
CLUSTERING REGIONAL
BUSINESS CYCLES

M. D. Gadea-Rivas, Ana Gómez-Loscos
and Eduardo Bandrés

Documentos de Trabajo 
N.º 1744

2017



CLUSTERING REGIONAL BUSINESS CYCLES



CLUSTERING REGIONAL BUSINESS CYCLES (*)

M. D. Gadea-Rivas (**)

UNIVERSITY OF ZARAGOZA

Ana Gómez-Loscos (***)

BANCO DE ESPAÑA

Eduardo Bandrés (****)

UNIVERSITY OF ZARAGOZA

Documentos de Trabajo. N.º 1744

2017

 (*) We are grateful to S. Kaufmann for sharing her codes with us. We also thank L. J. Álvarez, G. Hewings and J. F. 
Jimeno for their useful comments. M. D. Gadea acknowledges financial support from Funcas. The views expressed 
in this paper are the responsibility of the authors and do not represent those of the Banco de España or the 
Eurosystem.
(**) Corresponding author: Department of Applied Economics, University of Zaragoza. Gran Vía, 4, 50005 
Zaragoza (Spain). Tel.: +34 976 761842, fax: +34 976 761840 and e-mail: lgadea@unizar.es.
(***) Banco de España, Alcala, 48, 28014 Madrid (Spain). Tel.: +34 91 3385817, fax: +34 91 5310059 and e-mail: 
agomezloscos@bde.es.
(****) Department of Applied Economics, University of Zaragoza. Gran Vía, 4, 50005 Zaragoza (Spain). Tel.: +34 
976 761846, fax: +34 976 761840 and e-mail: ebandreslgadea@unizar.es.



The Working Paper Series seeks to disseminate original research in economics and fi nance. All papers 
have been anonymously refereed. By publishing these papers, the Banco de España aims to contribute 
to economic analysis and, in particular, to knowledge of the Spanish economy and its international 
environment. 

The opinions and analyses in the Working Paper Series are the responsibility of the authors and, therefore, 
do not necessarily coincide with those of the Banco de España or the Eurosystem. 

The Banco de España disseminates its main reports and most of its publications via the Internet at the 
following website: http://www.bde.es.

Reproduction for educational and non-commercial purposes is permitted provided that the source is 
acknowledged.  

© BANCO DE ESPAÑA, Madrid, 2017

ISSN: 1579-8666 (on line)



Abstract

The aim of this paper is to show the usefulness of Finite Mixture Markov Models (FMMMs) 

for regional analysis. FMMMs combine clustering techniques and Markov Switching models, 

providing a powerful methodological framework to jointly obtain business cycle datings 

and clusters of regions that share similar business cycle characteristics. An illustration with 

European regional data shows the sound performance of the proposed method.

Keywords: business cycles, clusters, regions, fi nite mixture Markov models.

JEL classifi cation: C22, C32, E32, R11.



Resumen

El objetivo de este trabajo es mostrar la utilidad de los modelos de Markov con mixturas fi nitas 

de distribuciones para el análisis regional. Estos modelos combinan técnicas de agrupamiento 

y modelos de Markov Switching, proporcionando un marco metodológico sólido que permite 

obtener de forma conjunta datados de los ciclos económicos regionales e identifi car grupos 

de regiones que comparten características similares del ciclo económico. Se ilustra el buen 

funcionamiento del método propuesto con datos del PIB de las regiones europeas.

Palabras clave: ciclo económico, clusters, regiones, modelos de Markov con mixturas 

fi nitas de distribuciones.

Códigos JEL: C22, C32, E32, R11.
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1 Introduction

Studying the regional dimension of business cycles is important to uncover the het-

erogeneity hidden in country analyses.1 By dealing with a larger information set,

new insights can be obtained, useful, for instance, when implementing economic

policies. Nevertheless, the literature analyzing regional business cycles is relatively

scant. This could be due to data limitations and technical difficulties to properly

capture business cycles in small economic units.

The goal of this letter is to show the usefulness of Finite Mixture Markov mod-

els (FMMM), developed by Frühwirth-Schnatter and Kaufmann (2008), to identify

common cyclical patterns among regions, that is, to show that the combination of

clustering techniques and Markov Switching models provides a powerful method-

ological framework to analyze business cycles at a regional level and overcome the

above-mentioned limitations. By using these techniques, it is possible to both obtain

a business cycle dating and to identify clusters according to business cycle features.

We present an empirical application for European regions.

2 Finite Mixture Markov Models for regional analysis

Business cycle analysis is usually carried out at national level and using quarterly

or monthly data. The most common methods to obtain business cycle datings are

the Bry and Boschan (1971) algorithm and Markov Switching models put forward

by Hamilton (1989). From these individual datings, it is usual to analyze business

cycle features, to detect patterns of synchronization or to build clusters of coun-

tries.2 Analyzing the regional dimension introduces new challenges, especially for

1See, e.g., Ramajo et al. (2008) for the European regions and Park and Hewings (2012) for the
US states.

