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This is a summary of the course ‘automation in structural design’. The course can be taught at the
upper-undergraduate or graduate level. Basically automated systems in structural design can be
evolutionarily classified into four types: (i) traditional computer-aided design, (ii) database man-
agement systems, (iii) expert systems and (iv) neural networks. This paper is a survey of these
JSfour types of systems andgives both some theoretical background and actual software applications.
These applications are SAP90, LMS, CCES and NNISE. Because structural design is likely to be
more software dependent in the future, familiarity with applications such as these is becoming

increasingly important.

INTRODUCTION

THIS paper presents an outline for a course in
structural engineering titled ‘automation in struc-
tural design’. It is hoped that this outline may pro-
vide some information about education for
automation in structural design.

During the last 30 years, computers have been
developing at a rate faster than any previous indus-
trial invention, and great strides have been made in
using computer tools to aid in structural design.
Currently, a new generation of computers emerges
every 4-7 years. With each new generation, comput-
ing power typically increases by several times (if
not by an order of magnitude) with a corresponding
decrease in physical size and price. Due to the rapid
advances in computer technology, an evolution of
the traditional discipline of structural design is
underway. The most important feature of this evo-
lution is that research and practice in structural
design are becoming more software dependent and
more software intensive.

The purpose of this paper is to sketch some of the
directions that this automated structural design
technology has taken and to provide some examples
of actual automated systems that have been devel-
oped. Even many of the common acronyms used to
describe these technologies, such as CAD (compu-
ter-aided design), GUI (graphical user interface)
and Al (artificial intelligence), were unknown
40 years ago. In this paper the evolution of automa-
tion in structural design is introduced; the types of
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automation in structural design are described; and
the mathematical background is explained. Finally,
automation applications to structural design are
demonstrated. These applications include tradi-
tional CAD, database management systems,
expert systems and neural networks.

EVOLUTION OF AUTOMATION IN
STRUCTURAL DESIGN

Automation is technology concerned with the
application of mechanical, electronic and compu-
ter-based systems to operate and control produc-
tion [1]. When this technology is employed for
structural design, it is called automation in struc-
tural design. Therefore, the scope of this paper is
limited primarily to automated systems used for
structural design. Some examples of software for
structural designs using these types of systems are
SAP90 for general structures, ETABS for build-
ings, LMS for nuclear power plants, CCES for cor-
rosion consultation, and NNISE for beams and
plates.

Four basic types of automated design are consid-
ered in this paper: (i) traditional computer-aided
design; (ii) database management; (iii) expert sys-
tems; and (iv) neural networks.

Traditional computer-aided design systems are
usually written in procedural languages such as
FORTRAN or C. These languages are often called
third-generation languages [2]. Such a system
might use finite element methods [3] to perform
stress analysis first, and then to check for allowable
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stresses in the design. Currently, most computer
programs for structural design still belong to this
type.

Asmodern large buildings designed by large com-
puters become more and more complex, database
management systems are increasingly being used to
keep track of the vast amounts of information
needed for their design. These systems have devel-
oped into computer languages in their own right
and are called fourth-generation languages [2]
because they are non-procedural. A well-designed
database management system offers the following
advantages [4]:

e Information which has been entered into the
database is immediately available to all members
of the design team, thus promoting consistency
and eliminating potential design data communi-
cation pitfalls.

e Redundant information is eliminated as much as
possible. Information is stored in specific, logi-
cally defined locations and is always kept current
by the engineer responsible.

® Work can be partitioned to manageable areas of
responsibility and assigned to more than one
engineer.

e Information can be referenced in a logical
manner using meaningful identifiers.

® Overall data handling is decreased, which helps
reduce man-hours, calendar time and the poten-
tial for error.

Another modern approach to automated design
is the use of expert systems, which is a branch of arti-
ficial intelligence. Some of the expectations of
expert systems are the following [5,6]:

® They should be able to solve problems currently
solved by experts, at least in certain restricted
situations.

® They are developed by knowledgeable engineers
with occasional interaction with experts.

e They can be quickly prototyped and expanded;

new capabilities can also be added as the system
is extended and modified.

Unfortunately, perhaps because of the catchy
name, the expectations of expert system technology
exceed reality in many cases. In addition, some
expert systems that work well in simple, restricted
situations fail to perform well when scaled up to rea-
listic problems. However, with modern hardware
and software advances, expert systems are making
significant progress towards solving real-world
structural design problems.

Neural networks are another form of automation
which is beginning to find applications in structural
engineering. An increasing number of researchers
are investigating neural networks, although they
have also suffered from overly optimistic expecta-
tions [7]. Unlike expert systems, which are built on
rules which an expert in the field would use, a
neural network is trained by trial and error based
on observed information. These systems exhibit a
learning and memory capability similar to biologi-
cal brains, although at a much simpler level. While
neural networks have certain advantages of biologi-
cal brains, they also have a certain disadvantage:
the mechanism by which stored information is used
to do computations is often very complex. The dif-
ferences in design and philosophy between expert
systems and neural networks are discussed in more
detail later. Figure 1 indicates the evolution of auto-
mation in structural design according to the four
types discussed above.

