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The soil attributes, determinants of 
agricultural productivity and their impacts on 
the environment, vary at space and/or time 
(CAVALLINI et al., 2010). Usually, the evaluation 
of this variability is done using the experimental 
semivariogram and; consequently, of the estimation 
of the model parameters of the semivariogram, 
which, in most cases, are the nugget effect, the 
contribution, the sill and the range (SEIDEL & 
OLIVEIRA, 2013, 2014).

The range has the capacity of describing 
the spatial variability in the horizontal direction 
of the semivariogram, and this parameter can 

be measured in meters, independently of the 
attribute under study. This parameter indicates 
the distance that the sampled points are correlated 
(VIEIRA et al., 1983; RODRIGUES et al., 2012; 
AQUINO et al., 2014). The nugget effect, the 
contribution and the sill allow the evaluation of 
the spatial variability in the vertical direction 
of the semivariogram, depending, however, on 
the unit of measure of the attribute under study, 
making a general evaluation directly based on 
its numerical values impossible. BIONDI et 
al. (1994) and CAMBARDELLA et al. (1994) 
proposed to relate these vertical parameters of 
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ABSTRACT: The main purpose of this article was to evaluate the behavior and relationship of the range and components of SDI (Spatial 
Dependence Index) in general and in function of field factors such as soil types, type of attribute and soil layers. This evaluation was based on 
real data collected in national journals. It was noticed that the parameter range, in general and for different field factors, presented asymmetric 
positive behavior. The components of the SDI showed approximately symmetrical behavior. The SDI can capture the range behavior more 
intensely (the spatial variability behavior in the horizontal direction of the semivariogram), and, in a less intense way, the behavior of the 
contribution and sill parameters (the spatial dependence behavior in the vertical direction of the semivariogram). Thus, the SDI describes the 
behavior of spatial dependence of the total set of aspects of the semivariogram.
Key words: spatial dependence, geostatistics, semivariogram, field factors.

RESUMO: O objetivo deste artigo foi avaliar o comportamento e o relacionamento do alcance e dos componentes do IDE (Índice de 
Dependência Espacial) em geral e em função de fatores de campo, tais como tipos de solo, tipo de atributo e profundidades de solo. Esta 
avaliação foi baseada em dados reais coletados em periódicos nacionais. Foi observado que o parâmetro alcance, em geral, e para diferentes 
fatores de campo, apresentou comportamento de assimetria positiva. Os componentes do IDE apresentaram comportamento aproximadamente 
simétrico. O IDE consegue captar, de forma mais intensa, o comportamento do alcance (o comportamento da variabilidade espacial no sentido 
horizontal do semivariograma), e, de forma menos intensa, o comportamento dos parâmetros contribuição e patamar (o comportamento da 
dependência espacial no sentido vertical do semivariograma). Assim, o IDE descreve o comportamento de dependência espacial de toda a 
gama de aspectos do semivariograma.
Palavras-chave: dependência espacial, geostatística, semivariograma, fatores de campo.
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the semivariogram to generate dimensionless 
spatial dependence measures.

Recently, SEIDEL & OLIVEIRA (2014, 
2016) proposed a dimensionless spatial dependence 
index (SDI) to evaluate the spatial variability 
contemplating all semivariogram parameters 
under spherical, exponential and Gaussian models 
adjustment. SEIDEL & OLIVEIRA (2014) carried 
out theoretical and simulation studies that showed 
good performance of the SDI in the measurement of 
spatial variability.

However, a deeper assessment of the 
components of the SDI index still needs to be 
done. Thus, the objective of this article is to 
evaluate the behavior and the relationship of the 
range and the components of the SDI in general 
and in function of some field factors (different 
soil types, type of attribute and soil depths). 
According to CHERUBIN et al. (2014), several 
studies show how the spatial variability depends 
on field factors, such as soil type or type of 
attribute in study. ZANÃO JÚNIOR et al. (2010) 
comments that soil depths also influenced spatial 
variability. However, more field factors, such as 
relief type or land use and management, should be 
considered in future studies.

The data were obtained from 25 articles, 
published from 2006 to 2015 and made available 
on the Scielo Brazil portal, with application of 
Geostatistics in Soil attributes, used and cited in 
SEIDEL & OLIVEIRA (2016). From the papers, 
the following information was collected for each 
attribute: model of semivariogram adjusted, 
estimated range (a), estimated nugget effect 
(C0), estimated contribution (C1), estimated sill 
(C=C0+C1), maximum sample distance (MD), 
soil type, type of attribute (chemical, physical 
or mineralogical) and soil layer (depth). In this 
way, it was possible to obtain the SDI and its 

two components: 
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C

 and . 
The mathematical expression of the SDI and its 
respective classification of the spatial dependence 
are detailed in SEIDEL & OLIVEIRA (2016).