2Some examples are Gadea et al. (2017b), Harding and Pagan (2006) and Camacho et al. (2006).
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dating business cycles of individual series. Note that the individual estimation of

business cycles by regions usually exhibits large estimation errors because of short

samples and high variability.3 Paraphrasing Stock and Watson (2010), the “aggre-

gate (at national level) and then date” approach is usually preferred, in spite of the

subsequent loss of valuable information, to the“date and then aggregate” approach.4

Against this background, the model-based clustering approach for multiple time

series developed by Frühwirth-Schnatter and Kaufmann (2008) is suitable to analyze

regional business cycles.5 This method can be used for finite mixtures of Markov

Switching autoregressive models, in line with the seminal work of Hamilton (1989).

The estimation technique, within a Bayesian framework, is Markov chain Monte

Carlo (MCMC), which allows us to jointly estimate all the parameters of the model,

including the groups of regions. The idea is to group time series and to pool within

clusters to obtain posterior inferences, without an overall pooling being necessary,

thus avoiding the heterogeneity bias. This means that, within a panel of time series,

only those that display similar dynamic properties and share similar business cycle

features are pooled to estimate the parameters, the appropriate grouping being

estimated along with the model parameters.

Thus, by using this method a clear gain of efficiency is achieved. Other valuable

features of this method are its flexibility, as it admits different specifications, such as

autoregressive panels, and the abundant information provided, as the estimation of

all the model parameters also includes uncertainty measures. In the next subsection,

we describe the details and steps of the estimation process.

3Original data typically have an annual frequency. Even if available, quarterly series are short,
not homogeneous across countries and, generally, artificially constructed by interpolating annual
data.

4Nevertheless, there are some exceptions: Gadea et al. (2012) date and build clusters for the
Spanish regions and Stock and Watson (2008) identify clusters from the idiosyncratic terms of a
dynamic factor model for the US states’ housing prices.

5Kaufmann (2010) applies this method to analyze the Austrian business cycle using a large set
of series.
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2.1 Finite Mixture Markov Models estimation process

Let yit be a set of time series from t = 1, ..., T for i = 1, ..., N , N being the number of

regions which arise from K groups, whereby for each group, k = 1, ...,K, we define

an econometric model to capture its business cycle with the same parameters, θ.

This model is based on the Markov-switching (MS) approach proposed by Hamilton

(1989). In the simplest setting, MS models characterize a series through a process

of a mean conditioned on a state of nature. The changes in value of this mean allow

us to differentiate periods of expansions and recessions. In general, we consider the

following process for the growth of the GDP, computed as the first difference of its

log:

yit = μi,Bj + εit (1)

where yit is the log difference of GDP of region i in time t, μi,Bj is the vector of

MS intercepts and εit/Bj ∼ N(0, σi) if we consider that the variance of the errors is

equal for all states. It is standard to assume that these varying parameters depend

on an unobservable state variable Bj that represents the business cycle state and

evolves according to an irreducible m-state Markov process, where pkj controls the

probability of a switch from state j to state k.

In this framework, we use a classical MS model with 2 states (j = 1, 2) that define

two possible means, μi,1 and μi,2, which are associated with expansion and recession

phases, respectively. A 2x2 transition matrix governs regime shifts, where ξi,11 and

ξi,22 represent the probability of being in expansion or recession, respectively, and

remaining in the same state in the following period; ξi,12 denotes the probability of

switching from recession to expansion and ξi,21 is the probability of switching from

expansion to recession.6

6A habitual extension is to introduce dynamics in this basic framework.
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for clustering is needed. The first step is to introduce a latent group indicator Si

that denotes to which group yi belongs for all t. This is,

p(yi|θSi) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

p(yi|θS1), Si = 1

...

p(yi|θSK
), Sk = K

(2)

Notice that the number of groups, the allocation of each region to a given group

and the group-specific parameters θ = (θ1, ..., θK) are estimated from the data. We

also define a probabilistic model for P (Si = k).

Combining the MS model for business cycle dating and the finite mixture for

clustering, the basic model is specified as follows:

yit = μG
k +δG1,kyi,t−1+...+δGp,kyi,t−p+(Ikt−1)(μR

k +δR1,kyi,t−1+...+δRp,kyi,t−p)+εit (3)

where yit represents the GDP growth rate of region i in time t and p the order of the

autoregressive dynamics. Therefore, μG
k and δGj,k for j = 1, ...p are the group-specific

effects and μR
k and δRj,k the state-specific effects. The group indicator is defined

as Si = k with k = 1...K. Periods of expansion (above-average growth periods)

are denoted by Ikt = 1 with intercept μG
k and periods of recession (below-average

growth periods) are denoted by Ikt = 0 with intercept μG
k −μR

k . We consider that the

autoregressive dynamic is different for each group, thus δGj,k and δGj,k−δRj,k, j = 1, ...p.

