Main Article Content

Rosana Hämmerly
Universidad Nacional del Litoral, Santa Fe, Argentina
Argentina
https://orcid.org/0000-0003-0518-8279
Carlos Ubaldo Paoli
Centro Regional Litoral del Instituto Nacional del Agua, Argentina
Argentina
Oscar Carlos Duarte
Facultad de Ciencias Agropecuarias de la Universidad Nacional de Entre Ríos, Entre Ríos, Argentina
Argentina
Vol. 40 (2018), Articles, pages 69-101
DOI: https://doi.org/10.17979/cadlaxe.2018.40.0.4913
Submitted: Dec 19, 2018 Published: Dec 21, 2018
How to Cite

Abstract

Land management and land use planning need a sound knowledge of the available natural resources, and water is one of the most important of these resources. Accurate determination of the water balance and available water for different uses requires a rather dense network of hydrometeorological measurements. Precipitation (P) and potential evapotranspiration (ETP) are two terms of the water balance of major research interest in several disciplines, including Hydrology, Climatology and Agronomy. Meteorological station networks provide P and ETP data, which are commonly used for interpolation. This study analyses the spatial and temporal distribution of P and ETP on the Argentina territory of the La Plata basin. The analysis covers the 1970-2010 period and the data sets studied were provided by the National Water Resources Authority (SSRH), National Meteorological Service (SMN) and National Agricultural Technology Institute (INTA). The study was conducted both, at the annual and monthly temporal scales. Missing data were estimated using conventional methods. Pluviometry was available for 94 locations, while ETP was estimated from meteorological data at 38 weather stations using the Penman-Monteith method. The results showed specific trends for the spatial and temporal distribution of P and ETP. Average annual rainfall ranged from 499 mm to 2077 mm. Most of the studied area of the La Plata basin in Argentina is lowlands or plains, where P shows a strong trend to increase from east to west; however to the west of the plains, in Andes region, P may increase with altitude. Average annual ETP ranged from 899 mm to 1719 mm. Roughly, ETP decreases as P increases, even if there is not a total overlap of maxima and minima values of these two variables. Subsequently, the Chaco Seco region located to west of the plains ETP becomes higher than P. Analysis of temporal variability of yearly rainfall in the period 1970-2010 showed a clear increasing trend from 1970s to 2000, followed by a modest decreasing trend between 2000 and 2010. The information obtained in this study is highly important for water resource management and allocation planning, hydrological modelling, recharge assessment, and irrigation scheduling.

Downloads

Download data is not yet available.

Article Details

References

Arnold, J.G.; Kiriny, J. R.; Sirinivasan, R.; Williams, J.R.: Haney, E.B.; Neitsch, S.L. (2011) Soil and Water Assessment Tool. Input/Ouput Documentation. Version 2012. Technical Report N° 439. Texas. Texas Water Resources Institute, 654 pp.

Berbery, E.H.; Barros, V.R. (2002) The hydrologic cycle of the La Plata basin in South America. Journal of Hydrometeorology, 3(6), 630-645.

CEDEX (2003a) Manual de Usuario CHAC. Madrid, España.

CEDEX (2003b) Módulo de estadística aplicada a la Hidrología. Apuntes del Máster de Hidrología Superficial. Publicación interna, 140 pp.

Collischonn, W. ; Tucci, C.E.M. (2001) Simulação hidrológica de grandes bacias. Revista Brasileira de Recursos Hídricos, v. 6, n.2.

Collischonn, W. ; Lopes Da Silveira A.L.; Rógenes Monteiro Pontes, P.; Mainardi Fan, F.; Bravo, J.M.; Cauduro Dias De Paiva, R. (2015) Impacto das mudanças climáticas na Bacia do Prata. Produto 2. Projeto: Modelagem Hidrológica da Bacia do Prata Utilizando O Modelo Hidrológico de Grandes Bacias – MGB-IPH. Instituto de Pesquisas Hidráulicas (IPH). Porto Alegre, Brasil. 105 p.

Hämmerly, R. (2012) Listado de información nacional potencialmente disponible para el balance hídrico a nivel Cuenca del Plata (Argentina). Informe Final Subcomponente II.1 Balance Hídrico Integrado. Contrato OEA. Santa Fe, Argentina. 75 p.

Hämmerly R.; Cacik, P.; Iturraspe, R.; Gagliardi, M.P. (2014) Balance hídrico superficial de la Cuenca del Plata en territorio argentino. Parte A del Informe Final para el Subcomponente II.1. Balance Hídrico Integrado de la Cuenca del Plata, Comité Intergubernamental Coordinador de los países que conforman la Cuenca del Plata – FICH-UNL. Inédito. 272 pp. Santa Fe, Argentina.

Hämmerly, R.; Cacik, P.; Ingaramo, R.; Paoli, C. (2016) El uso de modelación a paso de tiempo mensual en cuencas no aforadas para el balance hídrico superficial de la Cuenca del Plata. XXVII Congreso Latinoamericano de Hidráulica, Lima, Perú, 28 al 30 de septiembre de 2016.

INTA (2010) Atlas climático digital de la República Argentina. Editores: Bianchi Alberto, Rubí Cravero y Silvia Ana Carla. Salta, Argentina.

Krepper, C.M.; García, N.O.; Jones, P.D. (2008) Low-frequency response of the upper Paraná basin. International Journal of Climatology, 28, 351-360. DOI: https://doi.org/10.1002/joc.1535

Paoli C.; Schreider, M. (Ed.) (2000) El río Paraná en su tramo medio. Contribución al conocimiento y prácticas ingenieriles en un gran río de llanura. Centro de Publicaciones UNL. Tomo 1. ISBN: 987-508-121-3. 309 pp.

Pereira, L.S.; Teodoro, P.R.; Rodrigues, P.N.; Teixeira, J.L. (2003) Irrigation scheduling simulation: the model ISAREG. En: Tools for Drought Mitigation in Mediterranean Regions, Rossi G., Cancelliere A., Pereira L.S., Oweis T., Shatanawi M., Zairi A. (Eds.). Kluwer, Dordrecht, pp. 161-180.

Tucci, C.E.M.; Clarke, R.T. (1998) Environmental Issues of La Plata Basin. Water Resources Development. v. 14, n. 2, p.157-173.

USACE (2000). Hydrologic Modeling System HEC-HMS, Technical Reference Manual. US Army Corps of Engineers – Hydrologic Engineering Center. CPD-75B. 148 p.