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RESUMEN 
 

La selección de los inputs y outputs que entran en un modelo de Análisis Envolvente de Datos 
(DEA) es problemática.  La eficiencia comparativa de cualquier unidad de decisión (DMU) 
depende de los inputs y outputs que entren en el modelo.  Existe la tentación de hacer una 
reducción de datos basada en el estudio de las correlaciones.  Pero la presencia o ausencia de 
variables altamente correlacionadas puede afectar las eficiencias calculadas de muchos DMUs.  
Por otra parte, la presencia de inputs u outputs que no se corresponden a la estructura lógica del 
sistema que se estudia puede hacer que algunos DMUs aparezcan como casos extremos en 
aspectos irrelevantes y parezcan ser eficientes por esa misma razón.  Se han propuesto varios 
métodos para la selección de inputs y outputs, pero algunos no tienen un soporte teórico, mientras 
que otros dejan claro que dos modelos no difieren mucho en la estructura de las eficiencias 
calculadas pero no explican en qué modo son parecidos o diferentes.  En este trabajo se presenta 
una metodología basada en la estimación de una multiplicidad de modelos, lo que genera una 
tabla de eficiencias por modelo y DMU.  Esta tabla se estudia por medio del Análisis de 
Componentes Principales y otros métodos multivariantes que resultan en representaciones 
gráficas de los resultados.  La metodología propuesta tiene varias ventajas: guía la selección de 
modelos en DEA, explica en qué modo dos modelos se parecen o se diferencian, explica porqué un 
mismo DMU adquiere distintas eficiencias bajo distintos modelos, visualiza los resultados, y 
produce un ordenamiento de DMUs incluso cuando los DMUs tienen 100% de eficiencia. 

 
Palabras clave: Análisis Envolvente de Datos, DEA, Estadística Multivariante, Selección de 
modelos en DEA. 
 
 

Introduction. 
 

Most researchers decide “a priori” what the specification of a DEA model should be, without 
considering any alternatives.  But it is possible that a variable included may contribute little or 
nothing to the calculation of efficiency values.  The converse is also true: a variable for which 
data is available, and has not been included in the model on a priori considerations, may be 
important in the determination of efficiencies.  A methodology aimed at guiding model 
selection in DEA is clearly desirable. Two interesting model selection approaches are due to 
Norman and Stocker [1] and to Pastor et al [2]. Norman and Stocker (1991) assess the need to 
include a variable by correlating the values of the variable under consideration with efficiency 
values obtained from the model that excludes it. Pastor et al (2001) prove that the contribution 
of a variable to efficiency can be assessed by estimating efficiencies twice, once with the 
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reduced model -which does not include the variable-, and once with the total model -which 
includes the variable.  However, as any empirical study demonstrates, models that appear to 
be similar are not exactly equivalent.  As variables enter or leave the specification, some 
DMUs become 100% efficient or loose this characteristic.  Both methodologies rely, to a 
certain extent, on judgement for final model selection.  This judgement is made with little 
reference to the original data set, which becomes obscured in a mass of mathematical details.  
DEA provides, for each DMU, just a score.  It is not very informative as to the way in which 
inputs and outputs contribute to the efficiency calculation.  There are many ways of achieving 
similar levels of efficiency when various inputs and outputs are involved.  It is necessary to 
look beyond DEA, study the reasons why DMUs achieve a certain degree of efficiency, and 
the reasons why the various models are, or are not, equivalent.  Here we propose a 
methodology based on multivariate statistical analysis. 

This paper proposes a new approach to guide model selection in DEA and to the ranking of 
units.  The method has the advantage that the ranking extends to inefficient units.  The DEA 
modelling procedure is embedded in a multivariate statistical framework.  The procedure 
proposed attempts to visualise differences and similarities between the efficiencies generated 
by various DEA models. The model is developed within the context of the data set on Chinese 
cities studied by Zhu [3] and Premachandra [4]. 

