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The goal of the article at hand is twofold: First, it aims at reviewing several variants of
source location problems in undirected networks and summarizes briefly the existing
literature. Second, it extends the state of the art by presenting new theoretical findings
(e.g. the matroidal structure of static single covers or new structural results for deficient
sets), by proposing new algorithms with improved worst-case running time (e.g. a
pseudo-polynomial time algorithm and a related fully polynomial time approximation
scheme for static plural covers), and by introducing new model variants (e.g. cover
problems in dynamic networks).

The main part of the article is framed by an introduction presenting an in-depth
overview of the existing literature with several cross references to related results and
by a brief conclusion summarizing the main contribution. The actual contribution is
structured into three sections: static single covers, static plural covers, and dynamic
single covers.

After introducing the single cover problem in undirected static networks, both the
concept and structural properties of (minimal) deficient sets are mentioned. A new
proof of an exact greedy solution algorithm to the single cover problem is given,
which relies on the matroidal structure of the problem. Finally, a polynomial time
algorithm for computing the family of all deficient sets is presented, generalizing an
algorithm tackling the case of uniform demands.

This comment refers to the invited paper available at doi:10.1007/s11750-015-0395-7.

B Stefan Ruzika
ruzika@uni-koblenz.de

Carolin Torchiani
torchiani @uni-koblenz.de

University of Koblenz-Landau, Koblenz, Germany

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s11750-015-0396-6&domain=pdf
http://dx.doi.org/10.1007/s11750-015-0395-7

656 S. Ruzika, C. Torchiani

The next chapter deals with the plural cover problem, again relying on (minimal)
deficient sets. After stating structural and computational properties, the authors restrict
the study to tree networks, distinguishing the simultaneous and the non-simultaneous
problem. For the non-simultaneous case (i.e. the vertex demands are fulfilled one after
the other) with uniform costs, an exact linear time algorithm is introduced. The idea
of the algorithm is then used to improve the running time of a known exact solution
algorithm for the simultaneous problem (i.e. all vertex demands are fulfilled by one
flow) with uniform costs. The improvement results again in a linear time algorithm.
Next, a pseudo-polynomial time solution algorithm for simultaneous case with cost
bounded by F' € Ny is introduced. This algorithm is converted into a fully polynomial
time approximation scheme for the simultaneous problem on trees.

In the last chapter, dynamic flows in directed networks are presented and two stan-
dard approaches for computing maximum dynamic flows are mentioned. Based on
maximum dynamic flows, the dynamic single cover problem is introduced. Generaliz-
ing the static case, dynamic single covers are characterized based on the new notion of
(minimal) dynamic deficient sets. By reducing the decision version of the set-covering
problem to the decision version of the dynamic single cover problem, the latter is shown
to be NP-complete in the strong sense. Finally, it is shown that the dynamic single
cover problem is solvable in polynomial time if the underlying network is a path or a
cycle. The same is true for uniform costs if the corresponding set-covering problem
is tree like, e.g. if the underlying network of the dynamic static cover problem is a
tree. These results on polynomially solvable special cases of the dynamic single cover
problem are proven by transforming the problem into a set-covering problem and by
resorting to results on the latter.

In summary, the article provides a very comprehensive and intelligible overview
of source location problems in undirected networks. The existing literature is appeal-
ingly presented and a variety of innovative results relying on diverse mathematical
techniques is published. For the static problem, the running time of several exist-
ing exact solution algorithms is improved and for interesting new problem versions
efficient solution algorithms are introduced. Moreover, the dynamic problem is for-
mulated, and its structure and computational properties are studied. Especially for
location problems in dynamic networks, a field with diverse applications, the article
therefore provides a good starting point for further research.

One possible future research direction shall be introduced in the following. In many
real-world applications, it may not be sufficient to consider one single cost function.
Instead, several incommensurable objectives are to be optimized simultaneously. For
example, in the context of applying source location problems to find gathering/starting
points for a controlled evacuation, these locations might be evaluated with respect to
monetary cost, physical suitability, or exposure to a latent threat. Therefore, we suggest
amultiple objective extension of source location problems and exemplify this potential
field in the context of the static single cover problem (a general introduction to multiple
objective programming can be found in Ehrgott 2005).

Following the notation of the article at hand, let N = (G, u, d, f) be an undirected
network. In contrast to the single cover presented in the article, let f : V — R”, 1 <
p € N be a vector-valued cost function. The multiple objective static single cover
problem can then be defined as
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min f(S) := > f;

seS
S. t. man{Val(s, v} >d,, YveV
se

ScVv.