A total of 587 attributes were raised 
in the search, and in 275 of them (corresponding 
to 46.85% of the total) the spherical model was 
adjusted; in 123 (20.95%) the exponential model 
was used; in 102 (17.38%) attributes the Gaussian 
model was adjusted and; in 87 (14.82%) the pure 
nugget effect model was used. MONTANARI et 
al. (2008) reported that several surveys of spatial 

variability of soils used prominently spherical and 
exponential models. As an estimation, it is possible 
to highlight the spherical model as one of greater 
use. This model is what predominates in studies 
in Soil Sciences (GREGO & VIEIRA, 2005; 
GONTIJO et al., 2012). In addition, considering 
the exponential, Gaussian and spherical model 
adjustments (500 attributes), regardless of the 
type of attribute studied (whether chemical, 
physical or mineralogical), the spherical model 
is the predominate in semivariogram adjustments 
(54.37% in chemical attributes, 53.82% in physical 
attributes, 64.44% in mineralogical attributes).

From the sampling of range values and 
the obtainment of the components of the SDI, 
statistical analyzes of this information were carried 
out, through descriptive measures. The Spearman 

correlations between range, 10

1

CC
C
+

,  and 
SDI were calculated and tested (p<0.05). Data 
analysis procedures were performed in the software 
R (R CORE TEAM, 2016).

Sample distribution of the range is a 
positive asymmetry, with an asymmetry coefficient 
equal 2.12 and a median of the range equals to 39m 
(Table 1). The same behavior of positive asymmetry 
is evident for the range in different semivariogram 
models (spherical, exponential and Gaussian), soil 
types, chemical and physical attributes and soil 
layers (Table 1).

Considering the median of the range 
as a comparative measure, the ultisol (median of 
48.69m) has a higher value than the oxisol (median 
of 18.90m) (Table 1). This greater spatial continuity 
may be due to the shape of the landscape that the soil 
classes are inserted (CAMARGO et al., 2010, 2013; 
SILVA JUNIOR et al., 2012; RESENDE et al., 2014). 
MONTANARI et al. (2008) noticed higher values of 
range for chemical soil attributes in areas with linear 
pedoform (ultisol) compared to areas with convex 
pedoform (oxisol).

Another important observation, from table 
1, is that the range has higher median values for 
bottom soil layers. This can be explained by the fact 
that deeper layers have less spatial discontinuity of 
the soil attributes, since they are less susceptible to 
the effects of surface management, thus maintaining 
their original characteristics of homogeneity (LEÃO 
et al., 2007).

Chemical and physical attributes have 
higher median values to the range (median of 40.00m 
and median of 38.00m, respectively) in comparison with 
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mineralogical attributes (median of 30.50m) (Table 1). 
The value of the range influences the quality of the 
estimation (COSTA et al., 2014) and has application 
in the planning of samples (ZANÃO JÚNIOR et 

al., 2010). AQUINO et al. (2014) and OLIVEIRA 
et al. (2015a, b) demonstrated the applicability of 
the range in the definition of sampling densities for 
future studies.

 

Table 1 - Descriptive measures of the range (m), MD
a

5.0  (#) and 10

1

CC
C
+  ($), in general and in different semivariogram models, soil 

types, type of attribute and soil layers. 

Situation Measure Minimum Median Maximum Mean±SD1 CA2 

General 
(n=500) 

Range (m) 8.00 39.00 399.00 54.61±50.80 2.12 
# 0.03 0.51 1.00 0.56±0.29 0.19 
$ 0.20 0.67 1.00 0.67±0.20 0.09 

Exponential 
model 
(n=123) 

Range (m) 8.80 27.60 248.70 46.22±47.13 2.37 
# 0.03 0.47 1.00 0.54±0.28 0.31 
$ 0.34 0.69 1.00 0.70±0.17 0.17 

Gaussian 
model 
(n=102) 

Range (m) 10.00 20.48 240.00 41.98±42.11 1.99 
# 0.08 0.33 1.00 0.44±0.32 0.63 
$ 0.21 0.76 1.00 0.73±0.21 -0.34 

Spherical 
model 
(n=275) 

Range (m) 8.00 47.60 399.00 63.05±53.82 2.05 
# 0.07 0.60 1.00 0.62±0.27 0.15 
$ 0.20 0.62 1.00 0.64±0.20 0.26 