 
2. Case study: Chinese cities and DEA. 
 
Zhu’s  data set published on 18 Chinese was published by Premachandra.   There are two 
inputs and three outputs defined as follows. 
 
Input 1, (X1): Investment in fixed assets by state-owned enterprises. 
Input 2, (X2): Foreign funds actually used 
Output 1, (Y1): Total industrial output value 
Output 2, (Y2): Total value of retail sales 
Output 3, (Y3): Handling capacity of coastal ports 
 
The first step in the procedure we propose here requires the listing of all possible DEA models 
that can be derived from possible inputs and outputs. These are shown in Table 1.  To make it 
easy for identification purposes, notation is written in such a way that the inputs and outputs 
can be easily identified.  In this way, the first input, X1, is associated with the letter A in the 
name; the second input, X2, is associated with the letter B; outputs are associated with 
numbers in an obvious way.  Thus, model A1 in Table 2 contains one input, X1, and one 
output, Y1.  Model A12 contains input X1 and outputs Y1 and Y2.  Both Zhu  and 
Premachandra only estimate AB123. 
 
Efficiencies from each model were obtained using the CCR model with input orientation.  
Table 2 shows the efficiencies obtained.  The influence of the model on efficiency can be 
clearly observed in Table 2.  For example, DMU 2 is 100% efficient in twelve models that 
include output Y3 in their specification (A123, A13, A23, A3, B123, B13, B23, B3, AB123, 
AB13, AB23 and AB3).  But if Y3 is removed from the specification, the efficiency of DMU 
2 drops to very low values ranging from 0.11 to 0.33.   Something similar could be said about 
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DMU 6 and DMU 10.  Sometimes they are 100% efficient and other times they appear to be 
inefficient.  In this case, as in every other, it is possible to scan through Table 2 in search of 
clues that may explain which inputs or outputs are responsible for the changes.  It is, however, 
desirable to analyse Table 2 in a multivariate analysis context.  Models can be treated as 
variables and efficiencies as observations.  The aim is to explore the structure of the data and 
to visualise its most important features.  
 

DMU INPUT OUTPUT 
A1 X1 Y1 
A12 X1 Y1 Y2 
A123 X1 Y1 Y2 Y3 
A13 X1 Y1 Y3 
A23 X1 Y2 Y3 
A2 X1 Y2 
A3 X1 Y3 
B1 X2 Y1 
B12 X2 Y1 Y2 
B123 X2 Y1 Y2 Y3 
B13 X2 Y1 Y3 
B23 X2 Y2 Y3 
B2 X2 Y2 
B3 X2 Y3 
AB1 X1 X2 Y1 
AB12 X1 X2 Y1 Y2 
AB123 X1 X2 Y1 Y2 Y3 
AB13 X1 X2 Y1 Y3 
AB23 X1 X2 Y2 Y3 
AB2 X1 X2 Y2 
AB3 X1 X2 Y3 

Table 1: The 21 DEA models used in the study. 

It is clear that DMUs 2, 6, 10 are very different even if they all appear to be 100% efficient 
under the complete model, AB123.  Another interesting example is provided by DMUs 1 and 
16.  A cursory examination of Table 2 suggests that they are not very different, and under the 
complete model AB123 they both achieve 47% efficiency.  Are they similar?  If they are not, 
where are the differences? 

 
3. DEA and PCA. Efficiencies as variables in a multivariate statistical framework. 
 
Models in Table 2 have been treated as variables and efficiency ratings as observations, and a 
PCA exercise has been performed.  The minimum value for eigenvalue extraction has been set 
to 0.8, in line with Joliffe’s [5] recommendation.  Three eigenvalues exceeded the 0.8 limit, 
indicating that three components are sufficient to describe the structure of the data.  The first 
component was by far the most important, accounting for 71.9% of the variability in the data.  

