). Edited by Siglo XXI.

Gandolfi, D., Halliday, T., Robertson, R. (2014). "Globalization and Wage Convergence: Mexico and the United States". Working Paper of the University of Hawaii at Manoa, number 14-5.

Fukao, K., Okubo, T, and Stern, R.M. (2002). An Econometric Analysis of Trade Diversion under NAFTA.<sup>1</sup>

Guisan, M.C., Aguayo, E and Exposito, P. (2001). Economic Growth and Cycles: Cross-country Models of Education, Industry and Fertility and International Comparisons. *Applied Econometrics and International Development*, Vol.1-1, pp. 9-37.<sup>1,2</sup>

Guisan, M.C. and Aguayo, E. (2002). Education, Industry, Trade and Development of American Countries, 1980-99. *Applied Econometrics and International Development*, Vol.2-1, pp. 83-106.<sup>1,2</sup>

Guisan, M.C. and Cancelo, M.T. (2002). Econometric Models of Foreign Trade in OECD countries. Applied Econometrics and International Development, Vol. 2-2, pp. 65-81.<sup>2</sup>

Guisan, M.C. y Cardim-Barata, S.(2003). "Industria y desarrollo regional en Brasil". *Estudios Económicos Regionales y Sectoriales*, Vol. 3-1, pp. 103-126.

Guisan, M.C and Martinez, C. (2003). Education, Industrial Development and External Trade in Argentina: Econometric Models and International Comparisons. Working Paper of the series *Economic Development*, edited by Euro-American Association of Economic Development Studies.

Guisan, M.C. (2003a). Econometric Models of Employment by Sector in Mexico, the USA, Canada and the European Union, in "*Crecimiento económico en los países de la OCDE 2: Modelos macroeconométricos de producción, consumo, comercio exterior y empleo en España, México, USA y UE*", edited by Guisan et al(2003), published in the book series Economic Development n.9 by AHG, distribution Mundi-Prensa, Madrid.<sup>1,2</sup>

Guisan, M.C. and Aguayo, E. (2005). "Employment, Development and Research Expenditure in the European Union: Analysis of Causality and Comparison with the

United States, 1993-2003", International Journal of Applied Econometrics and Quantitative Studies, Vol.2-2.<sup>1,2</sup>

Guisan, M.C., Aguayo, E. (2006). Employment By Sector In The European Union, The United States, Mexico And Canada, 1985-2005, Regional and Sectoral Economic Studies, Vol. 6-1.<sup>1,2</sup>

Gruben, W.C.(2001). Did NAFTA Really Cause Mexico's High Maquiladora Growth?. Federal Reserve Bank of Dallas in its series Center for Latin America Working Papers, number 0301.<sup>1</sup>

Hanson, G.H. (2003). What Has Happened to Wages in México since NAFTA?. NBER Working Paper No. 9563.<sup>1</sup>

Ianchovichina, E., Nicita, A, and Soloaga, I.(2001). Trade Reform and Household Welfare: the Case of Mexico.<sup>1</sup>

Krueger, A. O. Trade Creation and Trade Diversion Under NAFTA. National Bureau of Economic Research, NBER Working Papers number 7429.

Mejía-Reyes, P. (2001). "Why National Business Cycles are Largerly Independent in Latin America?". *Ciencia Ergosum*, Universidad Autónoma del Estado de México, Toluca; pp. 10-20.

Mejía-Reyes, P. (2002). "¿Hace falta una política industrial en México?". *Ciencia Ergosum* Vol. 9-3, Universidad Autónoma del Estado de México, Toluca; pp. 231-248.

OECD. Several Years. Stan data base of industrial Statistics and National Accounts, Paris.

Robbins, D.J.(1999). Gender, Human Capital and Growth: Evidence from Six Latin American Countries. OECD Development Centre. Technical Paper n.151, OECD, Paris.

Scott, R.D. (2014). The effects of NAFTA in US trade, Jobs and Investment

Shahabuddin, S. (2011). NAFTA and its effects on the USA: revisited. *International Journal of Economics and Business Research (IJEBR)*, Vol. 3, No. 4.