TRADITIONAL COMPUTER-AIDED
DESIGN

Mathematical background

Over the past three decades finite element analy-
sis of structures has been extensively used in the
areas of structural engineering and structural

Traditional .Data Base Expert Systems Neural Networks
Computer-aided Management

Design Systems

procedural non-procedural non-procedural non-procedural
programming programming programming programming
third generation fourth generation fifth generation fifth generation
programming —> | programming e programming programming
technique technique technique technique
currently,this this technique this technique this technique is
technique is used has been used has been still in research
for most of the for structural gradually used level, and not yet
software for design for for structural used for structural
structural design almost two decades design recently design in industry

Fig. 1. Evolution of automated structural design.
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design. This method is referred to traditional CAD.
Its mathematical background is briefly summarized
below.

The process of approximating the behaviour of a
continuum by finite elements which behave in a
manner similar to the real, discrete elements can be
introduced through the medium of particular physi-
cal applications or as a general mathematical con-
cept.

The approach is to divide the region Q into a
number of non-overlapping subdomains or ele-
ments £ and then to construct the approximation
function in a piecewise manner over each subdo-
main. The trial functions used in the approximation
process can then also be defined in a piecewise
manner by using different expressions in the various
subdomains € from which the total domain is
developed. In such a case, the definite integrals
occurring in the approximating equations can be
obtained simply by summing the contributions
from each subdomain or element as
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provided that @ =R Y, =T . Here W,
and W, denote weighting functions, Rq denotes
the residual (error) in the domain, E denotes the
total number of subdivisions of the region and I'*
denotes that portion of the boundary of Q° which
lies on I'. Summations involving I are therefore
taken only over those elements Q¢ which lie immedi-
ately adjacent to the boundary.

If the subdomains are of a relatively simple shape
and if the definition of the trial functions over these
subdomains can be made in a repeatable manner, it
is possible to deal in this fashion with assembled
regions of complex shapes quite readily.

The piecewise definition of the trial or shape func-
tions means that discontinuities in the approximat-
ing function or in its derivatives will occur. Some
degree of such discontinuity is permissible, and this
will govern the choice of formulation used.

If the trial functions are to be defined in a piece-
wise manner, it is advantageous to assign to them a
narrow ‘base’and make their value zero everywhere
except in the element in question and in the subdo-
main immediately adjacent to this element.

In many aspects of engineering the solution of
stress and strain distributions in elastic continua is
required. Special cases of such problems range
from two-dimensional plane stress or strain distri-
butions, axisymmetric solids, plate bending, and
shells, to fully three-dimensional solids. In all cases
the number of interconnections between any finite
element isolated by some imaginary boundaries
and the neighboring elements is finite. It is therefore
difficult to see at first glance how such problems

may be discretized. Zienkiewicz and Taylor [8] sug-
gest several strategies to overcome this difficulty.

1. The continuum is separated by imaginary lines
or surfaces into a number of finite elements.

2. The elements are assumed to be interconnected
at a discrete number of nodal points situated on
their boundaries. The displacements of these
nodal points will be the basic unknown para-
meters of the problem, just as in the simple dis-
crete structural analysis.

3. Asetof functions is chosen to define uniquely the
state of displacement within each finite element
in terms of its nodal displacements.

4. The displacement functions now define uniquely
the state of strain within an element in terms of
the nodal displacements. These strains, together
with any initial strains and the constitutive prop-
erties of the material, will define the state of
stress throughout the element and, hence, also
on its boundaries.

5. Asystem of forces concentrated at the nodes and
equilibrating the boundary stresses and any dis-
tributed loads is determined, resulting in a stiff-
ness relationship.

Application

SAP90 [9] is a finite element program for the
linear static and dynamic analyses of structural sys-
tems. The structural systems that can be analyzed
on SAP90 may be modeled by one or a combination
of the following element types: three-dimensional
frame (beam) element, three-dimensional shell ele-
ment, two-dimensional solid element, three-dimen-
sional solid element.

The two-dimensional frame, truss, membrane,
plate bending, axisymmetric and plane strain ele-
ments are all available as special cases of the four
elements named above. A boundary element in the
form of translational or rotational spring supports
is also available in the program. The type of loads
allowed by the program include gravity, thermal,
prestress, distributed or nodal forces, and pre-
scribed displacements.

The program can perform static, steady-state,
eigenvalue and dynamic analyses. The static and
dynamic analyses may be activated together in the
same run, and load combinations may include
results from both analyses. The dynamic analyses
may include response spectrum or time history ana-
lyses. In the time history analyses, loading can be
nodal load or base acceleration and the solution is
obtained using standard modal superposition or
the Ritz vectors. Similar to SAP90, ETABS [3] has
been developed especially for building design.
Figure 2 shows a high-rise building modeled with
ETABS for structural design.