The addition of the second component increases this percentage to 91.9%, and the addition of 
the third one takes it to 96.5%.   This dominance of the first component is typical of highly 
correlated variables; [6].  For the purposes of this study, the first two components provide an 
adequate representation of the data.  The results are given in Table 3. 
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DMU A1           A12 A123 A13 A23 A2 A3 B1 B12 B123 B13 B23 B2 B3 AB1 AB12 AB123 AB13 AB23 AB2  AB3

1 27                  28 47 47 44 25 26 10 10 12 12 8 6 3 27 28  47 47 44 25 26
2 11             17 100 100 100 17 100 33 33 100 100 100 32 100 33 33 100 100 100 32 100
3 26                   26 28 28 21 19 5 9 9 9 9 4 4 1 26 26 28 28 21 19 5 
4 37                     37 50 50 41 28 20 17 17 19 19 10 8 3 37 37 50 50 41 28 20
5 48                     54 63 59 58 49 17 52 52 53 53 34 32 6 59 59 63 63 58 49 17
6 100 100 100               100 88 88 13 84 84 84 84 44 44 3 100 100 100 100 88 88 13
7 28                     28 36 36 26 18 12 9 9 10 10 4 4 1 28 28 36 36 26 18 12
8 22                     33 50 41 49 32 25 16 16 19 19 17 14 6 22 33 50 41 49 32 25
9 50                     50 63 63 48 35 21 53 53 55 55 26 22 7 60 60 66 66 48 35 21

10 60       100 100 66 100 100 14 100 100 100 100 100 100 8 100 100 100 100 100 100 14
11 20                    24 30 27 28 22 11 9 9 10 10 7 6 2 20 24 30 27 28 22 11
12 26                     59 79 52 79 59 32 12 16 19 15 19 16 5 26 59 79 52 79 59 32
13 32                     70 75 43 75 70 16 21 27 28 22 28 27 3 32 70 75 43 75 70 16
14 12                     13 14 14 12 11 3 3 3 3 3 2 1 0 12 13 14 14 12 11 3
15 15                     18 19 16 17 17 3 2 2 2 2 1 1 0 15 18 19 16 17 17 3
16 26                     46 47 30 47 46 7 4 5 5 4 5 5 0 26 46 47 30 47 46 7
17 27                     27 31 31 27 23 8 2 2 2 2 1 1 0 27 27 31 31 27 23 8
18 5                     17 20 10 20 17 6 2 4 5 3 5 4 1 5 17 20 10 20 17 6

 
Table 2: DEA efficiencies for DMU under the 21 DEA models.  Efficiencies vary between 0 and 100.

5
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Component Eigenvalue % of  variance  Cumulative %  
PC1 15.10 71.88 71.88 
PC2 4.21 20.05 91.93 
PC3 .95 4.51 96.45 
PC4 .61 2.91 99.37 

 
Table 3: PCA results. 

 
Models have been ranked according to their loading in the first principal component.  The 
results are shown in Table 4.  All the models have positive loadings in this component.  The 
model with the highest loading in the first component is AB123, the complete model that 
includes two inputs and three outputs.  In this kind of situation the first principal component is 
often taken to be an overall measure of strength of the relationship.  It is clear that this 
component can be interpreted as an overall measure of efficiency.  Ranking of DMUs on this 
component will produce a ranking of all DMUs in terms of efficiency; this ranking includes 
both efficient and inefficient DMUs 
 
 

 Component 
  

 PC1 PC2 PC3 
AB123 .964 .141 .197 
A123 .963 .143 .205 
AB13 .962 .173 -.122 
B123 .942 .204 -.246 
AB23 .937 .187 .290 
A23 .937 .187 .290 
B13 .932 .207 -.284 
B12 .923 -.263 -.256 
B1 .913 -.256 -.303 
B2 .894 -.170 -.100 
AB12 .893 -.411 .146 
A13 .891 .281 - 
AB1 .882 -.366 -.266 
B23 .874 .345 -.116 
AB2 .872 -.374 .288 
A12 .827 -.525 .195 
A2 .815 -.487 .293 
A1 .730 -.530 -.187 
B3 .397 .896 - 
AB3 .438 .890 - 
A3 .438 .890 - 

