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Our challenge is to develop flexible, robust and coherent curricula that are dynamic with respect to
the needs of individual programs, the advances in technology, and the advances in learning theory.
The past decade has witnessed a concatenation of forces pressing at an unprecedented rate for
curriculum change. These changes, led by the escalating growth in the use of technology for insight,
demand a restructuring of the curriculum—content as well as pedagogy. In this paper, I will discuss
four major forces promoting change, describe some shortcomings of present curricula, and then
suggest a structure for a future curriculum.

FORCES FOR CHANGE

Calculus reform movement

THIS movement, initiated with the panel dis-
cussion on ‘Calculus Crucial, but Ailing’ held
during the 1985 Joint Mathematics Meetings,
refocused instruction toward engaging students
to take responsibility for their own learning.
Helping students ‘learn how to learn’ has become
an acceptable goal of mathematics courses.
Instructors have altered their roles, decreasing
the presentation role and increasing the guide,
coach or facilitator role. Small-group work is
widespread in mathematics curricula—both in
terms of in-class group activities and out-of-class
group projects. Real-world applications and
hands-on experimentation pervade many curricula
today. Use of multiple representation—graphic,
numeric, symbolic and verbal—has become
standard procedure in the majority of calculus
courses. Development of communication skills
has become accepted as a legitimate objective of
mathematics courses. An increasing number of
programs now include an explicit student growth
model. This is a model that provides both guidance
and accountability for developing essential skills
such as reasoning and communication through a
sequence of courses. Skills whose development are
too important to be left to chance.

The impact of the Calculus Reform Movement
is clearly visible when comparing a calculus text
published in the late eighties to one published in
the late nineties [8]. The impact of the Movement
has spread to other mathematics courses, notably
linear algebra, differential equations, and now
college algebra. Indications of similar reform
movements are appearing in the sciences and
engineering. For example, Daniel Inman (Virginia
Polytech Institute and State University) and
Robert Soutas-Little (Michigan State University)
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have developed a reformed program in mechanical
engineering [5].

Technology for insight and teaching

The late nineteen-eighties saw the advent of
graphing calculators and desktop computers with
sophisticated computer algebra systems (CASs).
During the past decade, both the hardware and
the software has advanced at an ever-increasing
rate bringing into question content issues. Should
techniques of integration be dropped from the
curriculum now that students have graphing calcu-
lators that can integrate symbolically as well as
numerically? How should the content of dif-
ferential equations courses be modified when
students have graphing calculators that can plot
slope and direction fields as well as symbolically
solve first- and second-order linear differential
equations? In some instances, technology has
completely reversed the order of gaining insight.
For example, prior to the late nineteen eighties a
great deal of analysis was required in order to
sketch the graph of a function. In fact, getting a
graph was often the end result. Today, one starts
with a calculator or computer plot and then uses
the plot to inform the resulting analysis.

Technology has provoked a renaissance in
visualization as applied to mathematics [9]. It has
brought intuitive and experimental mathematics
into the heart of our courses as aids in developing
conceptual understanding. Lynn Steen credits
technology for reshaping our understanding of
mathematics as fundamentally a science of
patterns [7]. Are computers primarily tools for
developing insight or for computing?

Technology has elevated the importance of
numerical approaches in calculus and related
subjects. Thanks in large part to CASs, approxi-
mation and error-bound analysis is a common
theme in today’s traditional calculus course.
Some reformers, in fact, view approximation and
error bound analysis as a backbone of the calculus
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[6]. The iterative capabilities of CASs has contri-
buted to the renewed interest in the sequential
approach to the calculus, especially in the use of
recursive sequences (sequences whose non-initial
terms depend on preceding terms such as in
the factorial or Fibonacci sequences). Discrete
dynamical systems (i.e. recursive sequences) is
beginning to appear as an introductory topic in
calculus courses for modeling purposes as well as
a forerunner to differentiation and differential
equations.

Do more with less

The rapid expansion of information and with it
the demand for greater and greater quantitative
skills places increasing demands to put more into
already overfilled curricula. During the nineteen
eighties the Mathematical Association of America’s
(MAA) Committee on the Undergraduate Pro-
gram in Mathematics (CUPM) recommended a
core program consisting of seven courses [2]. The
courses are three semesters of calculus, linear
algebra, differential equations, discrete mathe-
matics, and probability and statistics. How to
accommodate the important material found in
these seven courses into a four course core curri-
culum became known as the ‘seven into four’
challenge or more generally the ‘» into m’ chal-
lenge. This challenge was the subject of the Core
Curriculum Conference held at the United States
Military Academy (USMA) at West Point, NY in
1994 [3]. Successful resolutions of this challenge
center on integrating a sequence of topics into a
cohesive four semester course rather than con-
sidering four one semester courses. More gener-
ally, integration of topics rather than of courses
provides a model for schools who are faced with an
‘n into m’ challenge.

