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Abstract. In the present paper, we shall give necessary and sufficient conditions for the boundedness of the

Hardy-Littlewood maximal operator and its commutators on generalized weighted Orlicz-Morrey spaces M
�,ϕ
w (Rn).

The main advance in comparison with the existing results is that we manage to obtain conditions for the boundedness
not in integral terms but in less restrictive terms of supremal operators and we do not need �2-condition for the
boundedness of the maximal operator. We also consider the vector-valued boundedness of the Hardy-Littlewood
maximal operator.

1. Introduction

The classical Morrey spaces were introduced by Morrey [32] to study the local behavior
of solutions to second-order elliptic partial differential equations. Moreover, various Morrey
spaces are defined in the process of study. Mizuhara [31] and Nakai [33] introduced gener-
alized Morrey spaces Mp,ϕ(Rn) (see, also [14]); Komori and Shirai [27] defined weighted
Morrey spaces Lp,κ(w); Guliyev [15] gave a concept of the generalized weighted Morrey
spaces M

p,ϕ
w (Rn) which could be viewed as extension of both Mp,ϕ(Rn) and Lp,κ(w).

The spaces M
p,ϕ
w (Rn) defined by the norm

‖f ‖M
p,ϕ
w

≡ sup
x∈Rn,r>0

ϕ(x, r)−1 w(B(x, r))−1/p ‖f ‖L
p
w(B(x,r)) ,

where the function ϕ is a positive measurable function on R
n×(0,∞) and w is a non-negative

measurable function on R
n. Here and everywhere in the sequel B(x, r) is the ball in R

n of
radius r centered at x and |B(x, r)| = vnr

n is its Lebesgue measure, where vn is the volume
of the unit ball in R

n. Let B = {B(x, r) : x ∈ R
n, r > 0}.

The Orlicz space was first introduced by Orlicz in [35, 36] as generalizations of Lebesgue
spaces Lp(Rn). Since then, the theory of Orlicz spaces themselves has been well developed
and the spaces have been widely used in probability, statistics, potential theory, partial differ-
ential equations, as well as harmonic analysis and some other fields of analysis.
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In [7], the generalized Orlicz-Morrey space M�,ϕ(Rn) was introduced to unify Orlicz
and generalized Morrey spaces. Other definitions of generalized Orlicz-Morrey spaces can be
found in [34] and [42]. In words of [19], our generalized Orlicz-Morrey space is the third kind
and the ones in [34] and [42] are the first kind and the second kind, respectively. According to
the examples in [10], one can say that the generalized Orlicz-Morrey spaces of the first kind
and the second kind are different and that second kind and third kind are different. However,
we do not know the relation between the first and the third kind.

As based on the results of [2], the following conditions were introduced in [7] (see, also
[17]) for the boundedness of the maximal operators and the singular integral operators on
M�,ϕ(Rn), respectively,

sup
r<t<∞

�−1(t−n
)

ess inf
t<s<∞

ϕ1(x, s)

�−1
(
s−n

) ≤ C ϕ2(x, r) , (1.1)

∫ ∞

r

(
ess inf
t<s<∞

ϕ1(x, s)

�−1
(
s−n

))�−1(t−n
)dt

t
≤ C ϕ2(x, r) , (1.2)

where C does not depend on x and r . It was also shown in [7], the condition (1.1) is weaker
than (1.2).

Various versions of generalized weighted Orlicz-Morrey spaces were introduced in [29],
[24], [37] and [18]. The spaces in [29] and [24] can be seen as the weighted version of general-
ized Orlicz-Morrey spaces of the first kind and the spaces in [37] can be seen as the weighted
version of generalized Orlicz-Morrey spaces of the second kind. We used the definition of
[18] which can be seen as the weighted version of generalized Orlicz-Morrey spaces of the
third kind.

In this paper, we shall investigate the boundedness of the maximal operator M and its
commutators Mb on generalized weighted Orlicz-Morrey spaces. The main advance in com-
parison with the existing results is that we manage to obtain conditions for the boundedness
not in integral terms but in less restrictive terms of supremal operators and we do not need
to �2-condition for the boundedness of the maximal operator. We also consider the vector-
valued boundedness of the Hardy-Littlewood maximal operator.

The following results are the fundamental theorems in this paper:

THEOREM 1.1. � be a Young function and ϕ1, ϕ2 positive measurable functions on
R

n × (0,∞).
1. If � ∈ ∇2 and w ∈ Ai� , then the condition

sup
r<t<∞

(
ess inf
t<s<∞

ϕ1(x, s)

�−1
(
w(B(x, s))−1

))�−1(w(B(x, t))−1) ≤ C ϕ2(x, r) , (1.3)

where C does not depend on x and r , is sufficient for the boundedness of M from M
�,ϕ1
w (Rn)

to M
�,ϕ2
w (Rn).
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2. If ϕ1 ∈ G�
w , then the condition

ϕ1(x, r) ≤ Cϕ2(x, r) , (1.4)

where C does not depend on x and r , is necessary for the boundedness of M from M
�,ϕ1
w (Rn)

to M
�,ϕ2
w (Rn).
3. Let � ∈ ∇2 and w ∈ Ai� . If ϕ1 ∈ G�

w , then the condition (1.4) is necessary and

sufficient for the boundedness of M from M
�,ϕ1
w (Rn) to M

�,ϕ2
w (Rn).

THEOREM 1.2. Let b ∈ BMO(Rn), � be a Young function and ϕ1, ϕ2 positive mea-
surable functions on R

n × (0,∞).
1. Let � ∈ �2 ∩ ∇2 and w ∈ A1, then the condition

sup
r<t<∞

(
1 + ln

t

r

)
�−1(w(B(x, t))−1) ess inf

t<s<∞
ϕ1(x, s)

�−1
(
w(B(x, s))−1

) ≤ C ϕ2(x, r) ,

where C does not depend on x and r , is sufficient for the boundedness of Mb from M
�,ϕ1
w (Rn)

to M
�,ϕ2
w (Rn).
2. If � ∈ �2, ϕ1 ∈ G�

w and w ∈ A1, then the condition (1.4) is necessary for the

boundedness of Mb from M
�,ϕ1
w (Rn) to M

�,ϕ2
w (Rn).