Unger, K. (2007). Apertura y empleos: la econom $\tilde{A}f\hat{A}a$  de los sectores comerciables y no comerciables de las regiones de M $\tilde{A}f\hat{A}$ ©xico

United Nations(2000). International Trade Statistics Yearbook, New York.

Wall, H.J. (2002). NAFTA and the Geography of North American Trade. Federal Reserve Bank of St. Louis, Working Papers number 2000-017.<sup>1</sup>

Zorrilla, L. (2003). La legislación y la política agrarias como factores del cambio social. Experiencia de México. Ponencia Instituto Interarmericano de Cooperación para la Agricultura, Sao Luis, Maranhao. Brasil.

<sup>&</sup>lt;sup>1</sup>These articles and working papers are available on-line at <u>http://ideas.repec.org</u>

<sup>&</sup>lt;sup>2</sup> Information on these publications at: <u>http://www.usc.es/economet/eaa.htm</u>

Guisan, M.C., Aguayo, E. Employment And Development In Mexico And The U.S.: Industry And NAFTA

#### Annex

This Annex includes some complementary data. We may update this Annex with new information, particularly about the evolution of Wages of Mexico in purchasing power paritites. Data of average wage of Mexico in graph 6, in PPPs, have been elaborated by authors, from the printed edition of OECD National Accounts, in years with available data, and from several sources and our own estimations

| ~ 1 |      |       | 2000. Linp |       | $(\mathbf{L}\mathbf{I}), \mathbf{I}\mathbf{e}\mathbf{u}$ | ivu i opuluu | . ,   |       |
|-----|------|-------|------------|-------|----------------------------------------------------------|--------------|-------|-------|
|     | obs  | QHI00 | QHNI00     | XH00  | MH00                                                     |              | LT    | PA    |
|     |      | MX    | MX         | MX    | MX                                                       | MX           | MX    | MX    |
|     | 1960 | 0.453 | 2.287      | 0.145 | 0.281                                                    |              | 11675 | 12036 |
|     | 1961 | 0.460 | 2.301      | 0.151 | 0.254                                                    | 101.294      | 12022 | 12394 |
|     | 1962 | 0.463 | 2.333      | 0.158 | 0.245                                                    | 105.921      | 12377 | 12760 |
|     | 1963 | 0.489 | 2.422      | 0.164 | 0.253                                                    | 113.836      | 12745 | 13139 |
|     | 1964 | 0.544 | 2.575      | 0.171 | 0.307                                                    | 125.937      | 13125 | 13531 |
|     | 1965 | 0.564 | 2.653      | 0.180 | 0.307                                                    |              |       | 13946 |
|     | 1966 | 0.585 | 2.721      | 0.189 | 0.298                                                    |              | 13939 | 14370 |
|     | 1967 | 0.600 | 2.790      | 0.178 | 0.312                                                    |              | 14366 | 14810 |
|     | 1968 | 0.626 | 2.893      | 0.192 | 0.242                                                    | 161.769      | 14805 | 15263 |
|     | 1969 | 0.649 | 2.955      | 0.209 | 0.319                                                    | 171.163      | 15259 | 15731 |
|     | 1970 | 0.673 | 3.044      | 0.220 | 0.337                                                    | 182.399      | 15729 | 16216 |
|     | 1971 | 0.668 | 3.079      | 0.221 | 0.311                                                    | 190.015      | 16410 | 16917 |
|     | 1972 | 0.701 | 3.233      | 0.249 | 0.331                                                    | 206.129      | 17116 | 17645 |
|     | 1973 | 0.739 | 3.388      | 0.274 | 0.374                                                    | 223.470      | 17848 | 18400 |
|     | 1974 | 0.758 | 3.483      | 0.266 | 0.436                                                    | 237.129      | 18591 | 19166 |
|     | 1975 | 0.767 | 3.576      | 0.235 | 0.424                                                    | 250.426      | 19344 | 19942 |
|     | 1976 | 0.780 | 3.613      | 0.266 | 0.416                                                    | 261.048      | 20107 | 20729 |
|     | 1977 | 0.784 | 3.630      | 0.296 | 0.363                                                    | 270.034      | 20878 | 21524 |
|     | 1978 | 0.839 | 3.806      | 0.321 | 0.430                                                    | 292.316      | 21662 | 22332 |
|     | 1979 | 0.902 | 4.027      | 0.351 | 0.543                                                    | 319.068      | 22444 | 23138 |
|     | 1980 | 0.940 | 4.235      | 0.360 | 0.694                                                    | 345.631      | 23215 | 23946 |
|     | 1981 | 0.989 | 4.512      | 0.393 | 0.798                                                    | 376.033      | 23760 | 24513 |
|     | 1982 | 0.959 | 4.379      | 0.468 | 0.485                                                    | 373.374      | 24309 | 25083 |
|     | 1983 | 0.877 | 4.117      | 0.519 | 0.314                                                    | 357.323      | 24861 | 25656 |
|     | 1984 | 0.897 | 4.164      | 0.537 | 0.362                                                    | 370.195      | 25410 | 26227 |
|     | 1985 | 0.940 | 4.726      | 0.510 | 0.399                                                    | 416.500      | 25955 | 26793 |
|     | 1986 | 0.878 | 4.463      | 0.528 | 0.361                                                    | 400.800      | 26493 | 27352 |
|     | 1987 | 0.889 | 4.443      | 0.567 | 0.372                                                    | 408.300      | 27031 | 27912 |
|     | 1988 | 0.897 | 4.394      | 0.587 | 0.499                                                    | 413.400      | 27576 | 28478 |
|     | 1989 | 0.942 | 4.463      | 0.608 | 0.577                                                    | 430.700      | 28121 | 29045 |
|     | 1990 | 0.981 | 4.589      | 0.628 | 0.678                                                    | 452.600      | 28669 | 29615 |
|     | 1991 | 0.970 | 4.601      | 0.634 | 0.749                                                    | 471.700      | 29226 | 30144 |
|     | 1992 | 0.990 | 4.678      | 0.653 | 0.880                                                    | 488.800      | 30259 | 31230 |
|     | 1993 | 0.969 | 4.706      | 0.694 | 0.879                                                    | 498.300      | 31341 | 32382 |
|     | 1994 | 0.991 | 4.832      | 0.804 | 1.045                                                    | 520.300      | 32439 | 33607 |
|     | 1995 | 0.930 | 4.428      | 1.027 | 0.867                                                    | 488.200      | 32175 | 34310 |
|     | 1996 | 1.008 | 4.540      | 1.197 | 1.047                                                    | 513.400      | 33364 | 35438 |
|     | 1997 | 1.086 | 4.752      | 1.307 | 1.266                                                    | 548.200      | 34510 | 37193 |
|     |      |       |            |       |                                                          | 2.0.200      | 2.210 | 2.170 |