The primary resolution of the seven into four
challenge is the integrated core curriculum
initiated in 1991 at USMA. The program begins
with a study of discrete dynamical systems
(discrete mathematics) and introduces topics
from linear algebra in order to solve systems of
recursive sequences using eigenvalues and eigen-
vectors. The study of long-term effects and
equilibrium states introduces the limit concept
for sequences. The approximation approach via
sequences is then used to develop the calculus.
First- and second-order linear differential equa-
tions, studied following integration of a function
of a single variable, are viewed as the continuous
counterpart of discrete dynamical systems. Multi-
variable calculus and probability and statistics
complete the program. A strong focus on problem
solving and modeling pervades the program. In
addition, the emphasis on student growth in
terms of mathematical reasoning, mathematical
modeling, scientific computing, writing in mathe-
matics, history of mathematics, and connectivity to
partner disciplines, prepares the students to
perform the analysis and synthesis required in

addressing open-ended problems in engineering,
mathematics, and the sciences.

Another aspect to meeting the » into m challenge
involves reducing the time allotted to calculus from
three to two semesters. One approach to this is to
integrate the treatment of one and several variables
[6]. Viewing single variable calculus within the
context of multivariable calculus creates an
environment that encourages a strong emphasis
on generalization and exploration. How do you
generalize the concept of real numbers to two
dimensions? How do you generalize differentiation
to a function of two or more variables? This
approach is better suited to the development of
confident and competent problem solvers than is
the ‘add on’ approach to topics associated with the
tradition of separating the treatment of one
and several variables. The integrated approach is
particularly appropriate for those students who
have studied calculus in high school. These
students constitute the large majority of students
presently taking calculus in college.

Interdisciplinary cooperation

In 1996 the National Science Foundation (NSF)
developed a major initiative to promote inter-
disciplinary cooperation. Although it is too early
to speak of success, there is ample evidence of a
growing force to incorporate interdisciplinary
cooperation within curricula. Multi-year grants
have been awarded, professional associations
have formed committees, workshops and confer-
ences are being held, and instructional materials
are being published. The April 12, 1999 Higher
Education and National Affairs Bulletin (p. 4) cites a
report of the National Research Council issued in
March 1999 that calls for faculty to work together
to develop courses that ‘illustrate connections
among disciplines’.

Building on the Calculus Reform Movement’s
emphasis on out-of-class group projects, USMA
under its NSF Project INTERMATH has formed
a national consortium to develop and promote the
use of Interdisciplinary Lively Application Projects
(ILAPs). These small group projects are developed
through the collaboration of faculty members in at
least two departments. Because ILAP problems
reside in partner disciplines, they help students
link different disciplines.

A pollution problem in the Great Lakes
provided a setting for an ILAP developed between
faculty in the environmental engineering and
mathematics departments. An ILAP developed
between the physics and mathematics departments
asked students to model the effects of an earth-
quake on a water tower as a spring-mass system.
Analyzing the smog in the Los Angles Basin
became a chemistry-based ILAP. Faculty from
mathematics and mechanical engineering depart-
ments collaborated on an ILAP to analyze forces
on a bridge. (See [1] for additional examples.)

In addition to linking departments at the student
level, ILAPs open up communication links among



434 D. Small

the faculty. These communication links have led to
team-taught courses with faculty from mathe-
matics and environmental engineering as well as
between faculty in mathematics and physics.

Interdisciplinary initiatives hold the promise for
‘multiple wins’ situations. From the perspective of
the mathematics department, interdisciplinary
efforts help provide relevance. From the per-
spective of the partner discipline, these efforts
provide a source of exposure to students who
may not have taken a course in that discipline.
Interdisciplinary efforts enrich students’ problem-
solving skills as they experience the advantages
of viewing problems from the perspective of dif-
ferent disciplines. Collaboration between faculty
members of different departments can provide
building blocks for increased interdepartmental
communication and improved interdepartmental
rapport. Of course, the strongest argument for
interdisciplinary cooperation is that the real
world works that way.