3. Let � ∈ �2 ∩ ∇2 and w ∈ A1. If ϕ1 ∈ G�
w satisfies the condition

sup
r<t<∞

(
1 + ln

t

r

)
ϕ1(x, t) ≤ Cϕ1(x, r) ,

where C does not depend on x and r , then the condition (1.4) is necessary and sufficient for

the boundedness of Mb from M
�,ϕ1
w (Rn) to M

�,ϕ2
w (Rn).

By A � B we mean that A ≤ CB with some positive constant C independent of ap-
propriate quantities. If A � B and B � A, we write A ≈ B and say that A and B are
equivalent.

2. Definitions and Preliminary Results

We recall the definition of Young functions.

DEFINITION 2.1. A function � : [0,∞) → [0,∞] is called a Young function, if � is
convex, left-continuous, lim

r→0+ �(r) = �(0) = 0 and lim
r→∞ �(r) = ∞.

The convexity and the condition �(0) = 0 force any Young function to be increasing. In
particular, if there exists s ∈ (0,∞) such that �(s) = ∞, then it follows that �(r) = ∞ for
r ≥ s.

Let Y be the set of all Young functions � such that

0 < �(r) < ∞ for 0 < r < ∞ .
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If � ∈ Y , then � is absolutely continuous on every closed interval in [0,∞) and bijective
from [0,∞) to itself.

We recall an important pair of indices used for Young functions. For any Young function
�, write

h�(t) = sup
s>0

�(st)

�(s)
, t > 0 .

The lower and upper dilation indices of � are defined by

i� = lim
t→0+

log h�(t)

log t
and I� = lim

t→∞
log h�(t)

log t
,

respectively.
Even though the Ap class is well known, for completeness, we offer the definition of Ap

weight functions.

DEFINITION 2.2. For, 1 < p < ∞, a locally integrable function w : Rn → [0,∞) is
said to be an Ap weight if

sup
B∈B

(
1

|B|
∫

B

w(x)dx

)(
1

|B|
∫

B

w(x)
− p′

p dx

)p′
p

< ∞ .

A locally integrable function w : Rn → [0,∞) is said to be an A1 weight if

1

|B|
∫

B

w(y)dy ≤ Cw(x), a.e. x ∈ B

for some constant C > 0. We define A∞ = ⋃
p≥1 Ap .

For any w ∈ A∞ and any Lebesgue measurable set E, we write w(E) = ∫
E

w(x)dx.
It is well known that if w ∈ Ap, 1 ≤ p < ∞, then there exist a constant C such that

w(Q)

( |S|
|Q|

)p

≤ Cw(S) (2.1)

for measurable sets S ⊂ Q. See, for example [8].

DEFINITION 2.3. For a Young function � and w ∈ A∞, the set

L�
w(Rn) ≡

{
f -measurable :

∫
Rn

�(k|f (x)|)w(x)dx < ∞ for some k > 0

}
is called the weighted Orlicz space. The local weighted Orlicz space L�,loc

w (Rn) is defined as

the set of all functions f such that fχ
B

∈ L�
w(Rn) for all balls B ⊂ R

n.

Note that L�
w(Rn) is a Banach space with respect to the norm

‖f ‖L�
w(Rn) ≡ ‖f ‖L�

w
= inf

{
λ > 0 :

∫
Rn

�
( |f (x)|

λ

)
w(x)dx ≤ 1

}
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and ∫
Rn

�
( |f (x)|
‖f ‖L�

w

)
w(x)dx ≤ 1 . (2.2)

For a Young function � [38] and 0 ≤ s ≤ ∞, let

�−1(s) ≡ inf{r ≥ 0 : �(r) > s} (inf ∅ = ∞) .

We also note that [38, Proposition 13]

�(�−1(r)) ≤ r ≤ �−1(�(r)) , 0 ≤ r < ∞ .

A Young function � is said to satisfy the �2-condition, denoted by � ∈ �2, if

�(2r) ≤ k�(r) , r > 0

for some k > 1. If � ∈ �2, then � ∈ Y . A Young function � is said to satisfy the ∇2-
condition, denoted also by � ∈ ∇2, if

�(r) ≤ 1

2k
�(kr) , r ≥ 0

for some k > 1. The function �(r) = r satisfies the �2-condition and it fails the ∇2-
condition. If 1 < p < ∞, then �(r) = rp satisfies both the conditions. The function
�(r) = er − r − 1 satisfies the ∇2-condition but it fails the �2-condition.

For a Young function �, the complementary function �̃(r) is defined by

�̃(r) ≡
{

sup{rs − �(s) : s ∈ [0,∞)} if r ∈ [0,∞) ,

∞ if r = ∞ .

The complementary function �̃ is also a Young function and it satisfies ˜̃� = �. Note that
� ∈ ∇2 if and only if �̃ ∈ �2.

It is also known that

r ≤ �−1(r)�̃−1(r) ≤ 2r , r ≥ 0 . (2.3)

The following analogue of the Hölder inequality is known.∣∣∣∣∫
Rn

f (x)g(x)w(x)dx

∣∣∣∣ ≤ 2‖f ‖L�
w
‖g‖

L�̃
w

. (2.4)

For the proof of (2.3) and (2.4), see, for example [38].
We can easily prove the following by a direct calculation:

‖χB ‖L�
w

= 1

�−1
(
w(B)−1

) , B ∈ B , (2.5)

where χ
B

denotes the characteristic function of the B.
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The Hardy-Littlewood maximal operator M is defined by

Mf (x) = sup
r>0

1

|B(x, r)|
∫

B(x,r)

|f (y)|dy , x ∈ R
n

for a locally integrable function f on R
n.

THEOREM 2.4 ([25, Theorem 1]). Let � be a Young function with � ∈ �2 ∩ ∇2.
Assume in addition w ∈ Ai� . Then, there is a constant C ≥ 1 such that∫

Rn

� (Mf (x))w(x)dx ≤ C

∫
Rn

� (|f (x)|)w(x)dx (2.6)

for any locally integrable function f .

With [7, Remark 2.5] and [12, Remark 6.1.3] taken into account, the better boundedness
result which was proved in [13] runs as follows.

THEOREM 2.5 ([13]). Let � be a Young function with � ∈ ∇2. Assume in addition
w ∈ Ai� . Then the modular inequality (2.6) holds.

