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Abstract

We introduce a new approach for the estimation of high-dimensional factor models with 

regime-switching factor loadings by extending the linear three-pass regression fi lter to 

settings where parameters can vary according to Markov processes. The new method, 

denoted as Markov-switching three-pass regression fi lter (MS-3PRF), is suitable for data sets 

with large cross-sectional dimensions, since estimation and inference are straightforward, 

as opposed to existing regime-switching factor models where computational complexity 

limits applicability to few variables. In a Monte Carlo experiment, we study the fi nite sample 

properties of the MS-3PRF and fi nd that it performs favourably compared with alternative 

modelling approaches whenever there is structural instability in factor loadings. For empirical 

applications, we consider forecasting economic activity and bilateral exchange rates, fi nding 

that the MS-3PRF approach is competitive in both cases.

Keywords: factor model, Markov-switching, forecasting.

JEL classifi cation: C22, C23, C53.



Resumen

En este artículo se presenta un nuevo enfoque para la estimación de modelos de factores 

de gran dimensión cuyas cargas de factores están sujetas a cambios markovianos de 

régimen. Dicho enfoque consiste en una extensión del fi ltro de regresión de tres pasos lineal 

a casos en los cuales los parámetros del modelo puedan cambiar en función de procesos 

markovianos. El método propuesto en este artículo, denominado «fi ltro de regresión de tres 

pasos con cambios markovianos» (MS-3PRF), es adecuado para tratar bases de datos que 

contengan un gran número de variables, ya que la estimación y la inferencia son directas, 

a diferencia de métodos alternativos, en donde la compleja estimación limita su uso a 

aplicaciones que envuelven pocas variables. Las propiedades en muestra fi nita del método 

propuesto se estudian con experimentos de Monte Carlo. Los resultados indican que, 

cuando los factores de carga están sujetos a inestabilidades, el método propuesto posee 

una mayor habilidad predictiva que métodos alternativos existentes en la literatura. Esta 

superioridad en términos predictivos también se observa en dos aplicaciones empíricas 

enfocadas a pronosticar la actividad económica y los tipos de cambio bilaterales.

Palabras clave: modelos de factores, cambios markovianos de régimen, predicción.

Códigos JEL: C22, C23, C53.
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1 Introduction

This paper introduces a new approach for the estimation of high-dimensional factor models

with regime-switching factor loadings. The literature on factor models has mostly concen-

trated on situations where the comovement among variables is assumed to be constant over

time. However, there is now a large body of literature that has challenged the assumption

of constant parameters to model the macroeconomic environment (see, e.g., Sims (1993)

or Canova (1993)), as well as the relevance of modelling time variation for macroeconomic

forecasting (see, e.g., D’Agostino et al. (2013) and Aastveit et al. (2017)). The importance

of incorporating time instabilities in large-scale factor models has gained traction in the

literature in recent years (see, e.g., Eickmeier et al. (2015) and Mikkelsen et al. (2015)),

but the number of works on this front remains relatively small. Moreover, this literature

has so far been restricted to the estimation of models with time-varying factor loadings

where time-variation is modelled using random-walk or autoregressive behaviours, which

typically restrict the dynamics of time-variation to gradual changes in the factor loadings

that may not be appropriate to all situations (e.g., if time variation is governed by regime-

switching dynamics). The literature has also considered the estimation of factor models

with temporal instability (structural breaks) in both factor loadings and the number of

factors (see, e.g., Cheng et al. (2016)). Moreover, Nakajima and West (2013) introduce a

framework where the factor loadings are time-varying, but shrink to zero when they fall

below a threshold. In contrast, in this paper we consider factor loadings that vary according

to regime-switching processes so as to model recurrent abrupt changes in factor loadings

that are potentially highly relevant features in macroeconomic and financial variables (see,

e.g., Ang and Timmermann (2012)).

Our modelling approach builds on Kelly and Pruitt (2015), who developed a new es-

timator for factor models—the three-pass regression filter (3PRF)—that relies on a series

of ordinary least squares (OLS) regressions. As emphasized in Kelly and Pruitt (2015),

the key difference between principal component analysis (PCA) and the 3PRF approach

is that PCA summarizes the cross-sectional information based on the covariance within

the predictors, whereas 3PRF condenses cross-sectional information based on the correla-

tion of the predictors with the target variable of the forecasting exercise, thereby extend-

ing partial least squares. In this paper, we extend the 3PRF approach by introducing

regime-switching parameters in the linear 3PRF filter. This new framework is denoted

as Markov-switching three-pass regression filter (MS-3PRF). A key advantage of this ap-

proach is that it is well suited to handle high-dimensional factor models, as opposed to the

existing regime-switching factor models that can handle only models with limited dimen-
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sions due to computational complexity (see, e.g., Camacho et al. (2012)).1 Our approach

is attractive in that our estimation strategy only requires estimating a series of univariate

Markov-switching regressions. As such, it is computationally straightforward to implement

and offers a great deal of flexibility in modelling time variation since we do not restrict

the regime changes in the cross-sectional dimension to be governed by a single or a limited

number of Markov chains.2

Empirically, we use the MS-3PRF approach for forecasting selected variables based on

a large set of predictors. Since the seminal work of Stock and Watson (2002b), a large liter-

ature has developed to improve on the forecasting performance of the principal-component

approach for macroeconomic forecasting (see, e.g., Forni et al. (2005) and De Mol et al.

(2008), among many others). In a paper related to our work, Bai and Ng (2008) find

improvements to the principal-component approach by using fewer but informative predic-

tors. They also suggest that additional forecasting gains can be obtained when modelling

non-linearities. The MS-3PRF approach is related to this strand of the literature given

that factors are extracted by modelling the correlation of the predictors with the forecast

target so that the estimation of the factors takes into account how informative the predic-

tors are for the target variable. Moreover, the MS-3PRF approach captures non-linearities

by modelling parameters that vary according to unobservable Markov chains.

This paper contributes to the literature along two main dimensions. First, we provide a

new framework for the estimation of high-dimensional factor models with regime-switching

parameters under classical inference. In a simulation experiment, we study the finite sam-

ple accuracy of the MS-3PRF forecasts compared with a number of alternatives. We find

that the MS-3PRF performs well when there are instabilities in the data-generating process

(DGP) modelled via regime-switching parameters. Second, we provide empirical evidence

that the MS-3PRF performs well when forecasting major U.S. macroeconomic variables

based on the McCracken and Ng (2015) data set. Moreover, when forecasting major cur-

rencies based on a panel of exchange rates, we also find predictive gains when using the

MS-3PRF approach. This provides additional evidence of gains one can draw from the use

of factor analysis to forecast exchange rates (see, e.g., Engel et al. (2015)) as well as the

importance of modelling non-linearities in this context.

1Groen and Kapetanios (2016) show that partial least squares (and Bayesian methods) perform better

than principal components when forecasting based on a large data set with a weak factor structure. As

partial least squares is obtained as a special case of the 3PRF (see Kelly and Pruitt (2015) for details), our

method can also be adopted to introduce Markov switching in partial least squares regressions.
2For example, extracting one factor from the MS-3PRF approach using a panel of 130 macroeconomic

and financial variables with gross domestic product (GDP) growth as a target proxy takes about 350

seconds using a laptop with a 2.7 GHz processor and 16 GB RAM.
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This paper is organized as follows: Section 2 introduces the MS-3PRF approach and

discusses its main features. Section 3 presents a Monte Carlo experiment to study the

finite sample accuracy of the MS-3PRF. Section 4 gathers empirical applications devoted

to macroeconomic and exchange rate forecasting. Section 5 concludes. The online appendix

contains supplementary material.

2 Markov-Switching Three-Pass Regression Filter

2.1 The algorithm

There is by now a growing literature on dynamic factor models with time-varying pa-

rameters. For example, in a Bayesian setting, Del Negro and Otrok (2008) first introduced

a dynamic factor model with time-varying factor loadings. In a classical context, see

Mikkelsen et al. (2015) and Eickmeier et al. (2015). However, the literature on regime-

switching dynamic factor models is limited and, more importantly, restricted to small-scale

models (see, e.g., Chauvet (1998), Camacho et al. (2012) or Barnett et al. (2016), who

use fewer than 10 variables and focus only on switches in the parameters governing the

factor dynamics and not the factor loadings).3 The same is true for vector autoregression

(VAR) models: while there is now a large (both methodological and empirical) literature

on time-varying parameter VAR models, the literature using regime-switching VAR models

is a lot narrower, although there are a few noticeable exceptions (see, e.g., Sims and Zha

(2006) and Hubrich and Tetlow (2015)).

One key reason for the absence of a significant literature on large-scale Markov-switching

factor models relates to the computational challenges associated with the estimation of

such models. We present here the Markov-switching three-pass regression filter, which

circumvents these difficulties and offers a flexible approach in that it imposes very few

restrictions on the Markov processes driving the changes in the parameters of the model.

The type of setting we have in mind can be described informally as follows: There is

a relatively large number N of predictors x from which we want to extract factors so as

3In a Bayesian context, Guérin and Leiva-Leon (2016) develop an algorithm to estimate a high-

dimensional factor-augmented VAR model with regime-switching parameters in the factor loadings to

study the interactions between monetary policy, the stock market and the connectedness of industry-level

stock returns. See also Von Ganske (2016), who introduces regime-switching parameters in partial least

squares regressions from a Bayesian perspective so as to forecast industry stock returns. Using a Bayesian

framework, Hamilton and Owyang (2012) develop a framework for modelling common Markov-switching

components in panel data sets with large cross-sectional and time-series dimensions to estimate turning

points in U.S. state-level employment data.
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to forecast a target variable y. While x depends on two sets of common factors, say f

and g (plus idiosyncratic components), y depends only on f , so we would like to extract

only f from x. In addition, there exist proxi variables, z, whose common components are

also driven only by f . This setting is the same as that in Kelly and Pruitt (2015), who

introduced the linear 3PRF for estimation of f and forecasting of y, but the key novelty is

that we include time variation in the model parameters via Markov processes.

More formally, let us consider the following model:

yt+1 = β0(St) + β′(St)Ft + ηt+1(St), (1)

zt = λ0(St) +Λ(St)Ft + ωt(St), (2)

xt = φ0(St) +Φ(St)Ft + εt(St), (3)

where y is the target variable of interest; Ft = (f ′t,g
′
t)

′ are the K = Kf + Kg common

driving forces of all variables, the unobservable factors; St denotes a standard Markov

chain driving the parameters of the forecasting equation, while St = (S1,t, S2,t, ..., SN,t)
′ is a

vector containing variable-specific Markov chains with M regimes driving the parameters of

the factor equations; each Markov chain is governed by its ownM×M transition probability

matrix,

Pi =

⎛⎜⎜⎜⎜⎝
pi,11 pi,21 · · · pi,M1

pi,12 pi,22 · · · pi,M2

...
...

. . .
...

pi,1M pi,2M · · · pi,MM

⎞⎟⎟⎟⎟⎠ , (4)

for i = 1, 2, ..., N ; β(St) = (β′
f (St),0

′)′, so that y depends only on f ; z is a small set of L

proxies that are driven by the same underlying forces as y, so that Λ(St) = (Λf (St),0); xt

is a large set of N variables, driven by both ft and gt; and t = 1, ..., T .