SHORTCOMINGS OF PRESENT
CURRICULA

A common response to the forces described
above is to modify existing course structures
rather than create new structures. Time is the
crucial factor. If group projects are estimated to
take six hours of work per student per project and
two projects are assigned in a semester, the syl-
labus needs to be adjusted to provide for this
additional twelve hours. Assuming the idealistic
state of two hours of preparation for each hour of
class, these twelve hours translate into four class
periods. Now add a class for each project for
student presentations and discussion and the
total is a minimum of six classes for the two
projects. Instruction in the use of technology,
calculators or computers, can easily take the
equivalent of two class periods over the course of
a semester. In-class activities and student presenta-
tions also require considerable class time. There-
fore, adopting the recommendations of the Reform
Movement requires reducing course content. This
is the ‘lean’ of the Toward a Lean and Lively
Calculus [4].

Removing topics from a syllabus is difficult to
do for several reasons. Some examples are: sacred
cows abound, adjustment to downstream courses
need to be made, the flow of the text is disrupted,
exercises need to be reselected, treatment of
remaining topics may need to be altered, class
preparations need to be changed, and the elimina-
tion of topics may be viewed as ‘dumbing down’
the course. In addition, changing a curriculum in
an evolutionary manner runs the risk of destroying
program coherence. This is particularly true for a
multiple course core program. As a result we often
attempt to retain too much content while respond-
ing to the forces discussed earlier. This, in
turn, leads to a more shallow treatment of topics

rather than the deeper conceptual understanding
advocated by the Reform Movement.

Dependency on a text imposes major difficulties
to adjusting an existing course. The greater the
dependency, the more the course is determined by
the philosophy, approach, and syllabus of the
author(s). The flavor, if not the content, of most
courses is determined by the text rather than the
instructor. Thus, modifying a course usually
involves creating disconnects with the text in
terms of philosophy, approach, and syllabus. As
a consequence, the lack of suitable texts that ‘fit
my philosophy and objectives’ is a major barrier to
reform. A further difficulty is that texts are
partially out of date by the time they enter the
market due to the rate of change propelled by the
forces discussed above and the time required to
release a new text.

The rapid advances in technology compound the
difficulties in finding suitable texts. Two examples
will underscore this point. First, within the past
year calculators have come on the market that
evaluate indefinite as well as definite integrals,
solve first- and second-order differential equations,
plot slope and direction fields. What does the
availability of this technology imply for the treat-
ment of integration? Do we eliminate techniques of
integration from our calculus courses? What is the
essence of integration and how do we teach it given
the present technological tools? Second, because of
the available technology, the reform movement in
differential equations places strong emphases on
the qualitative and numerical approaches. How
can the qualitative approach be integrated into
the traditional treatment of differentiation? There
are presently no texts that address either of these
situations. Furthermore, when such texts become
available they will probably be out of date with
respect to technology’s treatment of improper
integrals and series.

SUGGESTED STRUCTURE FOR
A FUTURE CURRICULUM

I propose the following three-step process
for developing a dynamic curriculum that will
maintain its integrity and relevance in a rapidly
changing technological society:

Step 1. Those who are responsible for the core
mathematics curriculum meet with repre-
sentatives from partner disciplines to identify
underlying themes for the core program. For
example, change, accumulation, approximation
and error-bound analysis, and transformations
would probably be included in most lists. Ideally
the number of themes would be small, say no
more than six.

Step 2. Those who are responsible for the core
mathematics curriculum develop a ‘glorified’
outline for the entire core that clearly reflects
the agreed themes. This outline will be the ‘text’
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for the core program. Thus it will include some
textual type material including sample in-class
activities, exercises, and discussion topics.

Step 3. Instructors ‘flesh out’ the outline by assign-
ing small individual or group research/discovery
projects. These assignments would contain
two or three references to books in a library,
Internet sources, texts, problem books, or other
easily obtained resources. Upon completion of a
project, the students would make a class pre-
sentation and lead a discussion on the topic.
Different groups, in fact the whole class, could
be given the same assignment.

Some examples of projects (in calculus) are:

® Conduct a rate experiment (e.g., rolling a ball),
collect data, and compute a sequence of average
rates of change that approximate the exact rate
of change at a specified point. (Derivative)

® Qualitatively develop possible solution curves to
a logistic differential equation and discuss the
effects of changing parameters. (Derivative)

® Conduct a warming or cooling experiment,
collect data, develop a model, and then solve
graphically and symbolically. (Derivative)

® Discover Euler’s method and then develop an
improved method. (Derivative)

® Generalize the integration concept to include
finding volumes of solids (solids of revolution,
swimming pools). (Integral)

® Generalize proper integration to improper
integration in a probability or series setting.
(Integral)

® Investigate numerical approximation methods
and then develop a ‘new’ method (say, a quartic
approximation). (Integral)

The outline would be developed through debates
on what should be included in the program rather
than what can be removed from someone else’s
program. This is a constructive and uniting
process. The outline needs to provide sufficient
time to allow concepts to be covered to the
desired depth. I strongly suggest that a buffer
period of at least two weeks length be provided
for each semester. This would offer instructors
the opportunity to partially tailor their course to
their students. The outline could be custom
published by the semester and sold to students
at a considerable saving over present text book
prices.