 
Table 4: Component loadings.  Models are ordered on the first component. 
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Turning to the second component, it is to be noticed that the only models that load highly on it 
are B3, AB3 and A3.  All these models contain a single output in their specification, Y3. All 
the models that contain output Y3 have positive loadings in the second component, while 
those models that exclude Y3 have negative loadings.  The second component is clearly 
associated with the ability that DMUs have of generating output Y3.  Using similar reasoning, 
it can be argued that the third principal component is related to the efficient use of inputs.   
Models A2, A23, AB23, AB2, A123, AB123, A12, AB12, A3, and AB3 have positive 
loadings in the third components.  All these models contain input X1 or both inputs.  Models 
B1, B13, AB1, B12, B123, A1, AB13, B23, B2, B3, and A13 have negative loadings in the 
third component.  All but two models contain input X2 or both inputs. 

 In summary, the first principal component gives an overall measure of efficiency; the second 
principal component is related to output Y3; and the third principal component is a contrast 
between input X1 and input X2.   Here we will concentrate on the first two components. 

For each DMU, component scores for the first and second principal component have been 
plotted in Figure 1.  The DMUs that achieve efficiency scores of 100% are to be found at the 
extreme right hand side of the first principal component.  DMU 2 shows its reliance on output 
Y2 by finding its way to the top of the second principal component.  The fact that DMU 2 
achieves efficiency by concentrating on output Y3 is now clear.  The isolated position of 
DMU 2 in the figure suggests that we are dealing with a “maverick”.   In general, once 
meaning has been attached to the various components, extreme points can be analysed, 
particularly efficient extreme points, as this may indicate that the relevant DMUs use an 
unusual mix of inputs and outputs to achieve efficiency, and this may reveal maverick 
behaviour. At the other extreme of the first principal component we find DMUs 14, 15, and 
18.  These DMUs achieve low efficiencies under most models. 
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Figure 1. Component scores for the first and second principal component 
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The relationship between components and models can be displayed graphically by using the 
technique of Property Fitting (Pro-Fit); [7].  In this technique, vectors are drawn in such a way 
that, for a particular DEA model, the value of the efficiency derived from the model increases 
in the direction of the vector.  The direction of the vector is calculated as a result of a 
regression analysis in which the efficiencies derived from the particular model are the 
dependent variables and the component scores are the independent variables.  This technique 
has the advantage of highlighting up to what point two models are similar, since the angle 
between any two vectors is related to the correlation between the efficiencies generated by the 
two models concerned.  All the vectors are represented through the centre of coordinates in 
Figure 1.  In this case all models achieved very high values of R2, the lowest one being 0.81, 
and all models were represented.  All vectors pointed towards the positive side of the first 
component, forming an open fan, something that indicates that the various ways of achieving 
efficiency are positively correlated.  The vectors can be seen in Figure 2. 
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Figure 2: ProFit Analysis. Vectors for each DEA model. PC1 and PC2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The vectors in Figure 2 group neatly into three groups.  One group is formed by models AB3, 
B3, and A3.  All these models achieve their highest value in DMU 2 and contain only output 
3, indicating that DMU 2 achieves 100% efficiency by attaching high weights to output 3.   
The remaining vectors split into two groups, both of them pointing in the positive direction of 
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component 1.  One group points towards the positive side of component 2 and the other group 
points towards the negative side of component 2.  The difference between the two groups 
concerns the presence or absence or output 3 in the specification.  The models that do not 
contain output 3 point downwards, and those that contain output 3 point upwards.  Thus, 
output 3 is crucial in the modelling procedure.  The average vector -labelled Mean- has also 
been calculated and represented, and almost coincides with the axis associated with the first 
component.  In other practical situations one would also look at the projection on other 
principal components, and this may reveal the different reasons why DMUs achieve a given 
level of efficiency. 