To achieve identification, when N and T diverge, the covariance of the loadings is

assumed to be the identity matrix in each state, and the factors are orthogonal to one

another.4 For the sake of space, we refer to Kelly and Pruitt (2015) for precise conditions

on the factors, allowed temporal and cross-sectional dependence of the residuals, and the

existence of proper central limit theorems.

Given the model in equations 1 to 3, our algorithm for the MS-3PRF model consists of

the following three steps:

4More precisely, defining JT = IT − 1
T ιT ι

′
T , where IT is a T -dimensional identity matrix and

ιT is a T -vector of ones (and similarly JN ), and assuming that N−1Φ′(St)JNΦ(St) −→
N−→∞

P(St),

N−1Φ′(St)JNφ0(St) −→
N−→∞

P1(St), T−1F′JTF −→
T−→∞

ΔF , for identification we require, as did Kelly

and Pruitt (2015), that P(St) = I, P1(St)= 0, and ΔF is diagonal and positive definite, and each diagonal

element is unique.
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• Step 1: Time-series regressions of each element of x, xi, on z; that is, run N Markov-

switching regressions

xi,t = φ0,i(Si,t) + z′tφi(Si,t) + εi,t(Si,t), (5)

where i = {1, ..., N}, εi,t|Si,t ∼ NID(0, σ2(Si,t)), and keep the maximum likelihood

estimate of φi(Si,t), denoted by φ̂i(Si,t). All regime-switching models are estimated

via (pseudo) maximum likelihood, and we make a normality assumption about the

disturbances to write down the log-likelihood function, which is not required when

estimating the linear version of the 3PRF. As mentioned previously, Si,t is a standard

Markov chain with M regimes and dynamics driven by constant transition probabil-

ities. It is important to stress that the estimated latent processes Si,t differ across

all cross-section units i. The pattern of the regime changes in the factor loadings is

therefore left unrestricted as opposed to assuming that the changes in the parameters

φ0,i and φi are governed by a single (or a limited number of) Markov chain(s) across

all cross-section units. Moreover, a different number of regimes could be used across

the N first-pass regressions. As such, the MS-3PRF approach offers a great deal of

flexibility in modelling regime changes.

• Step 2: Cross-section regressions of xi,t on φ̂i,t; that is, run T linear regressions

xi,t = α0,t + φ̂′
i,tFt + εi,t, (6)

where t = {1, ..., T}, and keep (for each t) the OLS estimates Ft. In this step, the

time-varying factor loadings φ̂i,t can be obtained from the first step of the algorithm

by following two alternatives. First, as a weighted average of the regime-specific

factor loadings:

φ̂i,t =
M∑
j=1

φ̂i(Si,t = j)P (Si,t = j|ΩT ), (7)

where P (Si,t = j|ΩT ) is the smoothed probability of being in regime j given the full

sample information ΩT . Second, as a selected loading:

φ̂i,t =
M∑
j=1

φ̂i(Si,t = j)I(P (Si,t = j|ΩT )), (8)

where I(·) is an indicator function that selects the regime with the highest smoothed

probability, P (Si,t = j|ΩT ), at time t.5

5In the recursive forecasting exercise, the smoothed probabilities are replaced by the filtered probabili-

ties.
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• Step 3: Time-series regression of yt on F̂t−h; that is, run one Markov-switching

regression for each forecast horizon of interest, h:

yt = β0(St) + F̂′
t−hβ(St) + ηt(St), (9)

keep the maximum likelihood estimates β0(St) and β(St), and calculate the forecast

ŷT+h|T as:

ŷT+h|T =
M∑
j=1

(
P (ST+h = j|ΩT )β̂0(ST+h = j) + P (ST+h = j|ΩT )F̂

′
tβ̂(ST+h = j)

)
,

(10)

where P (ST+h = j|ΩT ) is the predicted probability of being in regime j h-step-ahead

given the information available up to time T , ΩT .

In the third pass of the algorithm, the Markov chain St allows us to model time variation

in the intercept of the forecasting regression, which is a common source of forecast failure.

Changes in the slope parameters β are relevant in that they allow us to model time variation

in the predictive power of the estimated factors F̂t for the target variable yt+1. Note that

one can estimate a linear model in the third step. We denote this approach as “MS-3PRF

(first pass),” while “MS-3PRF (first and third passes)” refers to considering regime changes

in both the first and the third pass.

Kelly and Pruitt (2015) develop asymptotic theory for the linear 3PRF approach, show-

ing that the 3PRF-based forecast converges in probability to the infeasible best forecast

as cross-section N and sample size T become large. We need additional special conditions

to be able to claim that their consistency results could be extended to the non-linear case.

Specifically, we need consistency of the parameter estimators for the Markov-switching

models in steps 1 and 3. Douc et al. (2004) establish results concerning the consistency

and asymptotic normality of the maximum likelihood estimator in Markov-switching mod-

els. For the general case of hidden Markov models, Leroux (1992) proved the consistency

of the maximum likelihood estimator under mild regularity conditions. Hence, based on

this consistency result of the Markov-switching parameters in the first and third steps,

the MS-3PRF should conserve the consistency properties of the linear 3PRF. While we do

not provide a formal proof for this statement, it seems supported by a comparison of the

performance of the 3PRF and MS-3PRF in the simulation experiments reported in section

3 and in the online appendix.
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2.2 Specification choices

The algorithm outlined in the previous subsection rests on the choice of the number

of factors and proxi variables to be used in the first step of the algorithm, as well as the

number of regimes to consider for the MS-3PRF.

There are several ways to assess the number of regimes in a Markov-switching regression

under a classical framework. Just to mention a few, Cho and White (2007) and Carter and

Steigewald (2012) suggest the use of a quasi-likelihood ratio test; however, they ignore the

Markov property of the variable St. Other alternatives consist in calculating goodness-

of-fit measures that trade off the fit of the likelihood against the number of parameters

(e.g., Smith et al. (2006)). For ease of illustration, throughout the simulation exercises and

empirical applications, we leave aside this complication and assume that predictor variables

experience either M = 1 or M = 2 regimes. However, the framework can be generalized

accordingly.

For the choice of the proxi variables, when there is just one ft factor, Kelly and Pruitt

(2015) suggest using directly the target variable y as proxy z. From a predictive point

of view, this is a natural choice, since, in this context, one wants to extract a factor that

summarizes how related the predictors are to the the predicted variable. They refer to this

case as target-proxy 3PRF. In the case of more factors, they propose using either economic

theory to select indicators correlated with the target variable y, or an automated procedure

that can be implemented with the following steps, indicating a proxy by zj with j = 1, ..., L.

• Pass 1: Set z1 = y; get the 3PRF forecast ŷ1t , and the associated residuals e1t = yt−ŷ1t .

• Pass 2: Set z2 = e1; get the 3PRF forecast ŷ2t using z1 and z2 as proxies. Get the

associated residuals e2t = yt − ŷ2t .

• ...

• Pass L: Set zL = eL−1; get the 3PRF forecast ŷLt using z1, z2, ...zL as proxies.

For the choice of the number of factors, Kelly and Pruitt (2015) use appropriate in-

formation criteria with asymptotic optimality properties. However, empirically it can be

more informative to assess the performance of different numbers of factors. As in the case

of PCA, using more factors than needed reduces forecast efficiency in finite samples but

does not introduce a bias, while using fewer factors generates an omitted-variable problem

and therefore biases both the estimators of the loadings and the forecasts.
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3 Monte Carlo Simulations

In this section, we conduct Monte Carlo simulations to evaluate the finite sample prop-

erties of the MS-3PRF, focusing on its predictive performance. We compare the MS-3PRF

with competing approaches that have proved to be successful in dealing with large data sets,

such as the linear 3PRF and PCA. We also use two additional benchmark models—targeted

PCA (TPCA) and a least angle regression approach, PC-LARS—from which factors are

extracted by the method of principal component from a smaller set of predictors than the

N predictors used by PCA. These two additional methods are described in the online ap-

pendix; Appendix A.1 describes the hard-thresholding approach (TPCA), and Appendix

A.2 outlines the soft-thresholding approach (PC-LARS). Our simulation exercises compute

the out-of-sample mean square forecasting errors (MSFE) to predict the target variable,

yt, that is generated based on a large set of predictors, xt = (x1,t, x2,t, ..., xN,t)
′, driven by

a factor structure with regime-switching in the loadings.

3.1 Design

The data on xt and yt, for t = {1, 2, ..., T}, are generated following the factor structure

proposed in Bates et al. (2013) and Kelly and Pruitt (2015):

xt = ΦtFt + εt, (11)

yt+1 = ΛFt + ηt, (12)

where Ft = (ft,g
′
t)

′, Φt = (Φf,t,Φg,t) and Λ = (1,0). The relevant and irrelevant factors

are generated according to the following dynamics, respectively:

ft = ρfft−1 + uf,t, (13)

gt = ρggt−1 + ug,t, (14)

where uf,t ∼ N(0, 1), and ug,t ∼ N(0,Σg), with uf,t and ug,t uncorrelated. We consider

Kg = 4 irrelevant factors and Kf = 1 relevant factor. The parameters in Σg are chosen

so that irrelevant factors are dominant; that is, their variances are 1.25, 1.75, 2.25 and

2.75 times larger than the relevant factor. The idiosyncratic terms are assumed to follow

autoregressive dynamics,

εit = αεi,t−1 + vi,t, (15)

and to be cross-sectionally correlated; that is, vt = (v1,t, v1,t, ..., vN,t)
′, and it is inde-

pendent and identically distributed (i.i.d.) normally distributed with covariance matrix

Ω = (β|i−j|)ij, as in Amengual and Watson (2007). The starting values for the factors and
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idiosyncratic terms f0, g0, εi0 are drawn from their respective stationary distributions. The

disturbances, ηt, associated to the target variable equation are i.i.d. normally distributed

with a variance, σ2
η, that is adjusted to ensure that the infeasible best forecast has a R2 of

50 per cent. The free parameters of our Monte Carlo simulations are ρf , ρg, α, β, N and

T . In line with Stock and Watson (2002a), Bates et al. (2013) and Kelly and Pruitt (2015),

we consider ρf = {0.3, 0.9}, ρg = {0.3, 0.9}, α = {0.3, 0.9}, β = {0, 0.5}, N = {100, 200}
and T = {100, 200}.

The factor loadings, collected in Φt, experience changes between two regimes over time,

Φt = Φ1St + Φ2(1− St), (16)

where St = (S1,t, S2,t, ..., SN,t) contains N dichotomous state variables, each following dis-

tinct dynamics according to a first-order Markov chain. Since the data in xt are generated

from a factor structure, it is mechanically subject to a certain degree of comovement.

Therefore, the non-linear relationship between the data, xt, and the factors, Ft, measured

by the factor loadings, Φt, may also experience a certain degree of comovement.

To provide a more realistic DGP that is relevant for economic data where data are

generally weakly dependent (as opposed to i.i.d.), we model comovement in the factor

loadings, which is translated in modelling comovement in the Markovian state variables

contained in St. In doing so, we let S̃i,t be the state vector of the i-th sequence at time t.

If the i-th sequence is in state 1 at time t, then we write S̃i,t = (1, 0)′, and if it is in state

2 at time t, then we write S̃i,t = (0, 1)′. First, we generate a “seed” sequence variable, S̃0,t.