Denoting by ϕ = (θ, η, ξ), we estimate the set of state-specific and group-specific

parameters θ, the transition matrix ξk,jj , the group probabilities, η = (η1, ..., ηK)

and, implicitly, the number of groups, K. Disturbance terms have unit-specific

variances εit ∼ N(0, σ2
i ) with σ2

i = σ2/λi.

This is achieved within the Bayesian framework by applying Markov chain

Monte Carlo and data augmentation methods and estimate the joint posterior

p(ϕ, S|y) ∝ p(y|ϕ, S)p(S|ϕ)p(ϕ) in two steps. First, each time series is classified in

As the MS model provides a dating procedure for each region, a methodology
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one of the K groups by sampling the groups indicator Si from the posterior distribu-

tion P (Si = k|y, ϕ), and secondly, conditional on known indicators S = (S1, ..., SK)

the estimation of the parameters is carried out by sampling then from the posterior

probabilities p(ϕ|S, y).7 For estimation purposes, 5,000 draws and non-informative

priors are considered.8 We use independent priors with the hyperparameters rec-

ommended by Frühwirth-Schnatter and Kaufmann (2008):9

• η1, ..., ηk ∼ D(1, ...1)

• σ2 ∼ G−1(1, 1)

• λi ∼ G(4, 4)

• ξk,jj ∼ B(3, 1), j = 1, 2

• μG
k ∼ N(0, 4) and μG

k − μR
k ∼ N(0, 4)

• δGl,k ∼ N(0, 1)

• δGl,k − δRl,k ∼ N(0, 1)

• l = 1, ..., p, for k = 1, ...,K.

where D denotes a Dirichlet distribution; G, a Gamma distribution; and B, a Beta

distribution.

The number of components, K, can be selected through the point-process repre-

sentation or maximum likelihood. We apply three different criteria to estimate the

likelihood function: importance sampling, bridge sampling and reciprocal sampling.

7We follow the approach of Frühwirth-Schnatter and Kaufmann (2008).
8All the calculations have been done using the Matlab Toolbox provided by Frühwirth-Schnatter

(2008) and the specific codes that Silvia Kaufmann kindly shared.
9For a more detailed discussion about priors selection in finite mixtures and Markov Switching

models, see Frühwirth-Schnatter (2006).
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The last issue before classifying the groups is their identification to avoid label-

switching problems. In this regard, we use the combination of two restrictions.

The first one identifies states by μR
k > 0, ∀k = 1, ...,K to ensure that μG

k > μG
k −

μR
k , that is, the mean in expansions is above the mean in recessions. The second

identifies states within each group. In this case, different groups of parameters can

be used. This empirical strategy consists of trying the following three alternatives

of identification: either δGj,1 < δGj,2 < ... < δGj,K ∀j = 1, ..., p, μR
1 < μR

2 > ... < μR
K

or μG
1 > μG

1 > ... > μG
K . Then, we select the most suitable clustering from a visual

inspection of scatterplots and through the ability of the identified model to separate

groups unequivocally. The aim is to get the largest possible number of units within

one group or another. The units are placed in a group according to their probability,

computed using expression 2, which has to be above 0.5.

3 Illustration: European regions

We consider GDP data corresponding to 213 NUTS-2 regions from 16 European

countries: Austria, Belgium, Finland, France, Germany,10 Ireland, Italy, Luxem-

bourg, the Netherlands, Portugal, Spain, Greece, Denmark, Sweden, the UK and

Norway. The series cover a period of 32 years, from 1980 to 2011. The source of the

data is Cambridge Econometrics.

We estimate different specifications depending on the number of groups K =

1, 2, 3, 4, 5, 6 and lags p = 1, 2. The three sampling likelihood criteria are considered

to select the best model. All of them agree that the preferred model for European

regions includes two lags of GDP and identifies five groups, i.e. p = 2 and K =

5, respectively (see Table 1). The second-best performing models, which are also

10The eastern Landers and Berlin are not included in the analysis because there is no data prior
to 1991.

analyzed to illustrate the performance of the method, consider 4 and 6 groups and

2 lags.
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Scatterplots of the MCMC processes for different pairs of parameters are dis-

played in Figure 1, which shows the posterior draws following a Bayesian estimation

for the preferred model K = 5 and the other two possible candidates. Each point of

the scatterplot offers the location of the draws of the posterior estimated parameters.

Different colors represent each cluster of European regions. Clustering is clearer in

the model with five groups, whatever the parameters considered, supporting the

model selected by the likelihood criteria.