Table A1. Data of Mexico: QHI, QHNI, XH, MH, thousand USD 2000. Gross Domestic Product (GDP) in Bn USD 2000. Employment (LT), Activa Population (PA) thousand people.

Applied Econometrics and International Development

| 1998 | 1.143 | 4.903 | 1.445 | 1.452 | 575.700 | 36067 | 38242 |
|------|-------|-------|-------|-------|---------|-------|-------|
| 1999 | 1.173 | 5.014 | 1.603 | 1.633 | 597.400 | 36351 | 38471 |
| 2000 | 1.226 | 5.254 | 1.834 | 1.949 | 636.700 | 37390 | 38608 |
| 2001 | 1.174 | 5.219 | 1.742 | 1.892 | 636.500 | 38100 | 38663 |
| 2002 | 1.153 | 5.212 | 1.747 | 1.896 | 641.400 | 39000 | 39695 |
| 2003 | 1.183 | 5.202 | 1.775 | 1.888 | 650.400 | 39329 | 40062 |
| 2004 | 1.215 | 5.361 | 1.918 | 2.052 | 676.400 | 40443 | 41738 |
| 2005 | 1.237 | 5.486 | 2.009 | 2.189 | 698.100 | 40931 | 41941 |
| 2006 | 1.296 | 5.689 | 2.144 | 2.391 | 731.700 | 42201 | 43234 |
| 2007 | 1.310 | 5.835 | 2.203 | 2.511 | 755.100 | 42907 | 44063 |
| 2008 | 1.274 | 5.738 | 2.114 | 2.550 | 764.161 | 43538 | 45121 |
| 2009 | 1.162 | 5.336 | 1.842 | 2.076 | 717.547 | 43063 | 45415 |
| 2010 | 1.217 | 5.575 | 2.193 | 2.470 | 756.295 | 46598 | 49133 |
| 2011 | 1.236 | 5.734 | 2.345 | 2.636 | 785.336 | 46892 | 49482 |
| 2012 | 1.256 | 5.641 | 2.456 | 2.746 | 786.069 | 49003 | 51477 |