For time t, we compute (q, 1− q)′ = P00S̃0,t, where

P00 =

(
p11 1− p22

1− p11 p22

)
(17)

is the transition probability matrix, and the realization of the sequence at time t + 1 is

defined as

S̃0,t+1 =

{
(1, 0)′ If q ≥ θ,

(0, 1)′ otherwise
(18)

where θ is drawn from a U [0, 1]. Next, we generate a Markov chain, S̃i,t, conditional on the

dynamics of S̃0,t, using the following system:[
(q0, 1− q0)

′

(qi, 1− qi)
′

]
=

[
λ00P00 λ0iP0i

λi0Pi0 λiiPii

][
S̃0,t

S̃i,t

]
, (19)

where the coefficients λ measure the comovement between both Markov chains, with λjk ≥
0, and

∑2
k=1 λjk = 1. The matrix Pjk collects the transition probabilities from the states in
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the k-th sequence to the states in the j-th sequence.6 Accordingly, qk represents the state

probability distribution of the k-th sequence at time t+1, from which the realization S̃i,t+1

can be generated as follows:

S̃i,t+1 =

{
(1, 0)′ If qi ≥ θ

(0, 1)′ Otherwise
. (20)

For simplicity, we assume that P0i = Pi0 = Pii = P00, and that p11 = p22, with p11 = 0.9.

Also, we set λ00 = λii = 0.2 to induce a relatively large degree of comovement between the

state variables. Given S̃0,t, we repeat the same procedure for i = {1, 2, ..., N}, to get all the

elements in St. Finally, the elements in Φκ, for κ = {1, 2} are generated from a N(φκ, σφ)

with φ1 = 0.5, φ2 = 1.5, and σφ = 0.1.

We also assess the performance of the proposed approaches under different variations

of the data generating process. First, we study the case where xt and yt are generated

by following the same processes described above but with the factor loadings being driven

by Markov chains that are totally independent of each other and that do not experience

comovement. Second, we study the performance of the models when considering different

degrees of instability contained in the data xt. Third, we also consider a data generating

process where the factor loadings follow random walks rather than Markovian switches.

3.2 Models and evaluation criteria

We perform L = 500 Monte Carlo replications for each configuration of parameters ρf ,

ρg, α and β and sample sizes T and N . Once xt and yt are generated, we apply the MS-

3PRF to extract the factor and predict the target variable. In particular, first, we estimate

a time-series (Markov-switching) regression, xi,t = z′tφi(Si,t)+ εi,t, for i = {1, 2, ..., N}. For
simplicity, we take the proxy variable as the target variable, z′t = yt. Second, we run a cross-

section OLS regression, xi,t = φ̂′
i,tFt + εi,t, for t = 1, 2, ..., T , using the weighted average

of the regime-switching factor loadings obtained in the previous step. Third, we run a

time-series OLS regression, yt = β0+ F̂′
t−1β+ηt, and produce the forecast ŷt+1 = β0+ F̂′

tβ̂,

obtained with the MS-3PRF approach introduced in this paper. Also, we produce forecasts

with the version of the MS-3PRF when the loadings are selected instead of being averaged

(MSS-3PRF); that is, the time-varying loadings are set to the regime-specific loadings of the

most likely regime. To ease the computational burden, in our Monte Carlo simulations, we

do not model regime switches in the third pass of the algorithm. This is not detrimental to

our simulation exercise, since we are interested only in studying situations characterized by

6Ching et al. (2002) proposed a multivariate Markov chain approach for modelling multiple categorical

data sequences.
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instabilities in the factor loadings (and not time instability in the relationship between the

predicted variable and the predictors). However, in the empirical applications, we consider

the case of regime switches in the third pass.

We compare the predictive performance of the two variants of our proposed method with

several benchmark methodologies. First, we compute the forecast obtained with the linear

version of the 3PRF proposed in Kelly and Pruitt (2015). Second, Bates et al. (2013) show

that PCA methods can be applied to consistently estimate dynamic factor models under

certain instabilities in the loadings. Therefore, we compute the forecast obtained with

the method of principal components. Third, Bai and Ng (2008) argue that the principal

components methodology, as it stands, does not take into account the predictive ability of

xt for yt+h when the factors are estimated. Therefore, Bai and Ng (2008) propose using only

predictors that are informative for yt in estimating the factors in order to take explicitly

into account that the object of interest is ultimately the forecast of yt. Accordingly, we

also compute the forecast obtained with TPCA. Fourth, we consider the elastic net soft-

thresholding rules, which are special cases of the LARS algorithm developed in Efron et al.

(2004), and compute the forecast using the PC-LARS method. Ultimately, our focus is on

comparing the median out-of-sample MSFE over the L replications associated with each of

the six methods (two MS-3PRF approaches and four competitors) to evaluate their relative

predictive performance. Finally, in our simulation experiments, we assume that the number

of relevant factors and the number of regimes are known (i.e., across all procedures, we

extract one factor, and the non-linear models consider the case of two regimes).

3.3 Results

Table 1 reports the simulation results associated with the different configurations of

parameters, methodologies and degrees of instability (regime switching) in the data. In

particular, panel A of Table 1 presents the MSFE for the cases when all factor loadings

exhibit regime-switching dynamics. Some features deserve to be commented. First, the

MSS-3PRF exhibits the lowest MSFE for most of the cases, indicating that it performs

best in terms of predictive performance. In particular, the MSS-3PRF outperforms the

MS-3PRF, linear 3PRF, PCA, TPCA and PC-LARS. Notice also that, in general, the

MS-3PRF exhibits the second-best forecasting performance, suggesting that the non-linear

frameworks, MS-3PRF and especially MSS-3PRF, are able to capture in a better way

instabilities in the relationship between the set of predictors and its common factor.

Second, TPCA provides the third-best performance, in particular, it shows the lowest

MSFE for some particular cases when the idiosyncratic terms have a low autocorrelation.
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Also notice that in most cases the linear 3PRF outperforms PCA and PC-LARS. This

implies that in the presence of instabilities in the loadings, the linear 3PRF takes better

advantage of both time-series and cross-sectional dimensions to provide a more accurate

estimation of the underlying factor than PCA and PC-LARS.

Third, the scenarios associated with low autocorrelation in the irrelevant factors, ρg,

yield the highest MSFE. The fact that irrelevant factors (i) behave close to a white noise,

(ii) are linked to xt through regime-switching loadings and (iii) are dominant makes them

able to introduce a relatively large amount of noise into the set of predictors, creating

more difficulty for all the methods to provide more accurate estimates of the underlying

relevant factor and consequently better forecasts for yt. In particular, when not only the

irrelevant factors but also the idiosyncratic terms are closer to behaving as a white noise

(that is, ρg = 0.3 and α = 0.3), the forecasting performance of all methods deteriorates due

to the reasons just described. These results indicate that in the presence of instabilities

in the loadings, a lower autocorrelation in any of the components driving the observed

data (predictors and target variables) is detrimental to the predictive performance of all

factor-extraction methods studied in this paper.

When dealing with high-dimensional data sets, the substantial heterogeneity in the

data may be accompanied by different degrees of instabilities contained in the predictors

xt. Therefore, we repeat these simulation exercises along the lines of Bates et al. (2013)

and let only a subset J of variables, randomly selected from a uniform distribution, exhibit

regime-switching factor loadings. Panel B of Table 1 reports the case where the share

of variables experiencing instabilities in their loadings is 0.75. The results are relatively

similar to the ones obtained with all the variables experiencing instabilities in the loadings

in that the MSS-3PRF in general obtains the best forecasting performance, followed by the

MS-3PRF. Also in this case, the method showing the third-best forecasting performance

is TPCA. Panel C of Table 1 shows the case when 50 per cent of the variables experience

instabilities in the factor loadings. Notice that in approximately one third of the cases

the MSS-3PRF shows the best forecasting performance, while for the rest of scenarios, the

linear methods 3PRF and the PC-LARS report the lowest MSFE. This result indicates that

as the degree of instability in the data decreases significantly, the predictive ability of the

linear forecasting methods increases. This is confirmed in panel D of Table 1, that shows

the results when the share of variables exhibiting instabilities in the loadings is only 0.25.

In this case, the 3PRF is the method showing the best forecasting performance, followed

by PC-LARS.

The results reported in Table 1 were based on a DGP where the factor loadings as-

sociated with each predictor variable were driven by their own Markov chain, and these

Markov chains were assumed to experience a high degree of interdependence between them
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to mimic the behaviour that macroeconomic and financial data usually tend to exhibit.

However, we are also interested in assessing the performance of the methods when the

assumption of interdependent Markov chains is no longer valid—that is, when the loadings

depend on Markov chains that are independent of each other. Panel A of Table 2 reports

the MSFE for the case where factor loadings are driven by independent Markov chains.

The results provide the same consistent message obtained from the previous exercises: the

MSS-3PRF shows in general the most accurate predictive performance among the methods

under consideration, followed by the MS-3PRF. These results imply that regardless of the

relationship between the Markov chains driving the factor loadings, the non-linear methods

proposed in this paper consistently outperform the competing linear methods.

In addition, we explore the predictive ability of the competing methods when factor

loadings follow independent random walks instead of Markov processes. The results are

reported in panel B of Table 2, showing that when the relevant factor exhibits a high

autocorrelation, the MSS-3PRF method yields the lowest MSFE. However, when the serial

correlation of relevant factors is relatively low, TPCA produces the strongest forecasting

performance, followed by the MSS-3PRF. This result indicates that even if the underlying

instabilities in the data are not Markov-type, the MSS-3PRF approach manages to fit their

dynamics better than linear frameworks when the relevant factors exhibit high persistence.

Moreover, we also consider the case of constant factor loadings and show the results in panel

C of Table 2. As expected, the linear 3PRF is the method showing the best forecasting

performance across all the scenarios under consideration, indicating its superiority over

other competing linear models when there is no time instability in the factor loadings from

the underlying data generating process.

Overall, conditional on our DGPs, we can conclude that, on average, the MSS-3PRF

is the framework best able to capture instabilities in the relationship between the set of

predictors and its common factor, followed by the MS-3PRF. Both nonlinear frameworks

outperform linear approaches. Regarding the linear frameworks, in general, TPCA outper-

forms the 3PRF and the PC-LARS, and PCA obtains the weakest forecasting performance.

In online appendix A.3, we also report Monte Carlo experiments to assess how well the

3PRF and MS-3PRF estimate the underlying factor, and we find that the MS-3PRF per-

forms similarly to the 3PRF approach.

4 Empirical Applications

The first application is related to exchange rate forecasting. This is highly relevant given

that it has long been recognized that non-linearities play an important role in the dynamics
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of exchange rates (see, e.g., the early contribution in Chinn (1991) and more recently Rossi

(2013) and Abbate and Marcellino (2016)). However, it is only recently that the literature

on exchange rate forecasting has concentrated on the role and importance of factors for

predicting exchange rates (see, e.g., Engel et al. (2015) in a linear context). Putting the

MS-3PRF approach to work in the context of exchange rate forecasts is highly relevant: it

allows us to combine the non-linear dynamics observed in exchange rate movements with the

factor structure driving systematic variations in exchange rates, which has recently gained

traction in the exchange rate forecasting literature. Our second empirical application is

a standard macroeconomic forecasting application in that we use the McCracken and Ng

(2015) data set to forecast economic activity in the United States.