REMARK 2.6. Note that the strong modular inequality (2.6) implies the corresponding
norm inequality. Indeed, let (2.6) hold. Then, using the sublinearity of M , convexity of � and
(2.2) we have∫

Rn

�

(
Mf(x)

C‖f ‖L�
w

)
w(x)dx =

∫
Rn

�

(
M
( f

C‖f ‖L�
w

)
(x)

)
w(x)dx

≤ C

∫
Rn

�

(
|f (x)|

C‖f ‖L�
w

)
w(x)dx ≤ 1 ,

where C is the constant in (2.6). This implies ‖Mf ‖L�
w
� ‖f ‖L�

w
.

LEMMA 2.7. Let � be a Young function with � ∈ ∇2. Let f ∈ L�
w,loc(Rn). Assume in

addition w ∈ Ai� . For a ball B, the following inequality is valid:

‖f ‖L1(B) � |B|�−1
(
w(B)−1

)
‖f ‖L�

w(B) ,

where ‖f ‖L�
w(B) := ‖f χ

B
‖L�

w
.

PROOF. Let

Mf (x) = sup
B∈B

χB (x)

|B|
∫

B

|f (y)|dy , x ∈ R
n

and f̃ denotes the extension of f from B to R
n by zero. It is well known that Mf (x) ≤

2nMf (x) for all x ∈ R
n. Then using Theorem 2.5, we have

‖f ‖L1(B)

|B| ‖χB‖L�
w(B) = ‖f̃ ‖L1(B)

|B| ‖χB‖L�
w(B) � ‖Mf̃ ‖L�

w(B)
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� ‖Mf̃ ‖L�
w(B) ≤ ‖Mf̃ ‖L�

w
� ‖f̃ ‖L�

w
= ‖f ‖L�

w(B) .

So, Lemma 2.7 is proved. �

Let v be a weight. We denote by L∞,v(0,∞) the space of all functions g(t), t > 0 with
finite norm

‖g‖L∞,v (0,∞) = sup
t>0

v(t)|g(t)|

and L∞(0,∞) ≡ L∞,1(0,∞). Let M(0,∞) be the set of all Lebesgue-measurable functions
on (0,∞) and M+(0,∞) its subset of all nonnegative functions on (0,∞). We denote by
M+(0,∞;↑) the cone of all functions in M+(0,∞) which are non-decreasing on (0,∞) and

A =
{
ϕ ∈ M+(0,∞; ↑) : lim

t→0+ ϕ(t) = 0
}

.

Let u be a continuous and non-negative function on (0,∞). We define the supremal operator

Su and S
∗
u on g ∈ M(0,∞) by

(Sug)(r) := ‖u(t)g(t)‖L∞(r,∞) , r ∈ (0,∞) .

(S
∗
ug)(r) :=

∥∥∥∥(1 + ln
t

r

)
u(t)g(t)

∥∥∥∥
L∞(r,∞)

, r ∈ (0,∞) .

THEOREM 2.8 ([5, Lemma 5.2]). Let v1, v2 be non-negative measurable functions
satisfying 0 < ‖v1‖L∞(t,∞) < ∞ for any t > 0 and let u be a continuous non-negative

function on (0,∞). Then the operator Su is bounded from L∞,v1(0,∞) to L∞,v2(0,∞) on
the cone A if and only if ∥∥∥v2Su

(
‖v1‖−1

L∞(·,∞)

)∥∥∥
L∞(0,∞)

< ∞ .

The following theorem can be proved analogously to Theorem 2.8.

THEOREM 2.9. Let v1, v2 be non-negative measurable functions satisfying 0 <

‖v1‖L∞(t,∞) < ∞ for any t > 0 and let u be a continuous non-negative function on (0,∞).

Then the operator S
∗
u is bounded from L∞,v1(0,∞) to L∞,v2(0,∞) on the cone A if and only

if ∥∥∥v2S
∗
u

(
‖v1‖−1

L∞(·,∞)

)∥∥∥
L∞(0,∞)

< ∞ .

3. Generalized weighted Orlicz-Morrey spaces

In this section, we give the definition of the generalized weighted Orlicz-Morrey spaces

M
�,ϕ
w (Rn) and investigate the fundamental structure of M

�,ϕ
w (Rn). In the sequel we use the

notation ϕ(B(x, r)) ≡ ϕ(x, r).
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DEFINITION 3.1. Let ϕ be a positive measurable function on R
n × (0,∞), let w be

a non-negative measurable function on R
n and � any Young function. Denote by M

�,ϕ
w (Rn)

the generalized weighted Orlicz-Morrey space, the space of all functions f ∈ L�,loc
w (Rn) such

that

‖f ‖
M

�,ϕ
w (Rn)

≡ ‖f ‖
M

�,ϕ
w

= sup
x∈Rn,r>0

ϕ(x, r)−1 �−1(w(B(x, r))−1) ‖f ‖L�
w(B(x,r))

≡ sup
B∈B

ϕ(B)−1 �−1(w(B)−1) ‖f ‖L�
w(B) < ∞ .

Notice that there is another family of generalized weighted Orlicz-Morrey spaces studied
in [24]. The generalized weighted Orlicz-Morrey spaces given in this paper can be viewed as
the weighted Morrey spaces generated by the norm while the one used in [24] is defined via
the modular.

EXAMPLE. Let 1 ≤ p < ∞ and 0 < κ < 1.

• If �(r) = rp and ϕ(x, r) = w(B(x, r))−1/p, then M
�,ϕ
w (Rn) = L

p
w(Rn).

• If �(r) = rp and ϕ(x, r) = w(B(x, r))
κ−1
p , then M

�,ϕ
w (Rn) = Lp,κ (w).

• If �(r) = rp, then M
�,ϕ
w (Rn) = M

p,ϕ
w (Rn).

• If ϕ(x, r) = �−1
(
w(B(x, r))−1

)
, then M

�,ϕ
w (Rn) = L�

w(Rn).

For a Young function � and a non-negative measurable function w, we denote by Gw
� the

set of all almost decreasing functions ϕ : Rn × (0,∞) → (0,∞) such that

inf
B∈B; rB≤rB0

ϕ(B) � ϕ(B0) for all B0 ∈ B

and

inf
B∈B; rB≥rB0

ϕ(B)

�−1
(
w(B)−1

) � ϕ(B0)

�−1
(
w(B0)−1

) for all B0 ∈ B ,

where rB and rB0 denote the radius of the balls B and B0, respectively.