Note: Data per inhabitant in thousand USD at constant prices and Exchange rates of year 2000: QHI (Industry), QHNI (Non industrial sectors), XH (Exports), MH (Imports). Source: Elaborated by authors from OEC D statistics.

| Population (national), Employment (total and by sector) |          |         |        |        |        |         |  |  |  |  |  |
|---------------------------------------------------------|----------|---------|--------|--------|--------|---------|--|--|--|--|--|
|                                                         | Pobmx    | LT      | LA     | LI     | LB     | LS      |  |  |  |  |  |
| 1995                                                    | 94490.0  | 32174.9 | 7495.5 | 5239.2 | 2244.8 | 17195.4 |  |  |  |  |  |
| 1996                                                    | 95877.0  | 33495.8 | 7289.9 | 5889.9 | 2246.2 | 18069.8 |  |  |  |  |  |
| 1997                                                    | 97205.0  | 35425.2 | 8241.8 | 6282.6 | 2233.0 | 18667.8 |  |  |  |  |  |
| 1998                                                    | 98485.0  | 36357.0 | 6978.7 | 6987.4 | 2678.5 | 19712.4 |  |  |  |  |  |
| 1999                                                    | 99706.0  | 36774.9 | 7395.4 | 7337.6 | 2667.8 | 19374.1 |  |  |  |  |  |
| 2000                                                    | 100896.0 | 37594.3 | 6500.8 | 7671.2 | 3022.1 | 20400.2 |  |  |  |  |  |
| 2001                                                    | 102122.0 | 37684.5 | 6516.7 | 7474.6 | 2953.7 | 20739.5 |  |  |  |  |  |
| 2002                                                    | 103418.0 | 38559.8 | 6594.0 | 7211.7 | 3115.6 | 21638.5 |  |  |  |  |  |
| 2003                                                    | 104720.0 | 38877.6 | 6208.4 | 7104.7 | 3264.2 | 22300.3 |  |  |  |  |  |
| 2004                                                    | 105952.0 | 40216.1 | 6280.0 | 7424.2 | 3245.9 | 23266.0 |  |  |  |  |  |
| 2005                                                    | 107151.0 | 40470.4 | 5950.5 | 7246.0 | 3163.9 | 24110.0 |  |  |  |  |  |
| 2006                                                    | 108409.0 | 41866.8 | 5905.5 | 7384.3 | 3438.1 | 25138.9 |  |  |  |  |  |
| 2007                                                    | 109787.0 | 42567.3 | 5655.1 | 7490.1 | 3565.2 | 25856.9 |  |  |  |  |  |
| 2008                                                    | 111299.0 | 43537.6 | 5651.5 | 7575.6 | 3627.3 | 26683.2 |  |  |  |  |  |
| 2009                                                    | 112853.0 | 43063.1 | 5558.1 | 6957.9 | 3501.8 | 27045.3 |  |  |  |  |  |
| 2010                                                    | 114256.0 | 46597.6 | 6336.1 | 7340.3 | 3621.4 | 29299.8 |  |  |  |  |  |
| 2011                                                    | 115683.0 | 46891.6 | 6153.0 | 7567.3 | 3649.3 | 29522.0 |  |  |  |  |  |
| 2012                                                    | 117054.0 | 49003.4 | 6489.9 | 7723.3 | 3603.0 | 31187.2 |  |  |  |  |  |

Table A2. Data of Mexico, 1995-2012

Source: OECD. Data in thousand people. L= Labour (Employment), T means Total, A is Agriculture and Fishing, I is Industry, B is Building and S is Services.