4.1 Forecasting exchange rates

In this first forecasting exercise, we construct factors from a cross-section of nominal

bilateral U.S. dollar (USD) exchange rates against a panel of 26 currencies. We extract

factors from the MS-3PRF, MSS-3PRF, linear 3PRF, PCA, TPCA and PC-LARS. We then

use the resulting factors to forecast selected bilateral exchange rates. (All currency pairs use

the USD as numéraire.) The choice of the data set draws from the exercise in Greenaway-

McGrevy et al. (2016). The data set is monthly, and the full sample size extends from

January 1995 to December 2015. The data are obtained from the International Financial

Statistics of the International Monetary Fund, and the monthly data are taken as the

monthly average of daily data. The data set consists of the currencies of Australia (AUS),7

Brazil (BRA), Canada (CAN), Chile (CHI), Columbia (COL), the Czech Republic (CZE),

the euro (EUR), Hungary (HUN), Iceland (ICE), India (IND), Israel (ISR), Japan (JPN),

Korea (KOR), Mexico (MEX), Norway (NOR), New Zealand (NZE), the Philippines (PHI),

Poland (POL), Romania (ROM), Singapore (SIN), South Africa (RSA), Sweden (SWE),

Switzerland (SUI), Taiwan (TAI), Turkey (TUR) and the United Kingdom (GBR).8

We consider forecast horizons, h, ranging from 1 month to 12 months and report predic-

tive results for selected major currencies: the euro, the British pound, the Japanese yen and

the Canadian dollar. The first estimation sample runs from February 1995 to March 2007,

and it is recursively expanded until we reach the end of the estimation sample. Hence, the

forecast evaluation period extends from August 2006 to December 2015. Note that all mod-

els are estimated recursively, hence we never use future information to calculate any of the

7The three-letter country codes follow the convention from the International Olympic Committee except

for Taiwan, labelled as TAI.
8Data for the euro before January 1999 and Taiwan were obtained from the U.S. Federal Reserve G.5

table (monthly average of daily data).
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models’ parameters. As in the Monte Carlo experiment, we compare the forecasts obtained

from the MS-3PRF with forecasts derived from PCA, linear 3PRF, TPCA and PC-LARS.

Moreover, we use two different versions of the MS-3PRF, one with regime switching only

in the first step (i.e., in the factor loadings), and one with regime-switching in the first and

third steps (i.e., in the factor loadings and in the parameters of the forecasting equation).

In the first step of the algorithm for the MS-3PRF approach, we model regime changes

in all parameters of the model (i.e., intercept, slope and innovation variance), since we

obtained stronger fit—as measured by the Schwarz information criterion (SIC)—with such

a specification. Note also that we consider a model with two factors across all methods.

The choice of the number of factors follows the modelling choices in Engel et al. (2015),

Greenaway-McGrevy et al. (2016) and Verdelhan (2015), but, qualitatively, our results are

robust to the use of one or three factors in the predictive equation. We also include the

MSS-3PRF approaches in the set of models we consider (both versions—that is, with regime

switches in the first pass only and with regime switches in the first and third passes).

All exchange rate series are taken as the first difference of their logarithm before per-

forming factor analysis. In the case of the 3PRF approaches, we use the automatic proxy-

selection procedure from Kelly and Pruitt (2015); that is, we use the exchange rate we

are interested in forecasting as a target proxy when extracting the first factor and then

proceed sequentially as outlined in Table 2 from Kelly and Pruitt (2015). For all methods,

we standardize the data recursively in the estimation before estimating the factors.

For the prediction step, in the linear cases—that is, for PCA, TPCA, PC-LARS, 3PRF,

MS-3PRF (first pass) and MSS-3PRF (first pass)—the h-period-ahead forecasts for a spe-

cific currency Rj
t+h|t are constructed in level based on the following equation:

Rj
t+h|t = Rj

t (1 + α̂ + F ′
tβ̂), (21)

where α̂ and β̂ are obtained from the following regression (for simplicity of the notation,

we omit h subscripts from the coefficients α and β):

Δrjt,h = α + F ′
t−hβ + εt, (22)

where Δrjt,h indicates the h-period change in the logarithm of the exchange rate Rj
t (i.e.,

Δrjt,h = ln(Rj
t )− ln(Rj

t−h)), and Ft indicates the factors extracted from either PCA, TPCA,

PC-LARS, 3PRF or MS-3PRF approaches. In the case of the MS-3PRF (first and third

passes) and MSS-3PRF (first and third passes), equation 22 is modified as follows:

Δrjt,h = α(Sj
t ) + F ′

t−hβ(S
j
t ) + εt(S

j
t ), (23)

where Sj
t is a two-regime Markov chain, distinct across all predicted currencies j, with

constant transition probabilities. In the case of the MS-3PRF (first and third passes),
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as is commonly done in forecasting exercises with Markov-switching models, the forecasts

are calculated as a weighted average of forecasts conditional on the parameters being in a

given regime. The predicted probabilities of being in a given regime k, h periods ahead,

are obtained recursively as

P (Sj
t+h|t = k) =

2∑
i=1

pjikP (Sj
t+h−1|t = k), (24)

where pjik indicates the constant transition probabilities, and 2 is the total number of

regimes.

In the case of the MSS-3PRF (first and third passes) approach, the forecasts are cal-

culated conditional on being in a given regime; that is, the predicted probabilities are

obtained as

P (Sj
t+h|t = k) = I(P (Sj

t|t = k)), (25)

where I(·) is an indicator variable that indicates the regimes with the highest smoothed

probability at the origin of the forecast horizon. As such, this corresponds to the approach

often used to plot (regime-specific) impulse responses in MS-VAR models (see, e.g., Hubrich

and Tetlow (2015)).

As an illustration of the MS-3PRF approach to extract factors from a panel of exchange

rates, Figure 1 reports the Markov-switching factor loadings based on the MS-3PRF ap-

proach using the Canadian dollar as a target proxy, that is, the factor loadings associated

with the first factor. From this figure, one can see that there is substantial time variation in

factor loadings for a number of currencies (e.g., the Australian dollar and the New Zealand

dollar), whereas for other currencies, there is little time variation in the factor loadings

(e.g., the euro and the Swiss franc).

A number of additional comments are in order. First, we do not use observable factors to

model the dynamics of exchange rates. Verdelhan (2015) finds that exchange rate variations

are driven by a two-factor structure: a U.S.-dollar factor that serves as a proxy for global

macroeconomic risk and a carry factor that is interpreted as capturing uncertainty risk.

Our analysis differs from this study in that our focus is on out-of-sample predictive ability.

Hence, we do not aim to provide a structural interpretation to the factors we extract.

The left-hand side of Table 3 reports point forecasting results for specific currencies:

the Canadian dollar (CAD), the euro (EUR), the Japanese yen (JPY) and the British

pound (GBP), all relative to the USD. These are G7 currencies, and among the most

traded currency pairs according to the Bank for International Settlements Triennal Central

Bank Survey.9 The point forecast results are presented as the MSFE of a specific approach

9See http://www.bis.org/publ/rpfx16fx.pdf.
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relative to the MSFE obtained from the no-change forecast. The no-change forecast is the

standard benchmark in the exchange rate forecasting literature (see, e.g., Rossi (2013)).

We also report the results of the Diebold and Mariano (1995) test of equal out-of-sample

predictive accuracy using the no-change forecast as a benchmark.10 First, the models’

forecasting performance relative to the no-change forecast is typically the strongest for

forecast horizon h = 1 (except for the JPY/USD). The improvement in forecast accuracy

relative to the random walk is also statistically significant according to the Diebold and

Mariano test of equal MSFE when forecasting the Canadian dollar at forecast horizon

h = 1 across most approaches (this is also true to a lesser extent for the British pound).

Second, the PC-LARS approach performs best for forecast horizon h = 1 when forecasting

the British pound. Moreover, the MS-3PRF (first and third pass) approach performs best

when forecasting the Canadian dollar for forecast horizons h > 1. Third, for the Canadian

dollar and the Japanese yen, modelling time variation in the forecasting equation is relevant

in that this leads to substantial forecasting improvement over the no-change forecast at

distant forecast horizons h = {9} for the Japanese yen and h = {2, 3, 6, 9, 12} using the

MS-3PRF (first and third passes) approach.11

Next, the right-hand side of Table 3 shows the directional accuracy forecasting results,

which are broadly in line with the point forecast results. Under the null hypothesis of no

directional accuracy, one would expect a success ratio of 0.5. We also report the results

of the Pesaran and Timmermann (2009) test to evaluate the statistical significance of the

directional accuracy results. Across all forecasting approaches, the success ratios tend

to be stronger for forecast horizon h = 1, except for the JPY/USD. In those cases, the

improvements in directional accuracy are often statistically significant according to the

Pesaran and Timmermann (2009) test. It is also interesting to note that the success

ratios are especially strong at distant forecast horizons for selected currencies, as high as

72.6 per cent for the CAD/USD and 77.0 per cent for the JPY/USD in the case of the

MS-3PRF with regime changes in the first and third passes. In the online appendix, we

investigate the stability of the directional accuracy results, implementing the Giacomini

and Rossi (2010) test of stability in predictive performance when predicting the CAD-USD

for forecast horizon h = 12. The results, reported in Figure A.5 of the online appendix,

show that there is time instability in the forecasting performance in this case, but we do

conclude that there were periods when the MS-3PRF approach significantly outperformed

the benchmark no-change predictive model.

10The Diebold and Mariano (1995) test of equal out-of-sample predictive accuracy is reported to give a

sense of statistical significance of the point forecasting results. However, this test is based on the population

MSFE (not the actual MSFE), so this test tends to reject the null of equal MSFEs too often.
11Admittedly, in the case of the euro, the forecasting performance of the MS-3PRF (first and third passes)

and the MSS-3PRF (first and third passes) approaches deteriorates as the forecast horizon lengthens,

suggesting that it is not always relevant to model regime shifts in the forecasting equation.
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Overall, while the differences in predictive accuracy tend to be small across forecasting

approaches in terms of point forecasts, the gains in terms of directional accuracy are strong

with the MS-3PRF approach and typically statistically significant according to the Pesaran

and Timmermann (2009) test.

4.2 Forecasting economic activity

In this application, we use the McCracken and Ng (2015) data set to forecast eight major

quarterly U.S. variables: GDP, consumption, investment, exports, imports, total hours,

GDP inflation and personal consumption expenditures (PCE) inflation.12 We implemented

the following outlier corrections to the predictors: observations of the transformed series

with absolute median deviations larger than six times the inter-quartile range were replaced

with the median value of the preceding five observations. The full sample extends from

the third quarter of 1960 to the third quarter of 2015. In the forecasting exercise, the

first estimation sample extends from the third quarter of 1960 to the fourth quarter of

1984, and it is expanded recursively until we reach the end of the sample. We consider

forecast horizons, h, ranging from one quarter to eight quarters. We use eight competing

approaches: PCA from which we extract five factors from the underlying data set, although

we use only the first one in the forecasting equation;13 PCA where hard thresholding has

been performed before extracting the first principal component to forecast (TPCA); PCA

where soft thresholding has been performed before extracting the first principal component

to forecast (PC-LARS); linear 3PRF; MS-3PRF and MSS-3PRF with regime-switching

parameters in the first pass only; and MS-3PRF and MSS-3PRF with regime-switching

parameters in the first and third passes. For the 3PRF approaches, we use one factor

and use the predicted variable as a target proxy in the first step of the 3PRF approach

(target-proxy 3PRF).14

12Data descriptions and details on data transformation are available online at https://research.

stlouisfed.org/econ/mccracken/fred-databases/Appendix_Tables_Update.pdf. The slight modifi-

cations we made to the original data set are reported in the appendix.
13Our results are qualitatively robust to the use of a different number of factors in the predictive equation.