I believe this structure has several advantages
over present course structures. A few of these
advantages are:

® The program offers maximum flexibility.

® The themes provide coherence to the curriculum.

® The people responsible for the program develop
their own program based on their own philo-
sophy rather than adapting a program and
philosophy of some other author.

® The outline and projects could be easily changed
from semester to semester, thus making it easy
to keep the curriculum current and the pace
reasonable.

® The research/discovery projects directly address
the goal of students’ learning how to learn on
their own.

® The research/discovery projects directly address
the goal of learning how to work in groups.

® Students are much more likely to read a resource
in order to prepare a project then they are to
read their own text. Thus the research/discovery
projects directly address the goal of helping
students learn how to read in their discipline.

® Research/development projects could easily be
crafted to link to partner disciplines as well as to
past segments in the core program.

® The program offers instructors the opportunity
to take ownership of their course.

® The program offers more growth opportunities
for the instructors than do traditional programs.

The proposed structure would require a consider-
able amount of work to prepare the curriculum
materials for the first offerings of the core courses.
However, these materials would accumulate in
successive offerings resulting in a convergence to
a time commitment similar to that in present
courses.

CONCLUSIONS

The explosion in the quantity of information
available and the spiraling increases in speed of
processing and transmitting information is pres-
suring curricula to place greater focus on helping
students learn how to manage information.
Students need to learn how to identify, validate,
and apply pertinent information in problem-
solving situations. In short, the information age
places a premium on students learning how to
learn on their own. This emphasis is further under-
lined with the changes in employment scenarios
from lifetime careers to sequences of careers.
Making curricula relevant to the steadily increas-
ing variability of society and business requires
that increased value be placed on interdisciplin-
ary cooperation and student experiences of
generalizing results. Finally, the exponential
rate of development of technology for insight
and teaching demands a level of curriculum flexi-
bility that exceeds the capabilities of a text-based
curriculum.

Evolutionary modifications of present curricula
are insufficient to create programs for a rapidly
changing, technological society. A revolutionary
restructuring of curricula is required to create
cohesive programs with sufficient flexibility to
educate tomorrow’s students.



436

[l |

10.

D. Small

REFERENCES

. D. C. Arney, (ed), Interdisciplinary Lively Application Projects (ILAPs), The Mathematical
Association of America, Washington, DC (1997).

. Committee on the Undergraduate Program in Mathematics, Recommendations for a General
Mathematical Sciences Program, The Mathematical Association of America, Washington, DC
(1981).

. J. A. Dossey, (ed), Confronting the core curriculum, MAA Notes, #45, The Mathematical
Association of America Washington, DC (1998).

. R. G. Douglas, (ed), Toward a lean and lively calculus, MAA Notes, #6, The Mathematical
Association of America Washington, DC (1986).

. D. Inman, and R. Soutas-Little, Calculus reform to mechanic reform, and Computers in
undergraduate mechanics education, IJEE, 13 (6), pp.442-447 (1997).

. D. B. Small and J. M. Hosack, Calculus, An Integrated Approach. McGraw-Hill Publishing Co.,
New York, NY (1990).

. L. A. Steen, The science of patterns, Science Magazine, 29, (April 1988).

. J. Stewart, Calculus, Brooks/Cole Publishing Co., Pacific Grove, CA (1987).

. J. Stewart, Calculus, Concepts and Contexts, Brooks/Cole Publishing Co., Pacific Grove, CA

(1997).

W. Zimmermann, and S. Cunningham, (ed.). Visualization in teaching and learning mathematics,

MAA Notes, #19, The Mathematical Association of America Washington, DC (1990).

Donald B. Small received his Ph.D. degree in mathematics from the University of
Connecticut in 1968. He taught at Colby College (Maine) for 24 years before joining the
Mathematical Sciences Department at the US Military Academy. He has been a leader in

th

e Calculus Reform Movement since its inception, co-authored, with John Hosack, the

first reformed calculus text, and has organized over 100 National Science Foundation
supported workshops on the use of Computer Algebra Systems and on Calculus Reform.
He is a Director of the US Military Academy’s Project INTERMATH and is leading a
national movement to reform college algebra.