| Year | Average Wage |
|------|--------------|
| 2000 | 5564         |
| 2001 | 6505         |
| 2002 | 6395         |
| 2003 | 5108         |
| 2004 | 4703         |
| 2005 | 5153         |
| 2006 | 5382         |
| 2007 | 5175         |
| 2008 | 5017         |
| 2009 | 4524         |
| 2010 | 5238         |
| 2011 | 5286         |
| 2012 | 5634         |
| 2013 | 5831         |
| 2014 | 5848         |
| 2015 | 6105         |
| 2016 | 5459         |

Table A3. Datos Macro: Mexico. Average Wage. Current Euros

Source: http://www.datosmacro.com

| Table A4. Territorial distribution of population in Mexico, 1895-2010 (thousand people | Table A4. Territorial | distribution of p | opulation in Mexico. | 1895-2010 | (thousand people) |
|----------------------------------------------------------------------------------------|-----------------------|-------------------|----------------------|-----------|-------------------|
|----------------------------------------------------------------------------------------|-----------------------|-------------------|----------------------|-----------|-------------------|

| Tar | Die A4. Termonal   | uisuib  |        | popula            |         | INICALCO | J, 1030 | 52010   | (inouse | and peo | pie)    |         |
|-----|--------------------|---------|--------|-------------------|---------|----------|---------|---------|---------|---------|---------|---------|
|     | Entidad federativa | 1895    | 1900   | 1950 <sup>a</sup> | 1960    | 1970     | 1980    | 1990    | 1995    | 2000    | 2005    | 2010    |
| 1   | Aguascalientes     | 104     | 102    | 188               | 243     | 338      | 519     | 719     | 862 720 | 944 285 | 1 065   | 1 184   |
|     |                    | 693     | 416    | 075               | 363     | 142      | 439     | 659     |         |         | 416     |         |
| 2   | Baja California    | 42 875  | 47 624 | 226               | 520     | 870      | 1 177   | 1 660   | 2 112   | 2 487   | 2 844   | 3 155   |
|     |                    |         |        | 965               | 165     | 421      | 886     | 855     |         |         | 469     |         |
| 3   | Baja California    | NA      | NA     | 60 864            | 81 594  | 128      | 215     | 317     | 375 494 | 424 041 | 512 170 | 637 026 |
|     | Sur <sup>b</sup>   |         |        |                   |         | 019      | 139     | 764     |         |         |         |         |
| 4   | Campeche           | 88 144  | 86 542 | 122               | 168     | 251      | 420     | 535     | 642 516 | 690 689 | 754 730 | 822 441 |
|     |                    |         |        | 098               | 219     | 556      | 553     | 185     |         |         |         |         |
| 5   | Coahuila de        | 242     | 296    | 720               | 907     | 1 1 1 4  | 1 557   | 1 972   | 2 173   | 2 298   | 2 495   | 2 748   |
|     | Zaragoza           | 021     | 938    | 619               | 734     | 956      | 265     | 340     |         |         |         |         |
| 6   | Colima             | 55 718  | 65 115 | 112               | 164     | 241      | 346     |         |         | 542 627 | 567 996 | 650 555 |
|     |                    |         |        | 321               | 450     | 153      | 293     | 510     |         |         |         |         |
| 7   | Chiapas            | 320     |        | 907               | 1 210   | 1 569    | 2 084   | 3 210   | 3 584   | 3 920   | 4 293   | 4 796   |
|     |                    | 694     | 799    | 026               | 870     | 053      | 717     | 496     | 786     | 892     |         |         |
| 8   | Chihuahua          | 265     |        | 846               | 1 226   | 1 612    | 2 005   | 2 4 4 1 | 2 793   |         | 3 241   | 3 406   |
|     |                    | 546     |        | 414               | 793     | 525      | 477     | 873     |         | 907     | 444     | 465     |
| 9   | Distrito Federal   | 474     |        | 3 050             | 4 870   | 6 874    | 8 831   | 8 235   |         |         |         |         |
|     |                    | 860     |        | 442               | 876     | 165      | 079     | 744     | 007     | 239     |         |         |
| 10  | Durango            | 296     |        | 629               | 760     | 939      | 1 182   | 1 349   | -       | 1 448   | 1 509   | 1 632   |
|     |                    | 979     | -      | 874               | 836     | 208      | 320     | 378     |         |         | 117     |         |
| 11  | Guanajuato         | 1 069   | 1 061  | 1 328             | 1 735   | 2 270    | 3 006   | 3 982   |         |         | 4 893   |         |
|     |                    | 418     |        | 712               | 490     | 370      | 110     | 593     |         |         | -       |         |
| 12  | Guerrero           | 420     | 479    | 919               | 1 186   | 1 597    | 2 109   | 2 620   |         |         | 3 115   | 3 388   |
|     |                    | 926     | 205    | 386               | 716     | 360      | 513     | 637     |         |         | -       | 768     |
| 13  | Hidalgo            | 563     |        | 850               | 994     | 1 193    | 1 547   | 1 888   |         |         | 2 345   |         |
|     |                    | 824     | 051    | 394               | 598     | 845      | 493     | 366     |         |         | 514     |         |
| 14  | Jalisco            | 1 1 1 4 | 1 153  | 1 746             | 2 4 4 3 | 3 296    | 4 371   | 5 302   |         | 6 322   | 6 752   | 7 350   |
|     |                    | 765     | 891    | 777               | 261     | 586      | 998     | 689     |         |         | 113     |         |
| 15  | México             | 842     |        | 1 392             | 1 897   | 3 833    | 7 564   | 9 815   |         | 13 096  |         | 15 175  |
|     |                    | 873     | 463    | 623               | 851     | 185      | 335     | 795     | 964     | 686     | 495     | 862     |