Although this formulation literally reads as the single cover problem introduced in
the article under discussion, it should be pointed out that costs of covers f(S) are no
longer reals but vectors of reals. Accordingly, the notion of optimality of a cover has
to be fixed. We follow the so-called concept of Pareto-optimality which is based on
the componentwise ordering. For two covers, S 1 82 C v, we define

F(SY<fF($?) e f(SY), < f($7),, Yi=1....p, but f(S')#f(s?).

The cost of a cover f(S') is dominated by the cost of another cover f(S?) if f(5?) <
f (S)L. The cost of a cover is called nondominated, if it is not dominated. Analogously,
we call a cover S efficient, if f(S) is nondominated. The task of solving the multiple
objective static single cover problem can then be understood as finding the set of all
nondominated cost vectors of covers and, for each nondominated cost vectors, (at
least) one corresponding efficient cover.

A first question with respect to this extension is related to the worst-case size of
the set of nondominated costs (in dependence on the coding length of the input of
the problem). For many combinatorial optimization problems, the cardinality of this
nondominated set is exponential and the resulting problem is then called intractable.
Second, the complexity status of this problem should be addressed. Many multiple
objective combinatorial optimization problems are NP-hard, even for the case p = 2.

One way of dealing with the presence of a cost vector is to scalarize it to one
(real-valued) cost component. A common approach is to form a so-called weighted-
sum scalarization. Let 0 < A € RP. The weighted-sum scalarization of the multiple
objective static single cover problem can be formulated as

min A7 f(8) == D AT
seS
s. t. max {Val(s,v)} > d,, YveV
seS

SCV.

It should be pointed out that this is again a single cover problem and can be solved,
e.g. by the dual greedy algorithm mentioned in the article under discussion. It is well
known that any cover optimal for the weighted-sum scalarization is efficient for the
multiple objective static single cover problem. Conversely, not all efficient covers can
be found as an optimal solution of the weighted-sum scalarization. Those which can
be found are referred to as supported efficient covers.

It is also well known that the extreme points of the convex hull of the nondomi-
nated cost vectors can be obtained with the weighted-sum scalarization. In view of an
intractability result, the question about the number of theses nondominated extreme
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cost vectors arises. For the multiple objective minimal spanning tree problem, Seipp
(see Seipp 2013) showed that this number is bounded by a polynomial in the input of
the instance. His proof relies on a structural analysis of the set of all possible weights
W={eR?: Zf:] AM=1AX>0,i =1,..., p}. A closer looks reveals that
Seipp’s proof solely utilizes the matroidal structure of spanning trees: after sorting
edges, a greedy algorithm consecutively processes edges, checks some property, and,
based on the result, decides whether or not an edge is chosen to be part of the solution.
In fact, this principal approach builds also the core of the dual greedy algorithm for
the single cover problem. Thus, an attempt to transfer Seipp’s approach in order to
obtain a similar result suggests itself.

In practical instances, it is often the case that the task of computing all nondom-
inated cost vectors is too time-consuming due to a large number of these vectors.
Consequently, computing a subset of covers representing all nondominated covers is
an obvious alternative (an overview of such methods can be found e.g. in Ruzika and
Wiecek 2005). Quite some research has been dedicated to the question of computing
a representation of the nondominated set with provable quality attributes (see, e.g.
Sayin 2000). For the cover problem, an approach based on a generalized rectangular
structure bounding the nondominated set from below and above seems to be promis-
ing (for similar approaches, see Hamacher et al. 2007; Déchert and Klamroth 2013;
Boland et al. 2014; Kirlik and Sayin 2014). Such a set of generalized rectangles may
be iteratively updated by employing the e-constraint scalarization

min £(S) = D (fik

seS
S. t. man{Val(s, v} >d,, YveV
NS

J(S)i =&, Vie{l,..., p)\{k}
scv.

where k € {1, ..., p} is the (scalar-valued) cost objective to be minimized while the
remaining objectives are constrained from above. Although these additional knapsack-
like constraints alter the combinatorial structure and impose additional challenges to
a resolution algorithm of this scalar-valued problem, the e-constraint scalarization is
capable of finding also unsupported efficient covers (in contrast to the weighted-sum
scalarization). The generalized rectangular structure can then be refined by computing
efficient covers via the e-constraint scalarization until some quality level is met.

Although these ideas for studying and tackling multiple objective variants of cover
problems are sketched for the static single cover, they may also be starting points
for similar questions in the context of plural cover problems and cover problems in
dynamic networks.
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