Detailed results are available on request.
14When estimating the number of factors using information criteria, it is common to find a large number

of factors summarizing the comovements of U.S. macroeconomic variables (e.g., McCracken and Ng (2015)

estimate eight factors in the FRED-MD monthly macroeconomic database). However, in the forecasting

exercise, in line with the literature, we use the first factor in the predictive equation. This corresponds to

a real economic activity factor that closely follows the U.S. business cycle dynamics (see Figure 2). Using

the first two factors in the predictive equation led to little changes in the forecasting performance.
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We first report results from an in-sample exercise. Figure 2 shows the estimated factors

across all six methods (PCA, TPCA, PC-LARS, 3PRF, MS-3PRF and MSS-3PRF; the

latter three methods use GDP growth as a target variable). This shows that the factor

estimates are relatively similar across approaches and that they closely follow the U.S.

business cycle. As in McCracken and Ng (2015), we calculate diffusion indices (F̂t) based

on the partial sums of the factor estimates f̂t; that is, F̂t =
∑t

j=1 f̂j. (The reason for doing

so is that diffusion indices summarize information contained in the trend as opposed to

the “raw” factors that are estimated on stationary data, so the resulting factors are too

volatile for turning point analysis.) The factors ft are extracted with the six aforemen-

tioned methods. We then implemented the Bry and Boschan (1971) algorithm to estimate

expansions and recessions from these diffusion indices.15 The resulting classification of

U.S. business cycles obtained from the MS-3PRF diffusion index has the strongest cor-

relation with the National Bureau of Economic Research dummy variable of expansions

and recessions (0.563) followed by the 3PRF diffusion index (0.543), MSS-3PRF diffusion

index (0.506), PC-LARS diffusion index (0.497), PCA diffusion index (0.486) and TPCA

diffusion index (0.467). Moreover, only the MS-3PRF and MSS-3PRF approaches obtain

a perfect classification of recessions, while PCA, TPCA and 3PRF diffusion indexes have

a near perfect classification of recessions (these three methods identify the 1973-1974 re-

cession with a one-quarter lag). This suggests that the MS-3PRF approach has important

information related to the state of the business cycle that is not necessarily reflected in

competing approaches.

An attractive feature of Markov-switching models is their ability to endogenously es-

timate regimes. Figure 3 shows a heat map of the smoothed probability of being in the

first regime (associated with adverse business cycle conditions) for the in-sample factor

loadings obtained from the first step of the MS-3PRF approach. First, it is interesting to

note that, across all series, there is substantial time variation in the smoothed probability,

suggesting that there is evidence in favour of regime shifts in the factor loadings. Second,

the timing of the shifts in the factor loadings coincides with the changes in business cycle

phases for a large number of series (e.g., output and income, as well as labour market

variables). Additional evidence on regime shifts in the factor loadings is provided in Figure

A.2 of the online appendix. This figure shows that there is substantial variation in the

factor loadings for the unemployment rate and industrial production related to the state of

the business cycle. Selected financial and credit variables (S&P 500 returns and consumer

loans) also exhibit substantial time variation, suggesting that the assumption of constant

factor loadings often employed with this type of data set is likely to be too restrictive.

15The Bry and Boschan (1971) algorithm is a non-parametric method to estimate cycles in time series.

We implemented the quarterly version of the Bry and Boschan (1971) algorithm from Harding and Pagan

(2002), using the GAUSS code available at http://www.ncer.edu.au/resources/data-and-code.php.
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A few additional comments related to the out-of-sample forecasting exercise are re-

quired. First, note that macroeconomic variables are typically subject to substantial revi-

sions and different publication lags. In this empirical exercise, we abstract from this issue

and consider revised data. While this is not a fully realistic approach from a practitioner’s

perspective, there is no reason to think that one specific approach would benefit more from

this simplification. Hence, this remains a useful forecasting exercise to compare the relative

merits of each forecasting approach. Second, across all approaches, quarterly factors are

extracted from the monthly data set of McCracken and Ng (2015), where quarterly data

are taken as quarterly averages of monthly data before performing factor analysis. Obvi-

ously, alternative temporal aggregation schemes could be adopted, but we found that the

in-sample correlation of the real activity factor was very strong compared with a situation

where one would use the last monthly observation of the quarter as a quarterly observa-

tion before performing factor analysis (about 0.95 between these two aggregation schemes

across the different factor approaches).16 Our temporal aggregation scheme is standard in

the literature (see, e.g., section 6.1 in Stock and Watson (2016)), and we leave the issue

of a mixed-frequency setting to future research.17 Third, the forecasts are constructed as

follows:

yt+h|t = α̂ + β̂(L)f̂t + γ̂(L)yt, (26)

where β(L) and γ(L) are finite-order lag polynomials, whose lag lengths are obtained with

the SIC at the beginning of the forecasting exercise, using a maximum lag length of 6

for γ(L) and 3 for β(L). All predicted variables yt are taken as the first difference of their

logarithm. For the MS-3PRF and MSS-3PRF with switches in the first and third passes, we

consider regime-switching parameters in all parameters of equation 26 and in the variance

of the error term.

Table 4 shows the out-of-sample forecasting results. All results are reported relative to

the forecasts obtained from PCA. Hence, a number below 1 indicates that a given approach

outperforms PCA. We also report the results of the Diebold and Mariano (1995) test of

equal out-of-sample predictive accuracy using PCA as a benchmark. Overall, across all

forecast horizons and predicted variables (40 cases), the MS-3PRF and MSS-3PRF obtain

the best forecasting results in 22 cases, PC-LARS in 8 cases, the linear 3PRF in 6 cases

and TPCA in 1 case. In the remainder of the cases, PCA performs best. It is interesting

16This result still holds when doing PCA at a monthly frequency and then aggregating the factor at a

quarterly frequency.
17As a side note, the first pass of the 3PRF filter could possibly accommodate mixed-frequency data

using the techniques outlined in Foroni et al. (2015); whereas, in the third pass of the filter, unrestricted

mixed data sampling (MIDAS) polynomials could be used as in Hepenstrick and Marcellino (2016), and

regime-switching parameters in the mixed-frequency predictive equation could be modelled as in Guérin

and Marcellino (2013).
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to note that the MSS-3PRF (first and third passes) approach performs best for forecasting

inflation (both PCE inflation and GDP inflation), and it does so significantly according

to the Diebold and Mariano (1995) test at long forecast horizons (i.e., for h > 4). We

formally investigate the stability of these forecasting results for predicting inflation by

implementing the Giacomini and Rossi (2010) test for forecast comparisons in unstable

environments. Figure A.3 in the online appendix shows the results of the fluctuation test

for forecasting PCE inflation at a 8-quarter horizon with the MSS-3PRF (first and third

passes) approach relative to the benchmark PCA model. The local relative MSFE is above

the critical value for most of the evaluation sample suggesting that the MSS-3PRF (first

and third passes) approach produced better 8-quarter-ahead forecasts than PCA for most

of the evaluation sample except in the last years of the evaluation sample. A similar result

is obtained in the case of GDP inflation (see Figure A.4 of the evaluation sample). When

forecasting aggregate economic activity (GDP), the linear 3PRF approach performs best for

h = {2} and PC-LARS for h = {3} and h = {4}. The improvements in forecast accuracy

are typically statistically significant according to the Diebold and Mariano (1995) test. The

MS-3PRF (first pass) approach performs well at forecasting exports and consumption. For

predicting investment and hours worked, PC-LARS tends to perform best at short forecast

horizons.

5 Conclusion

In this paper, we extended the linear three-pass regression filter to settings where parame-

ters can vary according to Markov processes, introducing the Markov-switching three-pass

regression filter. A key advantage of our framework is to circumvent the computational

difficulties associated with the estimation of a large-scale dynamic factor model with regime-

switching parameters without foregoing flexibility in modelling choices.

In both simulation and empirical examples, our method compares favourably with ex-

isting alternatives in terms of forecasting performance. The MS-3PRF approach is also

attractive beyond forecasting applications. For example, the MS-3PRF approach would

easily allow one to model regime-switching correlations often observed in finance in a high-

dimensional setting. This could be relevant in the context of the growing literature aiming

at measuring network connectedness among financial firms or asset classes (see, e.g., Billio

et al. (2012) or Diebold and Yilmaz (2014)). Likewise, the MS-3PRF framework could be

used in the context of structural factor-augmented VAR models that are commonly used

in macroeconomics. Overall, thanks to its generality and ease of implementation, the MS-

3PRF approach offers a promising framework to model regime changes in high-dimensional

settings for a large class of applications in macroeconomics and finance.
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Figure 1: Markov-switching factor loadings—Canadian dollar as a target proxy

Note: Dark red indicates higher values for the factor loadings obtained with the MS-3PRF approach with

the Canadian dollar as a target proxy.
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Figure 2: Factor estimates across different approaches
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Figure 3: Probability of being in the first regime for the factor loadings

Note: Dark red indicates higher value for the probability of being in the first regime, which is normalized

to correspond to the lowest intercept of the two regimes. Factor loadings are obtained from the MS-3PRF

approach with GDP growth as a target proxy.
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Table 1: Simulation results with different degrees of instabilities in the loadings