| 16 | Michoacán *1              | 898 | 935   | 1 422  | 1 851  | 2 324  | 2 868   | 3 548   | 3 870   | 3 985   | 3 966   | 4 351   |
|----|---------------------------|-----|-------|--------|--------|--------|---------|---------|---------|---------|---------|---------|
| 10 | interiououri i            | 809 | 808   | 717    | 876    |        | 824     | 199     |         |         |         | 037     |
| 17 | Morelos                   | 159 | 160   | 272    | 386    | 616    | 947     | 1 195   |         |         |         | 1 777   |
| ., | 11101010100               | 123 | 115   | 842    | 264    | 119    | 089     | 059     |         |         | _       | 227     |
| 18 | Nayarit                   | 149 | 150   | 290    | 389    | 544    | 726     | 824     |         |         | 949 684 | 1 084   |
|    | 5                         | 807 | 098   | 124    | 929    | 031    | 120     | 643     |         |         |         | 979     |
| 19 | Nuevo León                | 311 | 327   | 740    | 1 078  | 1 694  | 2 513   | 3 098   | 3 550   | 3 834   | 4 199   | 4 653   |
|    |                           | 665 | 937   | 191    | 848    | 689    | 044     | 736     | 114     | 141     | 292     | 458     |
| 20 | Oaxaca                    | 897 | 948   | 1 421  | 1 727  | 2 015  | 2 369   | 3 019   | 3 228   | 3 4 3 8 | 3 506   | 3 801   |
|    |                           | 182 | 633   | 313    | 266    | 424    | 076     | 560     | 895     | 765     | 821     | 962     |
| 21 | Puebla                    | 992 | 1 021 | 1 625  | 1 973  | 2 508  | 3 347   | 4 1 2 6 | 4 624   | 5 076   | 5 383   | 5 779   |
|    |                           | 426 | 133   | 830    | 837    | 226    | 685     | 101     | 365     | 686     | 133     | 829     |
| 22 | Querétaro                 | 232 | 232   | 286    | 355    |        | 739     | 1 051   |         |         |         | 1 827   |
|    |                           | 305 | 389   | 238    | 045    |        | 605     | 235     |         |         |         | 937     |
| 23 | Quintana Roo <sup>c</sup> | NA  | NA    | 26 967 | 50 169 | 88 150 | 225     |         |         | 874 963 |         | 1 325   |
|    |                           |     |       |        |        |        | 985     | 277     |         |         | 309     | 578     |
| 24 | San Luis Potosí           | 571 | 575   | 856    | 1 048  | 1 281  | 1 673   | 2 003   | 2 200   | 2 299   | 2 4 1 0 | 2 585   |
|    |                           | 420 | 432   | 066    | 297    | 996    | 893     | 187     | 763     |         |         | 518     |
| 25 | Sinaloa                   | 261 | 296   | 635    | 838    | 1 266  | 1 849   | 2 204   | 2 4 2 5 | 2 536   | 2 608   | 2 767   |
|    |                           | 050 | 701   | 681    | 404    | 528    | 879     | 054     |         | 844     | 442     | 761     |
| 26 | Sonora                    | 192 | 221   | 510    | 783    | 1 098  | 1 513   | 1 823   | 2 085   | 2 216   | 2 394   | 2 662   |
|    |                           | 721 | 682   | 607    | 378    | 720    | 731     | 606     | 536     | 969     | 861     | 480     |
| 27 | Tabasco                   | 134 | 159   | 362    | 496    | 768    | 1 062   | 1 501   | 1 748   | 1 891   | 1 989   | 2 2 3 8 |
|    |                           | 956 | 834   | 716    | 340    | 327    | 961     | 744     | 769     | 829     | 969     | 603     |
| 28 | Tamaulipas                | 209 | 218   | 718    | 1 024  | 1 456  | 1 924   | 2 249   | 2 527   | 2 753   | 3 024   | 3 268   |
|    |                           | 106 | 948   | 167    | 182    | 858    | 484     | 581     | 328     | 222     | 238     | 554     |
| 29 | Tlaxcala                  | 168 | 172   | 284    | 346    | 420    | 556     | 761     | 883 924 | 962 646 | 1 068   | 1 1 69  |
|    |                           | 358 | 315   | 551    | 699    |        | 597     | 277     |         |         | 207     | 936     |
| 30 | Veracruz *2               | 863 | 981   | 2 040  | 2 727  | 3 815  | 5 387   | 6 2 2 8 | 6 7 37  | 6 908   | 7 110   | 7 643   |
|    |                           | 220 | 030   | 231    | 899    | 422    | 680     | 239     | 324     | 975     | 214     | 194     |
| 31 | Yucatán                   | 298 | 309   | 516    | 614    | 758    | 1 063   | 1 362   | 1 556   | 1 658   | 1 818   | 1 955   |
|    |                           | 569 | 652   | 899    | 049    | 355    | 733     | 940     | 622     | 210     | 948     | 577     |
| 32 | Zacatecas                 | 456 | 462   | 665    | 817    | 951    | 1 1 3 6 | 1 276   | 1 3 3 6 | 1 353   | 1 367   | 1 490   |
|    |                           | 241 | 190   | 524    | 831    | 462    | 830     | 323     | 496     |         |         | 668     |