LEMMA 3.2. Let B0 := B(x0, r0). If ϕ ∈ Gw
� , then there exists C > 0 such that

1

ϕ(x0, r0)
≤ ‖χB0‖M

�,ϕ
w

≤ C

ϕ(x0, r0)
.

PROOF. Let B = B(x, r) denote an arbitrary ball in R
n. By the definition and (2.5), it

is easy to see that

‖χB0‖M
�,ϕ
w

= sup
B∈B

ϕ(B)−1�−1(w(B)−1)
1

�−1(w(B ∩ B0)−1)

≥ ϕ(B0)
−1�−1(w(B0)

−1)
1

�−1(w(B0 ∩ B0)−1)
= 1

ϕ(B0)
.
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Now if r ≤ r0, then ϕ(B0) ≤ Cϕ(B) and

ϕ(B)−1�−1(w(B)−1)‖χB0‖L�
w(B) ≤ 1

ϕ(B)
≤ C

ϕ(B0)
.

On the other hand if r ≥ r0, then ϕ(B0)

�−1(w(B0)
−1)

≤ C
ϕ(B)

�−1(w(B)−1)
and

ϕ(B)−1�−1(w(B)−1)‖χB0‖L�
w(B) ≤ C

ϕ(B0)
.

This completes the proof. �

4. Maximal Operator in the spaces M
�,ϕ
w (Rn)

In this section necessary and sufficient conditions for the boundedness of the operator M

in generalized weighted Orlicz-Morrey spaces will be obtained.

LEMMA 4.1. Let � be a Young function with � ∈ ∇2, f ∈ L�,loc
w (Rn), B = B(x, r)

and 2B = B(x, 2r). Assume in addition w ∈ Ai� . Then

‖Mf ‖L�
w(B) � ‖f ‖L�

w(2B) + 1

�−1
(
w(B)−1

) sup
t>2r

t−n‖f ‖L1(B(x,t)) .

PROOF. We put f = f1 + f2, where f1 = f χ2B and f2 = f χ �2B
and have

‖Mf ‖L�
w(B) ≤ ‖Mf1‖L�

w(B) + ‖Mf2‖L�
w(B) .

By the boundedness of the operator M on L�
w(Rn) by Theorem 2.5 we have

‖Mf1‖L�
w(B) � ‖f ‖L�

w(2B) .

Moreover we know that estimate

Mf2(x) ≤ 2n sup
t>2r

1

|B(x, t)|
∫

B(x,t)

|f (z)|dz, for all x ∈ B (4.1)

holds, see [7].
Thus

‖Mf ‖L�
w(B) � ‖f ‖L�

w(2B) + 1

�−1
(
w(B)−1

) (sup
t>2r

1

|B(x, t)|
∫

B(x,t)

|f (z)|dz

)
.

�

LEMMA 4.2. Let � be a Young function with � ∈ ∇2, f ∈ L�,loc
w (Rn) and B =

B(x, r). Assume in addition w ∈ Ai� . Then

‖Mf ‖L�
w(B) �

1

�−1
(
w(B)−1

) sup
t>2r

�−1(w(B(x, t))−1) ‖f ‖L�
w(B(x,t)) . (4.2)
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PROOF. Denote

M1 : = 1

�−1
(
w(B)−1

) (sup
t>2r

1

|B(x, t)|
∫

B(x,t)

|f (z)|dz

)
,

M2 : = ‖f ‖L�
w(2B) .

By Lemma 2.7, we get

M1 � 1

�−1
(
w(B)−1

) sup
t>2r

�−1(w(B(x, t))−1)‖f ‖L�
w(B(x,t)) .

Meanwhile, since

1

�−1
(
w(2B)−1

) = ‖χ2B‖L�
w

≤ C‖MχB‖L�
w

≤ ‖χB‖L�
w

= 1

�−1
(
w(B)−1

)
from the well-known pointwise estimate χ2B(z) ≤ 2nMχB(z), for all z ∈ R

n and Theo-
rem 2.5, we have

1

�−1
(
w(B)−1

) sup
t>2r

�−1(w(B(x, t))−1)‖f ‖L�
w(B(x,t))

� 1

�−1
(
w(B)−1

) sup
t>2r

�−1(w(B(x, t))−1) ‖f ‖L�
w(2B) � M2 .

Since ‖Mf ‖L�
w(B) ≤ M1 + M2 by Lemma 4.1, we arrive at (4.2). �

PROOF OF THEOREM 1.1. The first part of the theorem follows from Lemma 4.2 and
Theorem 2.8. We shall now prove the second part. Let B0 = B(x0, r0) and x ∈ B0. It is easy
to see that MχB0(x) = 1 for every x ∈ B0. Therefore, by (2.5) and Lemma 3.2

1 = �−1(w(B0)
−1)‖MχB0‖L�

w(B0)
≤ ϕ2(B0)‖MχB0‖M

�,ϕ2
w

≤ Cϕ2(B0)‖χB0‖M
�,ϕ1
w

≤ C
ϕ2(B0)

ϕ1(B0)
.

Since this is true for every B0 > 0, we are done.
The third statement of the theorem follows from the other statements of the theorem. �

REMARK 4.3. Note that the result of Theorem 1.1 is stronger than the Euclidean ver-
sion of a result for the maximal operator in generalized Morrey spaces (the case �(r) = rp)
obtained in [41] over the quasi-metric measure space.

5. Commutators

DEFINITION 5.1. Given a measurable function b the maximal commutator is defined
by

Mbf (x) = sup
t>0

1

|B(x, t)|
∫

B(x,t)

|b(x) − b(y)||f (y)|dy , x ∈ R
n
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for a locally integrable function f on R
n.

It is well known that the operator Mb plays an important role in the study of commutators
of singular integral operators with BMO symbols, (see, for instance, [11, 28, 43, 44]). Garcia-
Cuerva et al. [11] proved that Mb is bounded in Lp(Rn) for any p ∈ (1,∞) if and only if
b ∈ BMO(Rn), and Alphonse [3] proved that Mb enjoys the weak-type L(log L) estimate.
The maximal operator Mb was studied intensively and there exist plenty of results about it.