Panel A. Instability in 100 per cent of the loadings

ρf ρg α β T=100 , N=100 T=200 , N=200

MS-3PRF MSS-3PRF 3PRF PCA TPCA PC-LARS MS-3PRF MSS-3PRF 3PRF PCA TPCA PC-LARS

0.3 0.9 0.3 0 2.09 2.06 2.09 2.12 2.04 2.12 2.09 2.08 2.08 2.10 2.04 2.09

0.3 0.9 0.3 0.5 2.14 2.11 2.15 2.18 2.11 2.18 2.09 2.08 2.08 2.10 2.04 2.09

0.3 0.9 0.9 0 2.03 1.99 2.07 2.12 2.00 2.11 2.01 1.97 2.05 2.12 2.00 2.09

0.3 0.9 0.9 0.5 2.04 2.00 2.06 2.13 1.98 2.13 1.97 1.93 2.04 2.09 2.00 2.08

0.9 0.3 0.3 0 8.95 8.77 9.05 9.17 9.06 9.17 9.51 9.42 9.39 9.48 9.36 9.45

0.9 0.3 0.3 0.5 9.03 8.87 9.13 9.28 9.08 9.27 9.31 9.16 9.31 9.40 9.33 9.40

0.9 0.3 0.9 0 8.51 8.17 9.04 9.23 8.88 9.29 9.30 8.82 9.60 9.71 9.65 9.65

0.9 0.3 0.9 0.5 8.43 8.04 9.14 9.41 9.06 9.35 9.03 8.75 9.35 9.56 9.35 9.50

Panel B. Instability in 75 per cent of the loadings

ρf ρg α β T=100 , N=100 T=200 , N=200

MS-3PRF MSS-3PRF 3PRF PCA TPCA PC-LARS MS-3PRF MSS-3PRF 3PRF PCA TPCA PC-LARS

0.3 0.9 0.3 0 1.93 1.87 1.95 2.16 1.85 2.14 1.89 1.89 1.90 2.10 1.80 2.09

0.3 0.9 0.3 0.5 1.95 1.94 1.93 2.10 1.82 2.09 1.89 1.88 1.88 2.08 1.73 2.06

0.3 0.9 0.9 0 1.95 1.92 1.95 2.11 1.81 2.11 1.93 1.88 1.92 2.11 1.95 2.09

0.3 0.9 0.9 0.5 2.01 1.93 1.99 2.14 1.94 2.13 1.94 1.88 1.91 2.10 1.93 2.07

0.9 0.3 0.3 0 7.23 7.15 7.41 8.82 7.78 8.27 7.91 7.66 8.08 9.50 9.21 7.56

0.9 0.3 0.3 0.5 7.42 7.25 7.67 9.15 8.00 8.65 7.86 7.67 8.15 9.48 9.28 7.80

0.9 0.3 0.9 0 6.78 6.27 8.07 9.53 8.63 8.97 7.04 6.44 8.11 9.07 8.83 7.79

0.9 0.3 0.9 0.5 6.37 5.96 7.33 8.59 7.63 8.14 7.70 7.02 8.71 9.75 9.40 8.07

Panel C. Instability in 50 per cent of the loadings

ρf ρg α β T=100 , N=100 T=200 , N=200

MS-3PRF MSS-3PRF 3PRF PCA TPCA PC-LARS MS-3PRF MSS-3PRF 3PRF PCA TPCA PC-LARS

0.3 0.9 0.3 0 1.84 1.82 1.75 2.15 1.75 2.11 1.74 1.71 1.70 2.12 1.62 2.01

0.3 0.9 0.3 0.5 1.87 1.84 1.78 2.14 1.72 2.13 1.74 1.73 1.68 2.11 1.65 2.02

0.3 0.9 0.9 0 1.94 1.89 1.86 2.14 1.89 2.14 1.86 1.81 1.76 2.08 1.89 2.08

0.3 0.9 0.9 0.5 1.92 1.86 1.89 2.16 1.93 2.16 1.88 1.80 1.78 2.09 1.92 2.08

0.9 0.3 0.3 0 6.32 6.16 6.27 8.88 7.30 6.97 6.66 6.38 6.51 9.25 8.60 5.31

0.9 0.3 0.3 0.5 5.99 5.77 5.99 8.55 6.64 6.53 6.40 6.07 6.27 9.27 8.58 5.12

0.9 0.3 0.9 0 6.12 5.70 6.46 8.84 7.52 7.56 6.61 6.06 6.98 9.47 8.83 5.72

0.9 0.3 0.9 0.5 6.19 5.76 6.52 8.56 7.49 7.53 6.22 5.74 6.71 8.79 8.28 5.53

Panel D. Instability in 25 per cent of the loadings

ρf ρg α β T=100 , N=100 T=200 , N=200

MS-3PRF MSS-3PRF 3PRF PCA TPCA PC-LARS MS-3PRF MSS-3PRF 3PRF PCA TPCA PC-LARS

0.3 0.9 0.3 0 1.68 1.69 1.53 2.12 1.61 2.04 1.58 1.55 1.36 2.08 1.49 1.86

0.3 0.9 0.3 0.5 1.75 1.73 1.59 2.13 1.63 2.05 1.56 1.56 1.39 2.08 1.48 1.82

0.3 0.9 0.9 0 1.92 1.86 1.71 2.15 1.91 2.12 1.84 1.78 1.57 2.12 1.88 2.09

0.3 0.9 0.9 0.5 1.90 1.85 1.71 2.12 1.88 2.10 1.86 1.80 1.62 2.12 1.85 2.07

0.9 0.3 0.3 0 5.29 5.05 4.91 6.99 5.76 5.13 5.53 5.38 4.96 8.09 6.80 4.75

0.9 0.3 0.3 0.5 5.46 5.35 5.17 7.14 5.88 5.49 5.50 5.37 5.01 7.88 6.69 4.83

0.9 0.3 0.9 0 5.66 5.31 5.09 7.38 6.14 6.87 5.94 5.51 5.43 8.25 7.11 5.26

0.9 0.3 0.9 0.5 5.58 5.26 5.16 7.77 6.62 7.17 5.96 5.54 5.41 8.30 7.41 5.28

Note: The table reports the median MSFE based on 500 replications. Serial correlation in the factors

is governed by ρf and ρg, while α and β govern serial and cross sectional correlation in the predictors’

residuals, respectively. Entries in bold represent the lowest median MSFE for each specification. See text

for additional details.
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Table 2: Simulation results with different relationships of loadings instabilities

Panel A. Regime changes in the factor loadings are governed by independent Markov chains

ρf ρg α β T=100 , N=100 T=200 , N=200

MS-3PRF MSS-3PRF 3PRF PCA TPCA PC-LARS MS-3PRF MSS-3PRF 3PRF PCA TPCA PC-LARS

0.3 0.9 0.3 0 2.11 2.08 2.05 2.08 1.96 2.07 2.06 2.03 2.05 2.08 1.99 2.07

0.3 0.9 0.3 0.5 2.08 2.03 2.08 2.14 2.01 2.13 2.05 2.05 2.02 2.07 1.98 2.06

0.3 0.9 0.9 0 2.00 1.94 2.03 2.12 1.96 2.08 1.98 1.94 1.97 2.06 1.94 2.04

0.3 0.9 0.9 0.5 1.97 1.92 1.98 2.07 1.92 2.05 1.99 1.95 1.98 2.07 1.94 2.05

0.9 0.3 0.3 0 8.62 8.56 8.74 8.98 8.60 8.95 9.59 9.41 9.47 9.61 9.51 9.56

0.9 0.3 0.3 0.5 9.20 9.21 9.22 9.38 9.18 9.35 9.23 9.20 9.17 9.32 9.18 9.27

0.9 0.3 0.9 0 8.09 7.67 8.73 9.10 8.66 9.10 8.86 8.50 9.36 9.54 9.43 9.48

0.9 0.3 0.9 0.5 7.79 7.45 8.43 8.73 8.42 8.73 8.78 8.46 9.23 9.43 9.27 9.43

Panel B. Random walk factor loadings

ρf ρg α β T=100 , N=100 T=200 , N=200

MS-3PRF MSS-3PRF 3PRF PCA TPCA PC-LARS MS-3PRF MSS-3PRF 3PRF PCA TPCA PC-LARS

0.3 0.9 0.3 0 2.01 1.96 2.01 2.11 1.86 2.10 1.92 1.89 1.91 2.05 1.82 2.03

0.3 0.9 0.3 0.5 2.00 1.96 2.00 2.11 1.84 2.11 1.95 1.90 1.95 2.09 1.84 2.06

0.3 0.9 0.9 0 2.01 1.97 2.02 2.12 1.82 2.09 1.91 1.89 1.93 2.07 1.80 2.04

0.3 0.9 0.9 0.5 2.03 1.95 1.97 2.10 1.82 2.09 1.94 1.91 1.95 2.07 1.83 2.03

0.9 0.3 0.3 0 7.44 7.22 7.97 9.02 8.21 8.77 8.16 7.94 8.60 9.52 8.92 9.07

0.9 0.3 0.3 0.5 7.54 7.14 7.91 8.99 8.02 8.66 7.98 7.66 8.37 9.34 8.78 8.96

0.9 0.3 0.9 0 7.48 7.00 8.12 9.12 8.45 9.11 8.15 7.61 8.73 9.54 9.01 9.22

0.9 0.3 0.9 0.5 7.28 6.77 8.33 9.14 8.34 9.04 7.87 7.44 8.48 9.16 8.74 8.80

Panel C. Time-invariant factor loadings

ρf ρg α β T=100 , N=100 T=200 , N=200

MS-3PRF MSS-3PRF 3PRF PCA TPCA PC-LARS MS-3PRF MSS-3PRF 3PRF PCA TPCA PC-LARS

0.3 0.9 0.3 0 1.61 1.63 1.34 2.09 1.49 2.01 1.40 1.42 1.16 1.92 1.27 1.76

0.3 0.9 0.3 0.5 1.61 1.61 1.38 2.03 1.51 1.98 1.44 1.43 1.19 1.90 1.27 1.73

0.3 0.9 0.9 0 1.91 1.84 1.64 2.17 1.88 2.13 1.79 1.72 1.38 2.11 1.84 2.06

0.3 0.9 0.9 0.5 1.90 1.84 1.69 2.14 1.88 2.12 1.82 1.75 1.45 2.13 1.84 2.08

0.9 0.3 0.3 0 5.08 5.01 4.52 5.25 4.76 4.97 5.14 5.10 4.65 5.02 4.81 4.77

0.9 0.3 0.3 0.5 4.77 4.65 4.32 4.83 4.50 4.72 5.21 5.17 4.73 4.95 4.79 4.82

0.9 0.3 0.9 0 5.51 5.20 4.51 7.16 5.93 6.61 5.79 5.34 4.72 6.07 5.37 5.01

0.9 0.3 0.9 0.5 5.69 5.34 4.85 7.10 5.83 6.97 5.87 5.48 4.88 6.13 5.36 5.14

Note: The table reports the median MSFE based on 500 replications. Serial correlation in the factors

is governed by ρf and ρg, while α and β govern serial and cross sectional correlation in the predictors’

residuals, respectively. Entries in bold represent the lowest median MSFE for each specification. See text

for additional details.
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Table 3: Out-of-sample exchange rate forecasting

Forecast horizon 1 2 3 6 9 12 1 2 3 6 9 12

CAD/USD (MSPE) CAD/USD (Success ratios)

PCA 0.871* 0.951 0.980 1.001 1.094 1.175 0.637** 0.602** 0.575* 0.522 0.504 0.407

TPCA 0.872* 0.955 0.986 0.996 1.088 1.182 0.637** 0.620** 0.593** 0.522 0.487 0.407

PC-LARS 0.872 0.949 0.986 0.998 1.095 1.157 0.611** 0.602** 0.513 0.487 0.469 0.407

3PRF 0.963* 1.011 1.033 1.017 1.045 1.047 0.540 0.584** 0.558** 0.566** 0.504 0.451

MS-3PRF (first pass) 0.890 0.962 0.982 0.971 0.993 1.031 0.611** 0.611** 0.566* 0.540 0.522 0.504

MS-3PRF (first and third pass) 0.888** 0.892 0.944 0.915 0.919 0.941 0.575** 0.575* 0.620* 0.620** 0.726** 0.717**

MSS-3PRF (first pass) 0.911* 0.938* 0.987 0.994 1.020 1.058 0.620** 0.620** 0.549 0.496 0.460 0.469

MSS-3PRF (first and third pass) 0.946 1.057 0.973 0.948 1.078 1.026 0.593** 0.478 0.575 0.584 0.620** 0.655**

EUR/USD (MSPE) EUR/USD (Success ratios)

PCA 0.988 1.033 1.000 1.034 1.085 1.138 0.549 0.487 0.540 0.504 0.416 0.372

TPCA 0.995 1.049 1.010 1.061 1.109 1.155 0.558 0.487 0.566 0.487 0.443 0.354

PC-LARS 0.961 1.028 1.010 1.072 1.141 1.207 0.566* 0.531 0.549 0.540 0.460 0.389

MS-3PRF (first pass) 0.994 1.008 0.996 1.002 1.036 1.095 0.549 0.540 0.575 0.566 0.469 0.469