Oxisol soil 
(n=171) 

Range (m) 8.00 18.90 399.00 40.73±53.40 3.43 
# 0.03 0.36 1.00 0.46±0.32 0.47 
$ 0.25 0.70 1.00 0.71±0.20 -0.01 

Ultisol soil 
(n=260) 

Range (m) 12.90 48.69 248.70 64.39±50.06 1.50 
# 0.20 0.57 1.00 0.62±0.26 0.28 
$ 0.20 0.63 1.00 0.63±0.19 0.20 

Other soils 
(n=69) 

Range (m) 8.80 48.30 188.40 52.19±37.60 1.07 
# 0.18 0.55 1.00 0.60±0.27 0.28 
$ 0.25 0.71 1.00 0.73±0.19 -0.05 

Surface soil 
layer** 
(n=342) 

Range (m) 8.10 34.74 295.20 51.35±47.46 2.03 
# 0.03 0.50 1.00 0.55±0.28 0.27 
$ 0.20 0.67 1.00 0.66±0.20 0.06 

Bottom soil 
layer*** 
(n=158) 

Range (m) 8.00 43.45 399.00 61.69±56.92 2.14 
# 0.03 0.54 1.00 0.59±0.31 0.01 
$ 0.20 0.66 1.00 0.69±0.20 0.14 

Chemical 
atribute 
(n=206) 

Range (m) 8.00 40.00 399.00 59.49±60.07 2.06 
# 0.03 0.47 1.00 0.51±0.33 0.22 
$ 0.20 0.63 1.00 0.65±0.20 0.06 

Physical 
atribute 
(n=249) 

Range (m) 8.80 38.00 295.20 54.02±45.77 1.62 
# 0.18 0.56 1.00 0.60±0.26 0.33 
$ 0.20 0.67 1.00 0.68±0.21 0.12 

Mineralogical 
atribute 
(n=45) 

Range (m) 16.60 30.50 70.15 35.58±13.30 0.69 
# 0.23 0.43 1.00 0.56±0.26 0.62 
$ 0.36 0.68 1.00 0.69±0.13 0.13 

 

1Standard deviation. 2Coefficient of asymmetry. **Surface soil layer (0-0.1, 0-0.15, 0-0.2 m). ***Bottom soil layer (0.1-0.2, 0.15-0.3, 0.2-
0.3, 0.2-0.4, 0.3-0.4, 0.4-0.6 m). n=number of model adjustments to semivariogram (in distinct soil attributes). 
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As regards the  , a slightly 
symmetrical behavior was observed, in general, 
with a median of 0.51 and an asymmetry 
coefficient of 0.19 (Table 1). Also, this component 
showed more median value for the spherical 
semivariogram model; Ultisol had a higher 
median value when compared to oxisol; Both 
soil depths have very close median values for 
this component; Physical attributes had a higher 
median value when compared to chemical and 
mineralogical attributes (Table 1).

The component 10

1

CC
C
+  showed an 

approximately symmetrical behavior, in general, 
with asymmetry coefficient equal 0.09 and median 
of 0.67, and for the all semivariogram models, 
except for the Gaussian model that presented 
negative asymmetry, with a coefficient of 
asymmetry equal -0.34 (Table 1).

Considering the different types of soil, 

it can be seen from table 1 that 10

1

CC
C
+  has a 

higher median value in the oxisol (0.70) than in 
the ultisol (0.63).

Another emphasis was that the median 

values of 10

1

CC
C
+  did not vary for different soil 

depths. This result differs from that obtained by 
GREGO & VIEIRA (2005) and ZANÃO JÚNIOR 
et al. (2010) who observed differences in spatial 
dependence for different soil depths. The component 

10

1

CC
C
+  has higher median values in the all the types 

of attributes (Table 1).

Amplitud of the component 10

1

CC
C
+ , 

in general, ranged from 0.20 to 1.00, showing 
that this component does not tend to present 
low values in practice. Based on this, taking 

into account that the 10

1

CC
C
+  also generates 

the measure proposed in BIONDI et al. (1994), 
which is used together with the classification 
of CAMBARDELLA et al. (1994), it tends to 
consider more attributes as having greater spatial 
dependence (that is, with a degree of spatial 
dependence tending to be stronger) than would 
occur in reality. In addition, it is emphasized 
that, in the Gaussian model, there is a greater 
tendency of strong classifications of spatial 

dependence, when compared with the other two 
semivariogram models.