In this section necessary and sufficient conditions for the boundedness of Mb in gener-
alized weighted Orlicz-Morrey spaces have been obtained. For proving our main results, we
need the following estimate.

LEMMA 5.2. If b ∈ L1
loc(R

n) and B0 = B(x0, r0), then |b(x) − bB0| ≤ CMbχB0(x)

for every x ∈ B0.

PROOF. It is well known that

Mbf (x) ≤ 2nMbf (x) , (5.1)

where Mbf (x) = sup
B�x

|B|−1
∫
B |b(x) − b(y)||f (y)|dy.

Now let x ∈ B0. By using (5.1), we get

MbχB0(x) ≥ CMbf (x) = C sup
B�x

|B|−1
∫

B∩B0

|b(x) − b(y)|dy

≥ ∣∣C|B0|−1
∫

B0

(b(x) − b(y))dy
∣∣ = C|b(x) − bB0 | .

�

THEOREM 5.3 ([1, Theorem 1.13]). Let b ∈ BMO(Rn). Suppose that X is a Banach
space of measurable functions defined on R

n. Moreover, assume that X satisfies the lattice
property, that is

0 ≤ g ≤ f ⇒ ‖g‖X � ‖f ‖X .

Assume that M is bounded on X. Then the operator Mb is bounded on X, and the inequality

‖Mbf ‖X ≤ C‖b‖∗‖f ‖X

holds with constant C independent of f .

Combining Theorems 2.5 and 5.3, we obtain the following statement.

COROLLARY 5.4. Let � be a Young function with � ∈ ∇2 and b ∈ BMO(Rn).

Assume in addition w ∈ Ai� , then Mb is bounded on L�
w(Rn).
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LEMMA 5.5 ([23]). Let w ∈ A1, b ∈ BMO(Rn) and � be a Young function with
� ∈ �2. Then,

‖b‖∗ ≈ sup
x∈Rn,r>0

�−1(w(B(x, r))−1) ∥∥b − bB(x,r)

∥∥
L�

w(B(x,r))
.

Note that for b ∈ BMO(Rn)∣∣bB(x,r) − bB(x,t)

∣∣ ≤ C‖b‖∗ ln
t

r
for 0 < 2r < t , (5.2)

where C does not depend on b, x, r and t .

LEMMA 5.6. Let b ∈ BMO(Rn), � be a Young function with �2 ∩ ∇2 and w ∈ A1,
then the inequality

‖Mbf ‖L�
w(B(x0,r))

� ‖b‖∗
�−1

(
w(B(x0, r))−1

) sup
t>r

(
1+ln

t

r

)
�−1(w(B(x0, t))

−1)‖f ‖L�
w(B(x0,t ))

holds for any ball B(x0, r) and for all f ∈ L�,loc
w (Rn).

PROOF. For B = B(x0, r), write f = f1 + f2 with f1 = f χ2B
and f2 = fχ �(2B)

, so

that ∥∥Mbf
∥∥

L�
w(B)

≤ ∥∥Mbf1
∥∥

L�
w(B)

+ ∥∥Mbf2
∥∥

L�
w(B)

.

By Corollary 5.4, we obtain

‖Mbf1‖L�
w(B) ≤ ‖Mbf1‖L�

w(Rn) � ‖b‖∗ ‖f1‖L�
w(Rn) = ‖b‖∗ ‖f ‖L�

w(2B) . (5.3)

For x ∈ B we have

Mbf2(x) = sup
t>0

1

|B(x, t)|
∫

B(x,t)∩ �
(2B)

|b(y) − b(x)||f (y)|dy .

Note that if B(x, t) ∩ { �
(2B)} �= ∅, then t > r . Indeed, if y ∈ B(x, t) ∩ { �

(2B)}, then
t > |x − y| ≥ |x0 − y| − |x0 − x| > 2r − r = r .

On the other hand, B(x, t) ∩ { �
(2B)} ⊂ B(x0, 2t). Indeed, if y ∈ B(x, t) ∩ { �

(2B)},
then we get |x0 − y| ≤ |x − y| + |x0 − x| < t + r < 2t .

Hence

Mbf2(x) ≤ sup
t>r

1

|B(x0, t)|
∫

B(x0,2t )

|b(y) − b(x)||f (y)|dy

= 2n sup
t>2r

1

|B(x0, t)|
∫

B(x0,t )

|b(y) − b(x)||f (y)|dy .

Then

‖Mbf2‖L�
w(B) �

∥∥∥∥sup
t>2r

1

|B(x0, t)|
∫

B(x0,t )

|b(y) − b(·)||f (y)|dy

∥∥∥∥
L�

w(B)
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� J1 + J2 =
∥∥∥∥ sup

t>2r

1

|B(x0, t)|
∫

B(x0,t )

|b(y) − bB||f (y)|dy

∥∥∥∥
L�

w(B)

+
∥∥∥∥sup

t>2r

1

|B(x0, t)|
∫

B(x0,t )

|b(·) − bB ||f (y)|dy

∥∥∥∥
L�

w(B)

.

For the term J1 by (2.5) we obtain

J1 ≈
1

�−1
(
w(B)−1

) sup
t>2r

1

|B(x0, t)|
∫

B(x0,t )

|b(y) − bB ||f (y)|dy

and split it as follows:

J1 � 1

�−1
(
w(B)−1

) sup
t>2r

∫
B(x0,t )

w(B(x0, t))

|B(x0, t)|w(B(x0, t))
|b(y) − bB(x0,t )||f (y)|dy

+ 1

�−1
(
w(B)−1

) sup
t>2r

1

|B(x0, t)| |bB(x0,r) − bB(x0,t )|
∫

B(x0,t )

|f (y)|dy .

By the definition of the A1 class we have

J1 � 1

�−1
(
w(B)−1

) sup
t>2r

∫
B(x0,t )

1

w(B(x0, t))
|b(y) − bB(x0,t )||f (y)|w(y)dy

+ 1

�−1
(
w(B)−1

) sup
t>2r

1

|B(x0, t)| |bB(x0,r) − bB(x0,t )|
∫

B(x0,t )

|f (y)|dy .