MS-3PRF (first and third pass) 1.253 1.059 1.269 1.210 1.452 1.470 0.522 0.549 0.416 0.425 0.319 0.487

MSS-3PRF (first pass) 1.005 0.985 1.014 1.016 1.047 1.079 0.531 0.531 0.593** 0.558 0.531 0.460

MSS-3PRF (first and third pass) 1.367 1.182 1.329 1.123 1.476 1.845 0.522 0.496 0.487 0.487 0.372 0.372

JPY/USD (MSPE) JPY/USD (Success ratios)

PCA 1.091 1.093 1.108 1.070 1.101 1.145 0.460 0.496 0.469 0.496 0.504 0.425

TPCA 1.081 1.111 1.098 1.066 1.085 1.121 0.460 0.434 0.451 0.504 0.478 0.425

PC-LARS 1.066 1.066 1.078 1.078 1.074 1.117 0.531 0.504 0.496 0.487 0.469 0.425

3PRF 1.017 1.038 1.050 1.039 1.070 1.117 0.575** 0.513 0.487 0.478 0.451 0.389

MS-3PRF (first pass) 1.031 1.060 1.054 1.066 1.078 1.122 0.487 0.487 0.496 0.451 0.487 0.363

MS-3PRF (first and third pass) 1.136 1.094 1.091 1.009 0.763** 1.051 0.522 0.478 0.451 0.549 0.770** 0.460

MSS-3PRF (first pass) 1.058 1.061 1.055 1.043 1.074 1.078 0.478 0.522 0.531 0.487 0.460 0.443

MSS-3PRF (first and third pass) 1.345 1.240 1.241 1.159 0.763* 1.068 0.558 0.540 0.531 0.549 0.735** 0.513

GBP/USD (MSPE) GBP/USD (Success ratios)

PCA 0.803* 0.977 1.043 1.045 1.064 1.091 0.593** 0.540 0.513 0.434 0.522 0.575

TPCA 0.796* 0.965 1.023 1.043 1.064 1.091 0.593** 0.540 0.504 0.469 0.558** 0.584**

PC-LARS 0.784* 0.953 1.029 1.035 1.073 1.114 0.611** 0.593** 0.531 0.531 0.425 0.496

3PRF 0.875 0.953 1.015 1.065 1.057 1.088 0.522 0.584** 0.575** 0.460 0.549 0.443

MS-3PRF (first pass) 0.908* 0.980 1.010 1.032 1.064 1.094 0.566* 0.531 0.558 0.504 0.478 0.469

MS-3PRF (first and third pass) 0.977 1.083 1.032 1.113 1.128 1.114 0.531 0.549 0.540 0.513 0.416 0.469

MSS-3PRF (first pass) 0.893 0.984 1.037 1.045 1.074 1.119 0.549 0.549 0.566 0.522 0.496 0.460

MSS-3PRF (first and third pass) 1.392 1.523 1.302 1.361 1.397 1.354 0.513 0.478 0.540 0.531 0.496 0.496

Note: This table shows the relative mean square forecast error (RMSFE) for selected currency pairs (CAD/USD, EUR/USD, JPY/USD and GBP/USD)

using PCA, TPCA, PC-LARS, linear 3PRF, MS-3PRF (first pass), MS-3PRF (first and third passes), MSS-3PRF (first pass) and MSS-3PRF (first and

third passes) as forecasting approaches. Entries in bold indicate the best-performing approach for a specific horizon. Statistically significant reductions

in the MSFE (or impovements in directional accuracy) relative to the random walk according to the Diebold-Mariano (Pesaran-Timmermann) test are

indicated by asterisks (* denotes significance at the 10 per cent level. and ** denotes significance at the 5 per cent level).
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Table 4: Out-of-sample macroeconomic forecasting

Forecast horizon 1 2 3 4 8 1 2 3 4 8

GDP Consumption

TPCA 0.966** 0.986** 0.990** 0.996 1.004 0.939** 0.961** 0.981** 0.986* 1.009

PC-LARS 1.024 0.963* 0.950** 0.935** 0.950* 1.028 1.011 0.972** 1.016 0.985

Linear 3PRF 0.982 0.949** 0.957** 0.951** 0.979 0.890* 0.897** 0.950** 0.922** 0.992

MS-3PRF (first pass) 1.128 0.952** 0.972** 0.956** 0.942** 0.978 0.894** 0.927** 0.899** 0.972

MS-3PRF (first and third pass) 1.176 1.057 1.234 1.104 1.006 1.002 1.158 1.149 1.419 1.112

MSS-3PRF (first pass) 1.108 0.952** 0.977** 0.955** 0.938** 0.961 0.883** 0.920** 0.901** 0.975

MSS-3PRF (first and third pass) 1.190 1.029 1.166 1.129 1.005 1.041 1.108 1.138 1.203 1.273

Investment Exports

TPCA 1.010 0.998 0.999 1.001 1.005 1.061 1.029 1.021 1.006 0.998

PC-LARS 0.913 0.977 0.980 0.991 1.007 1.117 1.027 1.018 1.000 1.003

Linear 3PRF 0.900 0.991 0.996 0.981* 1.013 1.007 1.037 1.015 1.006 0.995

MS-3PRF (first pass) 0.901 0.983* 1.013 1.008 1.007 1.058 0.968 0.985 0.951 0.992

MS-3PRF (first and third pass) 0.907* 1.079 1.156 1.150 1.005 0.871** 0.974* 1.018 0.976* 1.030

MSS-3PRF (first pass) 0.903 0.985* 1.013 1.005 1.001 1.055 0.969 0.992 0.955 0.994

MSS-3PRF (first and third pass) 0.938 1.049 1.077 1.065 1.003 0.861** 1.014 1.056 1.006 1.058

Imports Hours

TPCA 1.012 0.995** 0.997 1.004 1.018 1.010 1.001 1.003 1.005 1.008

PC-LARS 1.058 0.991 1.004 1.000 0.972 0.864** 0.980* 0.993 1.006 1.030

Linear 3PRF 0.981 0.995 0.976 0.992 0.991 0.934* 1.002 0.999 1.000 1.014

MS-3PRF (first pass) 1.129 0.994 0.956 1.008 0.931 1.003 1.001 1.026 1.023 1.031

MS-3PRF (first and third pass) 1.004 0.966 0.989 1.059 0.951 1.005 1.076 1.163 1.447 1.464

MSS-3PRF (first pass) 1.179 0.997 0.954 1.006 0.924* 0.983 0.999 1.027 1.023 1.030

MSS-3PRF (first and third pass) 1.028 0.976 1.028 1.080 0.980 0.988 1.021 1.103 1.160 1.610

GDP inflation PCE inflation

TPCA 1.010 1.026 1.037 1.056 1.044 1.031 1.023 1.025 1.023 1.043

PC-LARS 0.996 1.031 1.140 1.294 1.085 1.069 1.130 1.169 1.168 1.046

Linear 3PRF 1.083 1.202 1.148 0.991 0.911 1.004 0.976* 0.998 0.980 0.963

MS-3PRF (first pass) 1.061 1.241 1.125 0.898 0.845* 1.009 1.009 1.044 0.995 0.987

MS-3PRF (first and third pass) 1.134 1.599 2.144 1.526 1.455 0.970 1.081 1.363 1.509 1.655

MSS-3PRF (first pass) 1.066 1.243 1.140 0.909 0.861 1.012 1.018 1.055 1.005 0.988

MSS-3PRF (first and third pass) 1.030 0.910 0.869 0.658 0.421** 0.947 0.868 0.893 0.827** 0.679**

Note: This table reports the MSFE of a given approach relative to the MSFE of PCA for forecast horizons ranging from one quarter to eight quarters ahead. Linear 3PRF uses

a single target proxy. MS-3PRF (first pass) and MSS-3PRF (first pass) are regime-switching 3PRFs based on a single target proxy and regime-switching parameters in the first

pass only; MS-3PRF (first and third passes) and MSS-3PRF (first and third passes) are regime-switching 3PRFs based on a single target proxy and regime-switching parameters

in the first and third passes. For these approaches, the target proxy is the variable to forecast. TPCA is PCA where hard thresholding was performed before extracting the first

principal component to forecast. PC-LARS is PCA where soft thresholding was performed before extracting the first principal component to forecast. Boldface indicates the

best-performing procedure for a specific horizon and variable. The first estimation sample extends from 1960Q3 to 1984Q4, and it is recursively expanded as we progress in the

forecasting exercise. The full evaluation sample runs from 1985Q1 to 2015Q3. Statistical reductions in MSFE relative to PCA according to the Diebold and Mariano (1995) test

are indicated by asterisks (* denotes significance at the 10 per cent level, and ** denotes significance at the 5 per cent level).
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Online appendix for “Markov-Switching Three-Pass

Regression Filter”

The online appendix contains the following elements:

• Appendix A1 describes the hard-thresholding forecasting approach (TPCA)

• Appendix A2 describes the soft-thresholding forecasting approach (PC-LARS)

• Appendix A3 reports additional Monte Carlo experiments

• Appendix A4 reports the data treatment for the macroeconomic forecasting applica-

tion

• Appendix A5 shows the derivations for estimation and filtering in Markov-switching

models

• Appendix A6 presents the details for calculating fluctuation tests for the empirical

exercises

• Appendix A7 shows additional selected empirical forecasting results
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A.1 Description of the hard-thresholding forecasting approach

The hard-thresholding algorithm consists of the following steps (this description stems

partly from Bai and Ng (2008)):

1. For each variable xi,t, perform a time series regression of the variable to forecast yt

on xi,t and a constant. Let ti denote the t-statistic associated with xi,t.

2. Let k∗
α be the number of series whose |ti| exceeds a threshold significance level, α. In

our application, we use a threshold of 1.65, which corresponds to a one-sided 5 per

cent significance level for the t-test.

3. Let χt(α) = (x[1t], ..., x[k∗α]) be the corresponding set of predictors. Estimate ft from

χt(α) by the method of principal component.

4. Estimate forecasting equation, in the third pass, to calculate the h-period-ahead

forecast yt+h.

This approach is denoted as TPCA.

A.2 Description of the soft-thresholding forecasting approach

The soft-thresholding approach we adopt follows from the least angle regressions (LARS)

method described in Bai and Ng (2008). In detail, we use the set of the first K predictors

xi,t resulting from forward stagewise selection regressions to extract principal component(s).

In the macroeconomic forecasting application, we use K = 30 predictors, since it is the

number of predictors retained by Bai and Ng (2008) and Kelly and Pruitt (2015) when

forecasting macroeconomic variables with a data set similar to ours. For the exchange rate

forecasting application, we retain the first K = 10 predictors ordered by LARS to extract

principal components, which corresponds to slightly more than a third of the total number

of predictors (26). Finally, in the Monte Carlo experiments, we set K = 30 across all

DGPs.

This approach is denoted as PC-LARS.
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A.3 Additional Monte-Carlo experiments

As explained in Section 2.1 of the paper, the key difference between the MS-3PRF and

3PRF approaches is the inclusion of Markov-switching dynamics in steps 1 and 3 of the MS-

3PRF.1 We now compare the accuracy of both linear and nonlinear methods in estimating

the latent factors for a fixedN = 100 and as the sample size T increases. In particular, using

the same set-up for the data generating processes as described in Section 3 of the paper,

we generate data assuming no time instability in the loadings, estimate the factor using

the 3PRF and compute the correlation with the true underlying factor, ρ3PRF . Then, we

generate data subject to instability in the loadings, estimate the factor using the MS-3PRF

and compute the correlation with the true factor, ρMS−3PRF . Next, we compare ρ3PRF with

ρMS−3PRF and assess how they change as T increases with T = {100, 200, 400, 800}. Figure
A.1 shows the average correlations across Monte Carlo replications for different scenarios.