Regarding the identification of groups, we have imposed some restrictions in

addition to μR
K > 0, ∀K, which are detailed in the first column of Table 2. The

percentage of regions that are not unambiguously allocated to a group, with a prob-

ability greater than 0.5, following these identification restrictions, is presented in the

second column of the table for K = 5. Notice that considering μG
1 > μG

1 > ... > μG
K

or, equivalently, ordering the clusters from the highest to the lowest growth during

an expansion period, we get a classification of almost 100% of the regions.11

The probability by region of belonging to each of the five groups is depicted in

Figure 2. We assign each region to the group for which its probability of belonging

is above 0.5. The probability of being in each group is, in most cases, close to one.

The probability of belonging to group five, the one that concentrates most of the

regions, is also quite high in many of the regions that are classified in other groups.

Figure 3 depicts some of the main features of the five clusters. The first plot is

related to the cyclical phase. We observe that the probability of recession clearly

differs among the clusters, the highest probability corresponding to cluster one and

the lowest in cluster five. The second and the third plots represent economic con-

11Figures for the other parameters are available upon request.

ditions. The lowest weight of the industrial sector is in cluster one and is clearly

below the average of all the European regions. Cluster one also displays the highest

unemployment rate while the rest of the clusters are all below the European aver-

age. In order to get a geographical classification of the regions, in the last plot we
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define groups of countries12 and compute the percentage of regions in each cluster

belonging to each group. It seems that clusters one, two and three are related to

geographical criteria, while clusters four and five include regions of different groups

of countries (See Bandres, et al., 2017).

In order to document the business cycle estimates of each of the five clusters

and the European business cycle as a whole, we present Figure 4. We observe that

cluster five is representative of the European business cycle. The timing of the

business cycle is different in the rest of the clusters, especially cluster one, since

they undergo more recessionary periods.

On the whole, we can confirm the ability of the FMMM to properly capture the

variability of the regional cycles.

4 Concluding remarks

This letter illustrates the usefulness of FMMM for estimating and clustering regional

business cycles. This method allows us to jointly estimate the parameters associated

with the business cycles and to cluster regions with similar characteristics, overcom-

ing the weaknesses of other techniques when applied to regional data. An empirical

application to a set of European regions shows the suitable performance of this

methodological framework. A more detailed analysis of the estimated parameters

12Specifically, “Central countries” (Belgium, Germany, France, The Netherlands, Luxembourg
and Austria), “Nordic countries” (Denmark, Sweden, Norway and Finland), “Mediterranean coun-
tries” (Greece, Italy, Portugal and Spain) and “British Isles” (Ireland and the UK). Gadea, et al.
(2017a) define a similar grouping of countries.

and the features characterizing each cluster would give us valuable information of

the European business cycle.
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5 Tables

Table 1: Log-marginal likelihood of different Markov Switching model specifications
with group-specific autoregressive coeffients

Model K,p Importance sampling Bridge Sampling Reciprocal Sampling

1,1 -14561.98 -14561.28 -14561.98
1,2 -13986.91 -13986.20 -13986.90
2,1 -13986.91 -13986.20 -13986.90
2,2 -13948.44 -13948.00 -13948.71
3,1 -14430.85 -14429.66 -14430.89
3,2 -13795.62 -13794.28 -13795.33
4,1 -13948.44 -13948.00 -13948.71
4,2 -13778.06 -13774.50 -13775.67
5,1 -14361.92 -14419.50 -14419.22
5,2 -13737.03 -13724.26 -13730.18
6,1 -13795.62 -13794.28 -13795.33
6,2 -13748.13 -13743.97 -13748.25

Notes: The highest values are indicated in bold.

Table 2: Identification strategy

μR
K > 0, ∀K % of non-assigned regions

δGj,1 < δGj,2 < ... < δGj,K ∀j = 1, ..., p 0.01

μR
1 < μR

2 > ... < μR
K 0.24

μG
1 > μG

1 > ... > μG
K 0.00

Notes: The first column indicates the identification restrictions used in com-

bination with the restriction μR
K > 0, ∀K. The second column indicates the

percentage of regions that are not unambiguously allocated to a group.
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6 Figures
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(c) K=6, p=2

Figure 1: Scatterplots of the MCMC draws

Notes: From left to right, scatterplot MCMC draws of simulated group-specific parameters μG
k

against δG1,k, scatterplot of simulated state-group specific effects μR
k against δR1,k and scatterplot of

simulated group-specific parameters μG
k against μR

k . The scatterplots display values for k=1,...,K.
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Figure 2: Probability by region of being in each group

Notes: This figure shows the probability of each region belonging to each group. The lowest probability of being in a group is illustrated with
the lightest colors, while the highest probability is represented in brown. The regions belonging to each country are on the y-axis.
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