Applying Hölder’s inequality, by Lemmas 2.7 and 5.5 and from the inequalities (5.2), (2.3)
we get

J1 � 1

�−1
(
w(B)−1

) sup
t>2r

1

w(B(x0, t))

∥∥b(·) − bB(x0,t )

∥∥
L�̃

w(B(x0,t ))
‖f ‖L�

w(B(x0,t ))

+ 1

�−1
(
w(B)−1

) sup
t>2r

|bB(x0,r) − bB(x0,t )|�−1(w(B(x0, t)
−1)‖f ‖L�

w(B(x0,t ))

� 1

�−1
(
w(B)−1

) sup
t>2r

‖b‖∗
�̃−1

(
w(B(x0, t))−1

)
w(B(x0, t))

‖f ‖L�
w(B(x0,t ))

+ 1

�−1
(
w(B)−1

) sup
t>2r

ln
t

r
�−1(w(B(x0, t)

−1)‖f ‖L�
w(B(x0,t ))

� ‖b‖∗
�−1

(
w(B)−1

) sup
t>2r

�−1(w(B(x0, t)
−1)(1 + ln

t

r

)
‖f ‖L�

w(B(x0,t ))
.

For J2 we obtain from Lemmas 2.7 and 5.5

J2 ≈ ‖b(·) − bB‖L�
w(B) sup

t>2r

1

|B(x0, t)|
∫

B(x0,t )

|f (y)|dy

� ‖b‖∗
�−1

(
w(B)−1

) sup
t>2r

�−1(w(B(x0, t))
−1)‖f ‖L�

w(B(x0,t ))
.
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Gathering the estimates for J1 and J2, we get

‖Mbf2‖L�
w(B) �

‖b‖∗
�−1

(
w(B)−1

) sup
t>2r

�−1(w(B(x0, t))
−1)(1 + ln

t

r

)
‖f ‖L�

w(B(x0,t ))
. (5.4)

To unite (5.4) with (5.3), observe that

1

�−1
(
w(B)−1

) sup
t>2r

�−1(w(B(x0, t))
−1)‖f ‖L�

w(B(x,t)) ≥ ‖f ‖L�
w(B(x,2r)) ,

which completes the proof. �

PROOF OF THEOREM 1.2. The first part is follows from Lemma 5.6 and Theorem 2.9.
We shall now prove the second part. Let B0 = B(x0, r0) and x ∈ B0. By Lemma 5.2 we

have |b(x) − bB0 | ≤ CMbχB0(x). Therefore, by Lemmas 3.2 and 5.5

1 ≤ C
‖MbχB0‖L�

w(B0)

‖b(·) − bB0‖L�
w(B0)

≤ C

‖b‖∗
‖MbχB0‖L�

w(B0)
�−1(w(B0)

−1)

≤ C

‖b‖∗
ϕ2(B0)‖MbχB0‖M

�,ϕ2
w

≤ Cϕ2(B0)‖χB0‖M
�,ϕ1
w

≤ C
ϕ2(B0)

ϕ1(B0)
.

Since this is true for every r0 > 0, we are done.
The third statement of the theorem follows from the first and second parts of the theorem.

�

6. Weak-type results

In this section necessary and sufficient conditions for the weak-type boundedness of the
operator M in generalized weighted Orlicz-Morrey spaces have been obtained.

For a weight w, a measurable function f and t > 0, let

m(w, f, t) = w({x ∈ R
n : |f (x)| > t}) .

DEFINITION 6.1. The weak weighted Orlicz space

WL�
w(Rn) = {f -measurable : ‖f ‖WL� < ∞}

is defined by the norm

‖f ‖WL�
w(Rn) ≡ ‖f ‖WL�

w
= inf

{
λ > 0 : sup

t>0
�(t)m

(
w,

f

λ
, t
)

≤ 1
}

.

We can prove the following by a direct calculation:

‖χ
B
‖WL�

w
= 1

�−1
(
w(B)−1

) , B ∈ B , (6.1)

In [13] the following weak-type result was also proved.
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THEOREM 6.2 ([13]). Let � be a Young function. Assume in addition w ∈ Ai� . Then,
there is a constant C > 1 such that

�(t)m(w, Mf, t) ≤ C

∫
Rn

� (C|f (x)|)w(x)dx (6.2)

for every locally integrable f and every t > 0.

REMARK 6.3. The weak modular inequality (6.2) implies the corresponding norm in-
equality. Indeed, let (6.2) holds. Then, processing as in Remark 2.6 we have

�(t)w

({
x ∈ R

n : Mf (x)

C2‖f ‖L�
w

> t

})
= �(t)w

({
x ∈ R

n : M
( f

C2‖f ‖L�
w

)
(x) > t

})
≤ C

∫
Rn

�
( |f (x)|
C‖f ‖L�

w

)
w(x)dx ≤ 1 ,

which implies ‖Mf ‖WL�
w
� ‖f ‖L�

w
.

We denote by WM
�,ϕ
w (Rn) the weak generalized weighted Orlicz-Morrey space, the

space of all functions f ∈ WL�,loc
w (Rn) such that

‖f ‖
WM

�,ϕ
w (Rn)

≡‖f ‖
WM

�,ϕ
w

≡ sup
x∈Rn,r>0

ϕ(x, r)−1 �−1(w(B(x, r))−1) ‖f ‖WL�
w(B(x,r))<∞ .

LEMMA 6.4. Let � be a Young function, f ∈ L�,loc
w (Rn) and B = B(x, r). Assume

in addition w ∈ Ai� . Then

‖Mf ‖WL�
w(B) � ‖f ‖L�

w(2B) + 1

�−1
(
w(B)−1

) sup
t>2r

t−n‖f ‖L1(B(x,t)) . (6.3)

PROOF. Let � be an arbitrary Young function. It is obvious that

‖Mf ‖WL�
w(B) ≤ ‖Mf1‖WL�

w(B) + ‖Mf2‖WL�
w(B)

for every B. By the boundedness of the operator M from L�
w(Rn) to WL�

w(Rn), by Theo-
rem 6.2, we have

‖Mf1‖WL�
w(B) � ‖f ‖L�

w(2B) .