The results indicate that ρ3PRF is systematically larger that ρMS−3PRF but the differences

are small and both correlation coefficients increase at a relatively similar rate as T increases.

1In Appendix A.5 we provide details about the filtering algorithm used to produce time-varying infer-
ences on the regimes in a Markov-switching model.
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A.4 Additional details on the macroeconomic forecasting exer-

cise

In the macroeconomic forecasting empirical application, we use the May 2016 vintage of the

McCracken and Ng (2015) data set as available online at https://research.stlouisfed.

org/econ/mccracken/fred-databases/. We use the exact same transformation as sug-

gested by McCracken and Ng (2015). However, due to missing observations, we omit

the following five series in our analysis (FRED mnemonics are in parentheses): “New

Orders for Consumer Goods” (ACOGNO), “New Orders for Nondefense Capital Goods”

(ANDENOx), “Trade-weighted U.S. Dollar Index: Major Currencies” (TWEXMMTH),

“Consumer Sentiment Index” (UMCSENTx) and the “VXO” (VXOCLSx).

The eight variables we forecast in the macroeconomic forecasting application are Gross

Domestic Product (GDPQ@USNA), Personal Consumption Expenditures (CQ@USNA),

Gross Private Domestic Investment (IQ@USNA), Exports of Goods & Services (XQ@USNA),

Imports of Goods & Services (MQ@USNA), Business Sector: Hours of All Persons (LXBH@USECON),

Gross Domestic Product: Chain Price Index (JGDP@USNA) and Personal Consumption

Expenditures: Chain Price Index (JC@USNA). (Haver Analytics mnemonics are in paren-

theses.)

A.5 Estimation and filtering in Markov-switching models

For ease of exposition, let us consider a simplified version of the regression in equation (3)

with one factor, no intercept and no switch in the variance: 2

xt = φ(St)ft + εt,

where εt ∼ N(0, σ2), where

φ(St) = φ(1− St) + φSt,

and the state variable may take only two values, St = {0, 1}. If the realizations of St were

known, the regression above would be nothing more than a dummy variable model, where

the log likelihood function would be given by

ln(L) =
T∑
t=1

ln(f(yt|St)),

2The same procedures explained in this Appendix apply for more complex Markov-switching models.
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where

f(yt|St) =
1√
2πσ2

exp

(
−(xt − φ(St)ft)

2

2σ2

)
.

However, since St is unobserved, the marginal density becomes,

f(yt|Ωt−1) =
1√
2πσ2

exp

(
−(xt − φ0ft)

2

2σ2

)
× P (St = 0|Ωt−1)

+
1√
2πσ2

exp

(
−(xt − φ1ft)

2

2σ2

)
× P (St = 1|Ωt−1),

which can be alternatively expressed as

f(yt|Ωt−1) =
1∑

j=0

f(yt|St = j, Ωt−1)P (St = j|Ωt−1)

Notice that the marginal density is a weighted average of conditional densities. There-

fore, the log likelihood function, when St is unobserved, is given by

ln(L) =
T∑
t=1

ln(
1∑

j=0

f(yt|St = j, Ωt−1)P (St = j|Ωt−1)).

Once the corresponding weights, P (St = j|Ωt−1) for j = 0, 1, are defined as a function of

the parameters of the model and the data, the log likelihood function can be maximized

with respect to φ0, φ1, σ, and transition probabilities, pij, to obtain estimates of those

parameters.

In order to define the weights, also known as the filtered state probabilities, the next

two steps are followed iteratively:

Step 1: Given the updated filtered state probabilities at time t−1, P (St−1 = i|Ωt−1),for

i = 0, 1, the predicted filtered state probabilities are computed as

P (St = j|Ωt−1) =
1∑

i=0

P (St = j, St−1 = i|Ωt−1)

=
1∑

i=0

P (St = j|St−1 = i)P (St−1 = i|Ωt−1),

where P (St = j|St−1 = i) = pij, for i, j = 0, 1, are the parameters corresponding to the

transition probabilities.
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Step 2: Once time t ends and yt can be observed, the predicted filtered state probabilities

can be updated by taking into account that P (St = j|Ωt) = P (St = j|Ωt−1, yt), where

Ωt = {Ωt−1, yt}. Therefore,

P (St = j|Ωt) =
f(St = j, yt|Ωt−1)

f(yt|ψt−1)

=
f(yt|St = j, Ωt−1)P (St = j|Ωt−1)∑1
j=0 f(yt|St = j, Ωt−1)P (St = j|Ωt−1)

.

Then P (St = j|Ωt) is used in the next iteration in Step 1. These two steps are followed for

t = 1, 2, ..., T . To start the iterations at t = 1, the ergodic, or stationary, probabilities are

used.

Given the filtered probabilities, P (St = j|Ωt) and the estimated parameters, we compute

inferences of St using all the available information in the sample at the time that each

forecast is performed. In particular, we follow the line of Kim and Nelson (1999) to compute

the smoothed probability, denoted by P (St = j|ΩT ) and use it to obtained the time-varying

factor loadings in Equation (7).

A.6 Fluctuation tests

In this section, we report the fluctuation tests from Giacomini and Rossi (2010) to eval-

uate the stability of the out-of-sample forecasting performance of the MS-3PRF approach

when forecasting selected variables: GDP inflation, PCE inflation and the CAD–USD ex-

change rate at specific horizons. We focus on these specific variables, since for them the

MS-3PRF approach performed best. In Figures A.3 and A.4 below, we report the stan-

dardized local relative 8-quarter-ahead MSPE of a specific MS-3PRF model against the

benchmark model (PCA when forecasting macroeconomic variables). In the case of the

CAD-USD, in Figure A.5 we report the results of the fluctuation test obtained from the

Pesaran and Timmermann (2009) test from the MS-3PRF approach relative to the no-

change forecast at a 12-month horizon. In Figures A.3 to A.5, we also report the critical

value for testing that the two models have equal out-of-sample performance at each point

of time against the alternative that the MS-3PRF approach performs better at least at one

point in time. The size of the evaluation window is set to 46 for both macroeconomic and

exchange rate forecasting exercises, which corresponds to about 40% of the full evaluation

sample. The critical value for a one-sided test at the 10% level is 2.334.

Coming to the results, Figure A.3 shows that the local relative MSPE exceeds the critical

value from the early part of the evaluation sample to the Great Recession; hence, we reject
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the null hypothesis, and conclude that there were periods during which the MSS-3PRF

approach produced better 8-quarter-ahead forecasts for PCE inflation than the benchmark

PCA model. In the case of predicting GDP inflation 8-quarter ahead, Figure A.4 shows that

the local relative MSPE exceeds the critical value for most of the first half of the sample

till the Great Recession (with a brief exception between 2001 and 2003), suggesting that

there were periods in which the MSS-3PRF approach outperformed the benchmark PCA

model. Figure A.5 reporting the results of the fluctuation test for predicting directional

changes in the CAD–USD exchange rate 12-month-ahead, indicates that in the latter part

of the sample, there is evidence of superior predictive ability from the MS-3PRF approach

over the random walk model.

A.7 Recursive MSPE

Figures A.6 to A.11 show the recursive MSPE in selected cases.
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Figure A.1 Correlation of factor estimates with true factor
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Note: The grey lines in each chart plot the average correlation between the true factor and the estimated

factor obtained from a DGP that has no instability in the factor loadings. The blue lines in each chart

plot the average correlation between the true factor and the estimated factor obtained from a DGP that

has instability in the factor loadings. The average correlation is based on 500 replications and is reported

for different sample sizes and configurations of the underlying parameters in the DGP.
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Figure A.2 Factor loadings for selected variables
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Note: Factor loadings for selected variables obtained from the linear 3PRF (black dashed line), MS-3PRF (blue solid line) and MSS-3PRF (red dotted

line). GDP growth is used as a target proxy for the 3PRF approaches.



BANCO DE ESPAÑA 49 DOCUMENTO DE TRABAJO N.º 1748

Note: This figure shows the results of the Giacomini and Rossi (2010) fluctuation test statistic, obtained as the standardized difference between the

MSPE of PCA and the MSPE of the MSS-3PRF (first and third pass) model. The size of the rolling window is set to 46; that is, about 40 per cent

of the full evaluation sample. The critical value for a one-sided test at the 10% level is 2.334. A reading above the critical value indicates that the

predictive model statistically outperforms the benchmark model. The horizontal axis denotes the time at which the forecast was made.

Figure A.3 Fluctuation test statistic – Forecasting PCE inflation 8-quarter-ahead
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Figure A.4 Fluctuation test statistic – Forecasting GDP inflation 8-quarter-ahead
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Note: This figure shows the results of the Giacomini and Rossi (2010) fluctuation test statistic, obtained as the standardized difference between the

MSPE of PCA and the MSPE of the MSS-3PRF (first and third pass) model. The size of the rolling window is set to 46; that is, about 40 per cent

of the full evaluation sample. The critical value for a one-sided test at the 10% level is 2.334. A reading above the critical value indicates that the

predictive model statistically outperforms the benchmark model. The horizontal axis denotes the time at which the forecast was made.
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Figure A.5 Fluctuation test statistic – Forecasting CAD-USD 12-month-ahead
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Note: This figure shows the results of the Giacomini and Rossi (2010) fluctuation test statistic, obtained from the Pesaran and Timmermann (2009)

test statisic for directional accuracy for the MS-3PRF (first and third pass) model relative to the no-change forecast. The size of the rolling window is

set to 46; that is, about 40 per cent of the full evaluation sample. The critical value for a one-sided test at the 10% level is 2.334. A reading above the

critical value indicates that the predictive model statistically outperforms the benchmark model. The horizontal axis denotes the time at which the

forecast was made.
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Figure A.6 Recursive forecasting performance – Forecasting GDP 1-quarter-ahead
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Note: This figure shows the recursive forecasting performance (MSPE) for forecasting GDP inflation 1 quarters ahead.
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Figure A.7 Recursive forecasting performance – Forecasting GDP 8-quarter-ahead
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Note: This figure shows the recursive forecasting performance (MSPE) for forecasting GDP inflation 8 quarters ahead.
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Figure A.8 Recursive forecasting performance – Forecasting PCE inflation 1-quarter-ahead
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Note: This figure shows the recursive forecasting performance (MSPE) for forecasting GDP inflation 1 quarters ahead.
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Figure A.9 Recursive forecasting performance – Forecasting PCE inflation 8-quarter-ahead
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Note: This figure shows the recursive forecasting performance (MSPE) for forecasting GDP inflation 8 quarters ahead.
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Figure A.10 Recursive forecasting performance – Forecasting CAD-USD 1-month-ahead
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Note: This figure shows the recursive forecasting performance (MSPE) for forecasting the CAD-USD exchange rate 1 month ahead.
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Figure A.11 Recursive forecasting performance – Forecasting CAD-USD 12-month-ahead
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Note: This figure shows the recursive forecasting performance (MSPE) for forecasting the CAD-USD exchange rate 12 months ahead.
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