\*1= Michoacán de Ocampo \*2= Veracruz de Ignacio de la Llave. Source: OECD

Total Mexico.

| Population | 1895   | 1900   | 1950 <u>a</u> | 1960   | 1970   | 1980   | 1990   | 1995   | 2000   | 2005    | 2010    |
|------------|--------|--------|---------------|--------|--------|--------|--------|--------|--------|---------|---------|
| Total      | 12 700 | 13 607 | 25 791        | 34 923 | 48 225 | 66 846 | 81 249 | 91 158 | 97 483 | 103 263 | 112 336 |
|            | 294    | 259    | 017           | 129    | 238    | 833    | 645    | 290    | 412    | 388     | 538     |

**About the authors**: Professors M.C. Guisan and E.Aguayo, have a long experience in the publication of articles and books related with economic development in North America, Latin America, Europe and OECD countries. As seen in the Blogs of our Association (in English and in Spanish) they have participated in international Congresses and Meetings related with Mexico and other American countries, the most recent in year 2016:

Aguayo, E. (2016). "Modelos (macro)econométricos y factores de desarrollo regional".

Conferencia magistral. VIII Coloquio Internacional de Investigación. Desarrollo económico regional y sustentable. UAEM. Toluca, 8 y 9 de

septiembre. http://web.uaemex.mx/feconomia/docs/cartel\_coloquio.pdf

International Blogs of our Association:

https://euroamericanassociation.blogspot.com.es (English)

https://economiaydesarrollointernacional.blogspot.com.es (Spanish)

Journal published by the EAAEDS: http://www.usc.es/economet/eaat.htm