 The procedure to select a model is now clear.  If the directional vectors form a closed fan, 
model selection is very simple, as this is an indication that all models are equivalent.  In this 
case one would select the most parsimonious model.  If the fan is wide open, we need to 
explore any groups that may exist and base our model selection on economic considerations as 
well as on statistical principles.  Thus, the fan is the wind rose that guides the DEA sailor 
through the sea of models.  In the present case it is to be first decided whether output 3 should 
or should not be included in the specification.  This is a crucial decision.  Models AB3, B3, 
and A3 do not appear to be reasonable since they favour a maverick DMU, DMU 2, and show 
the remaining DMUs in bad light, a fact that can be confirmed by inspecting Table 3.  If it is 
decided to leave output 3, in the specification, then any model amongst B23, A13, B13, AB23, 
B123, A23, B123, A123, AB123 could be chosen.  Parsimony would probably favour A23, as 
it plots in the middle of the fan and, contains only one input and two outputs. 

We can now see in which way DMU 1 is different from DMU 16.  They both achieve the 
same efficiency score under the complete model AB123, and have almost identical projections 
on the first principal component.  But DMU 1 plots on the positive side of the second 
component, indicating that it values output Y3, while DMU 16 plots towards the negative side 
of the second principal component, indicating that models that ignore output Y3 will favour 
this DMU.  If output Y3 was to be considered important by decision makers, DMU 1 would 
be preferred to DMU 16. 

As far as DMU ranking is concerned, it could be argued that no single model should 
contribute to the position of a DMU in the list, and that the ranking should take into account 
all possible specifications.  Thus, the ranking along the first principal component would be 
appropriate. We think that only the first principal component should be involved in the 
ranking, and not all of them weighted according to the variance they explain, as done by Zhu. 
The ranking based on the first principal component would produce the following ordering of 
DMUs: 10, 6, 2, 5, 9, 13, 12, 4, 8, 1, 16, 7, 11, 17, 3, 15, 18, and 14.  It is to be noticed that 
this procedure allows for the ranking of all DMUs: inefficient and efficient ones. 
 

A complementary way of analysing the data in Table 3 is to use Cluster Analysis.  It is good 
practice to supplement the results obtained from graphical representations of multivariate data 
with the superimposition of cluster countours; [8].  Clusters were obtained using Ward’s 
method, that maximises within group homogeneity and between group heterogeneity.  Cluster 
Analysis shows the presence of five main clusters, one of them containing only DMU 2, 
which appears yet again as a special case.  At a higher level of clustering, DMUs divide neatly 
into two groups, one of them containing DMUs that reach 100% efficiency and the other one 
containing the DMUs that never do.  The clusters are shown in Figure 1.  
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The extreme position of DMUs 14, 15, and 18 is to be noted.  Zhu  comments on these three 
cities as follows: “these three DMUs were declared by Chinese government as model for 
economic reforms and developments”.  Considering the low efficiency levels achieved by 
these three cities, any directed economic effort has great opportunities for success. 
 
4  Conclusion. 
 
This paper has presented a new method for model selection in DEA based on multivariate 
statistical analysis.  The methodology requires evaluating efficiencies for all possible 
input/output combinations.  It is clear that such methodology produces much redundancy, but 
also generates valuable information.  The matrix of efficiencies by models is then analysed by 
means of data reduction techniques, such as Principal Components Analysis.  Further 
understanding of the data can be gained by applying Hierarchical Cluster Analysis in this data 
set. 

It has been shown that there are advantages with calculating efficiencies under all possible 
specifications of the DEA model, and then performing multivariate analysis on the results 
obtained. This methodology permits the joint graphical representation of models and DMUs, 
and thus it makes it possible to explain up to what point two models are equivalent, and if they 
are not equivalent, why they are not equivalent.  The relationship between models and DMUs 
becomes clarified.  By supplementing the representations with the results of Property Fitting 
techniques, it is possible to assess why a particular DMU achieves high efficiency scores 
under some models and low efficiency scores under other models.  Maverick DMUs are easily 
identified.  Finally, the method permits the ranking of DMUs.  Such ranking includes both 
efficient and inefficient DMUs. 
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