Then by (4.1) we get the inequality (6.3). �

LEMMA 6.5. Let � be a Young function, f ∈ L�,loc
w (Rn) and B = B(x, r). Assume

in addition w ∈ Ai� . Then

‖Mf ‖WL�
w(B) �

1

�−1
(
w(B)−1

) sup
t>2r

�−1(w(B(x, t))−1) ‖f ‖L�
w(B(x,t)) . (6.4)

PROOF. Processing as in the proof of Lemma 4.2, the inequality (6.4) directly follows
from (6.3). �
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THEOREM 6.6. Let � be a Young function and ϕ1, ϕ2 positive measurable functions
on R

n × (0,∞).
1. If w ∈ Ai� , then the condition (1.3) is sufficient for the boundedness of M from

M
�,ϕ1
w (Rn) to WM

�,ϕ2
w (Rn).

2. If ϕ1 ∈ G�
w , then the condition (1.4) is necessary for the boundedness of M from

M
�,ϕ1
w (Rn) to WM

�,ϕ2
w (Rn).

3. Let w ∈ Ai� . If ϕ1 ∈ G�
w , then the condition (1.4) is necessary and sufficient for the

boundedness of M from M
�,ϕ1
w (Rn) to WM

�,ϕ2
w (Rn).

PROOF. The first part of the theorem follows from Lemma 6.5 and Theorem 2.8. We
shall now prove the second part. Let B0 = B(x0, r0) and x ∈ B0. It is easy to see that
MχB0(x) = 1 for every x ∈ B0. Therefore, by (6.1) and Lemma 3.2

1 = �−1(w(B0)
−1)‖MχB0‖WL�

w(B0)
≤ ϕ2(B0)‖MχB0‖WM

�,ϕ2
w

≤ Cϕ2(B0)‖χB0‖M
�,ϕ1
w

≤ C
ϕ2(B0)

ϕ1(B0)
.

Since this is true for every B0 > 0, we are done.
The third statement of the theorem follows from first and second parts of the theorem. �

7. Vector-valued maximal inequalities

The study of vector-valued maximal inequalities was initiated by Fefferman and Stein in
[9]. After Fefferman and Stein proved vector-valued maximal inequalities in [9], a passage to
a number of important function spaces in harmonic analysis is done by many people.

In [4], the vector-valued maximal inequalities on the weighted Lebesgue spaces were
obtained. The vector-valued maximal inequalities on Orlicz spaces, in term of modular and
norm, were established in [26, Theorem 1.3.3] and [26, Theorem 1.3.5], respectively. In [45],
the vector-valued maximal inequalities was generalized to Morrey spaces.

In fact, the result in [45] provides an access to solve a conjecture proposed by Mazzu-
cato [30] for the study of Morrey type Triebel-Lizorkin spaces [40, 46]. It further inspired
the study in [21] which showed that, roughly speaking, the validity of the vector-valued max-
imal inequalities on a Banach function space X can guarantee that the Triebel-Lizorkin type
space on X is well defined and possesses atomic and molecular decompositions [21, 22]. Fur-
thermore, the extension of the vector-valued maximal inequalities to rearrangement-invariant
(r.-i.) quasi-Banach spaces and the corresponding Morrey type space were obtained in [21].

In this section, we further generalize the vector-valued maximal inequalities to general-
ized weighted Orlicz-Morrey spaces.

DEFINITION 7.1. Let ϕ be a positive measurable function on R
n × (0,∞), w be a

non-negative measurable function on R
n, � be any Young function and 1 ≤ q ≤ ∞. The
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generalized vector-valued weighted Orlicz-Morrey spaces M
�,ϕ
w (lq) = M

�,ϕ
w (lq,Rn) is de-

fined as the set of all sequences F = {fj }∞j=1 of Lebesgue measurable functions on R
n such

that

‖F‖
M

�,ϕ
w (lq)

= ∥∥{fj }∞j=1

∥∥
M

�,ϕ
w (lq)

:= ∥∥∥∥{fj (·)}∞j=1

∥∥
lq

∥∥
M

�,ϕ
w

< ∞ .

The proof of the following vector-valued modular inequality for the Hardy-Littlewood
maximal operator in weighted Orlicz spaces can be found in [6, Chapter 4].

PROPOSITION 7.2. Let 1 < q < ∞, � be a Young function with � ∈ �2∩∇2. Assume
in addition w ∈ Ai� . Then, for any family of locally integrable functions F = {fj }∞j=1,∫

Rn

�
(‖MF(x)‖lq

)
w(x)dx ≤ C

∫
Rn

�
(‖F(x)‖lq

)
w(x)dx

for some C > 0 independent of F , where MF = {Mfj }∞j=1.

The following lemma is well known and for the proof, see [39, 45].

LEMMA 7.3. For any ball B, we have

M[χRn\2Bf ](x) �
∞∑

k=1

1

|2k+1B|
∫

2k+1B

|f (y)|dy

for all x ∈ B.

We will use the following statement on the boundedness of the weighted Hardy operator

H ∗
wg(t) :=

∫ ∞

t

g(s)w(s)ds, 0 < t < ∞ ,

where w is a weight.

THEOREM 7.4 ([16]). Let v1, v2 and w be weights on (0,∞) and assume that v1 is
bounded outside a neighborhood of the origin. The inequality

sup
t>0

v2(t)H
∗
wg(t) ≤ C sup

t>0
v1(t)g(t)

holds for some C > 0 for all non-negative and non-decreasing g on (0,∞) if and only if

B := sup
t>0

v2(t)

∫ ∞

t

w(s)ds

sups<τ<∞ v1(τ )
< ∞ .

The following lemma is true.

LEMMA 7.5. Let 1 < q < ∞, � be a Young function with � ∈ �2 ∩ ∇2. Assume in
addition w ∈ Ai� . Then

‖ ‖MF(·)‖lq ‖L�
w(B) � ‖ ‖F(·)‖lq ‖L�

w(2B) + 1

�−1(w(B)−1)

∫ ∞

2r

‖ ‖F(·)‖lq ‖L1(B(x,t))

tn+1 dt

(7.1)
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holds for all F = {fj }∞j=1 ⊂ L�,loc
w (Rn) and for any ball B = B(x, r).

PROOF. We split F = {fj }∞j=1 with

F = F1 + F2 , F1 = {fj,1}∞j=1 , F2 = {fj,2}∞j=1 ,

fj,1(y) = fj (y)χB(x,2r)(y) , fj,2(y) = fj (y)χRn\B(x,2r)(y) , r > 0 .