Based on table 2, it can be shown that, in 
general and for different field factors, the correlations 
between the range and the SDI index are moderately 
or strongly positive, and all significant (p<0.05). 
The SDI index has a positive asymmetric sampling 
distribution (SEIDEL & OLIVEIRA, 2016) similar 
to what occurs with the range, explaining results 
obtained by the correlations. The correlations between

   and SDI are all strongly positive, and 
all significant (p<0.05). However, the correlations 

between 10

1

CC
C
+  and SDI are weak or moderate (and 

most of the time are positive).
Furthermore, it can be seen from 

table 2 that only weak or moderate and negative 

correlations occurred between 10

1

CC
C
+  and 

range. This means that where we have greater 
values of the range it could occur lower values of 

10

1

CC
C
+  and vice versa, showing that using only 

the range (horizontal spatial dependence of the 

semivariogram) or using only 10

1

CC
C
+  (vertical 

spatial dependence of the semivariogram) is not 
the most adequate method of describing the spatial 
variability of attributes.

Results obtained from the correlations 
indicated that the SDI is able to capture, in an intense 

way, the behavior of the range and the 
when evaluating the spatial dependence, evidencing 
also the behavior in the horizontal sense of the 
semivariogram. This is an important feature 
of the SDI index, which differentiates it from 
other indexes in the literature, since according to 
FERRAZ et al. (2012) the range has a considerable 
role in determining the limit of spatial dependence. 
In addition, the SDI also succeeds in capturing, 

in a less intense way, the behavior of 10

1

CC
C
+

, minimally describing the vertical behavior of 
the semivariogram. In general, the SDI attempts 
to describe spatial dependence by capturing both 
the aspect described by the range (horizontal 
parameter of semivariogram) and the aspect 
described by nugget effect, contribution and sill 
(vertical parameters of semivariogram).
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Table 2 - Correlations (Spearman) between SDI, range (m), MD
a

5.0  (#) and 10

1

CC
C
+  ($), in general and in different semivariogram 

models, soil types, type of attribute and soil layers. 

Situation Measure SDI Range (m) # 

General 
(n=500) 

Range (m) 0.5606*   
# 0.8327* 0.7841*  
$ 0.2582* -0.3416* -0.2235* 

Exponential 
model 
(n=123) 

Range (m) 0.5890*   
# 0.8925* 0.7456*  
$ 0.2542* -0.2616* -0.1625ns 

Gaussian 
model 
(n=102) 

Range (m) 0.6296*   
# 0.9177* 0.7628*  
$ -0.0879ns -0.5052* -0.4235* 

Spherical 
model 
(n=275) 

Range (m) 0.5637*   
# 0.8229* 0.7915*  
$ 0.4906* -0.1740* -0.0491ns 

Oxisol soil 
(n=171) 

Range (m) 0.6198*   
# 0.8872* 0.7923*  
$ -0.0689ns -0.4564* -0.4371* 

Ultisol soil 
(n=260) 

Range (m) 0.4276*   
# 0.8237* 0.6772*  
$ 0.5415* -0.2415* 0.0256ns 

Other soils 
(n=69) 

Range (m) 0.7465*   
# 0.7816* 0.8748*  
$ 0.3971* -0.0842ns -0.1063ns 

Surface soil 
layer** 
(n=342) 

Range (m) 0.5277*   
# 0.8203* 0.7670*  
$ 0.2479* -0.3519* -0.2464* 

Bottom soil 
layer*** 
(n=158) 

Range (m) 0.6172*   
# 0.8430* 0.8084*  
$ 0.2825* -0.3262* -0.1795* 

Chemical 
attribute 
(n=206) 

Range (m) 0.5348*   
# 0.8763* 0.7662*  
$ 0.1074ns -0.4745* -0.3047* 

Physical 
attribute 
(n=249) 

Range (m) 0.5932*   
# 0.7729* 0.8043*  
$ 0.3956* -0.2024* -0.1792* 

Mineralogical 
attribute 
(n=45) 

Range (m) 0.8976*   
# 0.9211* 0.9766*  
$ -0.0582ns -0.3675* -0.3222* 

 

*Significant Spearman correlation (p<0.05). nsNon-significant Spearman correlation. **Surface soil layer (0-0.1, 0-0.15, 0-0.2 m). ***Bottom 
soil layer (0.1-0.2, 0.15-0.3, 0.2-0.3, 0.2-0.4, 0.3-0.4, 0.4-0.6 m). n=number of model adjustments to semivariogram (in distinct soil 
attributes). 
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