It is obvious that for any ball B = B(x, r)

‖ ‖MF‖lq ‖L�
w(B) ≤ ‖ ‖MF1‖lq ‖L�

w(B) + ‖ ‖MF2‖lq ‖L�
w(B) .

At first estimate ‖ ‖MF1‖lq ‖L�
w(B). By Proposition 7.2 we have

‖ ‖MF1‖lq ‖L�
w(B) ≤ ‖ ‖MF1‖lq ‖L�

w

≤ C‖ ‖F1‖lq ‖L�
w

= C‖ ‖F‖lq ‖L�
w(2B) , (7.2)

where C > 0 is independent of the vector-valued function f .
Let z ∈ B be fixed. Inspired by the ideas of [20], from Lemma 7.3, we have

‖MF2(z)‖lq �

⎛⎝ ∞∑
j=1

( ∞∑
k=1

1

|2k+1B|
∫

2k+1B

|fj (y)|dy

)q
⎞⎠1/q

=
∞∑

j=1

∞∑
k=1

aj

|2k+1B|
∫

2k+1B

|fj (y)|dy

where aj is a positive constant satisfying ‖aj‖lq
′ = 1.

We use Hölder’s inequality to obtain

‖MF2(z)‖lq �
∞∑

k=1

1

|2k+1B|
∫

2k+1B

∞∑
j=1

aj |fj (y)|dy

�
∞∑

k=1

1

|2k+1B|
∫

2k+1B

‖fj (y)‖lq dy

�
∫ ∞

2r

‖ ‖F(·)‖lq ‖L1(B(x,t))

tn+1 dt .

Hence

‖ ‖MF2‖lq ‖L�
w(B) �

1

�−1(w(B)−1)

∫ ∞

2r

‖ ‖F(·)‖lq ‖L1(B(x,t))

tn+1
dt . (7.3)

Then we obtain (7.1) from (7.2) and (7.3). �
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LEMMA 7.6. Let 1 < q < ∞, � be a Young function with � ∈ �2 ∩ ∇2. Assume in
addition w ∈ A1. Then

‖ ‖MF‖lq ‖L�
w(B) �

1

�−1(w(B)−1)

∫ ∞

2r

�−1(w(B(x, t))−1) ‖ ‖F‖lq ‖L�
w(B(x,t))

dt

t
(7.4)

holds for all F = {fj }∞j=1 ⊂ L�,loc
w (Rn) and for any ball B = B(x, r).

PROOF. Denote

M1 : = 1

�−1(w(B)−1)

∫ ∞

2r

‖ ‖F‖lq ‖L1(B(x,t))

tn+1
dt ,

M2 : = ‖ ‖F‖lq ‖L�
w(2B) .

By Lemma 2.7, we get

M1 � 1

�−1(w(B)−1)

∫ ∞

2r

�−1(w(B(x, t))−1)‖ ‖F‖lq ‖L�
w(B(x,t))

dt

t
.

On the other hand by (2.3),

�−1(w(B(x, r))−1)
≈ �−1(w(B(x, r))−1)rn

∫ ∞

2r

dt

tn+1

= �−1(w(B(x, r))−1)w(B(x, r))w(B(x, r))−1rn

∫ ∞

2r

dt

tn+1

≈
1

�̃−1
(
w(B(x, r))−1

)w(B(x, r))−1rn

∫ ∞

2r

dt

tn+1

� w(B(x, r))−1rn

∫ ∞

2r

1

�̃−1
(
w(B(x, t))−1

) dt

tn+1

= w(B(x, r))−1rn

∫ ∞

2r

w(B(x, t))

�̃−1
(
w(B(x, t))−1

)
w(B(x, t))

dt

tn+1

≈
rn

w(B(x, r))

∫ ∞

2r

�−1(w(B(x, t))−1)w(B(x, t))

tn

dt

t
.

By using (2.1) for p = 1, we get

M2 = ‖ ‖F‖lq ‖L�
w(2B) �

‖ ‖F‖lq ‖L�
w(2B)

�−1(w(B)−1)

∫ ∞

2r

�−1(w(B(x, t))−1)
dt

t

� 1

�−1(w(B)−1)

∫ ∞

2r

�−1(w(B(x, t))−1)‖ ‖F‖lq ‖L�
w(B(x,t))

dt

t
.

Since ‖ ‖MF‖lq ‖L�(B) ≤ M1 + M2 by Lemma 7.5, we arrive at (7.4). �
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THEOREM 7.7. Let 1 < q < ∞, � be a Young function with � ∈ �2 ∩ ∇2, w ∈ A1

and (�, ϕ1, ϕ2) satisfies the condition∫ ∞

r

(
ess inf
t<s<∞

ϕ1(x, s)

�−1
(
w(B(x, s))−1

))�−1(w(B(x, t))−1)
dt

t
≤ C ϕ2(x, r) , (7.5)

where C does not depend on x and r . Then the maximal operator M is bounded from

M
�,ϕ1
w (lq) to M

�,ϕ2
w (lq), i.e., there is a constant C > 0 such that

‖MF‖
M

�,ϕ2
w (lq)

≤ C‖F‖
M

�,ϕ1
w (lq)

(7.6)

holds for all F = {fj }∞j=1 ∈ M
�,ϕ1
w (lq).

PROOF. This follows from Lemma 7.6 and Theorem 7.4. �

Note that, for q = ∞, we have the following more general result.

THEOREM 7.8. Let w ∈ Ai� , � ∈ ∇2 and (�, ϕ1, ϕ2) satisfies the condition (1.3).

Then the maximal operator M is bounded from M
�,ϕ1
w (l∞) to M

�,ϕ2
w (l∞), i.e., there is a

constant C > 0 such that

‖MF‖
M

�,ϕ2
w (l∞)

≤ C‖F‖
M

�,ϕ1
w (l∞)

holds for all F = {fj }∞j=1 ∈ M
�,ϕ1
w (l∞).

PROOF. We know that the following pointwise estimate

‖MF(x)‖l∞ ≤ M(‖F‖l∞)(x) , x ∈ R
n (7.7)

holds, see [20, p.72].
By using the pointwise estimate (7.7) and Theorem 1.1, we obtain the inequality (7.6).

�

REMARK 7.9. Note that, for w ∈ A1, the condition (1.3) weaker than the condition
(7.5). We refer to [7, Remark 5.6] for details.
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