DATABASE MANAGEMENT SYSTEMS

Overview of relational database systems
Many modern database management systems
store and manipulate data in the form of a
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Fig. 2. A high-rise building modeled with ETABS: (a) undeformed shape; (b) twisting mode shape.

rectangular array called a relation or table. Such
systems are called relational database management
systems. Figure 3 gives two examples of tables. The
rows of the table are called tuples, each of which
represents information of interest about a single
item or object stored in the database. The columns
are sometimes called attributes, which are proper-
ties of the items in the database.

For example, the table workers in Fig. 3 contains
information about the workers on a construction
site who are not supervisors. The columns of work-
ers are id, name, phone number, day off and floor of
current assignment. The table supervisors contains
the id, name and phone number of each supervisor.

Note that a table is an abstract representation of
the data that is independent of the physical repre-
sentation of the data on a computer hard drive.

Operations onrelations

A database user does not usually wish to look at
all of the tuplesina table, but only those meeting cer-
tain conditions. A query is a search which locates
all of the tuples that satisfy a given logical condition.
In order to express queries about data in tables, sev-
eral operations are useful. The selection operation
selects some of the tuples from a table to create a
new, smaller table. In order to foster compatibility
between different database systems, SQL (standard
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workers
1d name phone | dayoff | floor | superid
48532 | Roberts | 554-4339 | WED 4 44157
21853 | Smith | 554-2007 | FRI 5 72313
33294 Patel 554-1187 | WED 4 44157
42108 | Zhou 554-2991 | THU 4 58229
28111 Lee 554-5432 | FRI 3 72313
20017 | Negra | 554-5498 | WED 3 44157
SUpervisors
sid sname sphone
44157 | Harvey | 554-4339
58229 Chu 554-7018
72313 | Sanchez | 554-5342

Fig. 3. Relations of an example table.

query language) is used to express operations on
databases [10]. This section gives a brief glimpse of
how SQL can be used to express simple queries.

Tuples are often selected to satisfy some logical
condition. This is called a selection operation. For
example, the table containing the tuples of all of the
workers who have WED as their day off on floor 4,
is Table 1 in Fig. 4. This query is express in SQL as

select * from table workers where
dayoff = “‘WED’ and floor = 4;

(The asterisk means keep all columns.)

The projection operator keeps some of the col-
umns from a table to create a smaller table. In the
preceding table, suppose we only need the two col-
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umns name and superid. Executing the SQL query
select name, superid from table workers;

produces Table 2 in Fig. 4.

Thejoin operator combines the information from
two tables to create a large relation containing all
the columns from both tables. Tuples from the two
tables are joined if they have the same value for the
join variable. If a value of the join variable for a
tuple in one table does not exist in any of the tuples
in the other table, the tuple is not included in the
join. Suppose we wish to know the names and
phone numbers of supervisors in addition to the
information in the table workers. We need to join
the tables workers and supervisors using the join
variables superid and sid to produce Table 3 in
Fig. 4. This table is produced by the SQL query

select * from table workers,
supervisors where superid = sid;

Finally, suppose we need to know a worker’s
name, and the name and phone number of that
worker’s supervisor. We can combine queries of
type selection, projection and join to extract the
required information:

select name, sname, sphone from
table workers, supervisors

where superid = sid and dayoff = “WED’
and floor = 4;

This produces Table 4 in Fig. 4.
In addition to selections, projections and joins,

Table 1
id name phone | dayoff | floor | superid
48532 | Roberts | 554-4339 | WED 4 44157
33294 | Patel | 554-1187 | WED | 4 44157
Table 2
name | superid
Roberts | 44157
Smith | 72313
Patel 44157
Zhou 58229
Lee 72313
Negra | 44157
Table 3
id name phone | dayoff | floor | superid | sid sname sphone
48532 | Roberts | 554-4339 | WED | 4 44157 | 44157 | Harvey | 554-4339
21853 | Smith | 554-2007 | FRI 5 72313 | 72313 | Sanchez | 554-5342
33294 Patel 554-1187 | WED 4 44157 | 44157 | Harvey | 554-4339
42108 | Zhou | 554-2991 | THU 4 58229 | 58229 | Chu 554-7018
28111 Lee 554-5432 | FRI 3 72313 | 72313 | Sanchez | 554-5342
20017 | Negra | 554-5498 | WED 3 44157 | 44157 | Harvey | 554-4339
Table 4
name | sname | sphone
Roberts | Harvey | 554-4339
Patel | Harvey | 554-4339

Fig. 4. Tables produced from queries.
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SQL supplies an insert command for initially popu-
lating the tables with tuples or for adding new rows
to existing tables [10]. It also supplies a delete com-
mand to remove rows from tables.

Application

LMS [11] stands for Load Monitoring System. It
is used to aid engineers in monitoring the structural
integrity of nuclear power plant structures, because
of the constant changes in design loads due to
plant modifications, unforeseen regulatory changes
and the concurrent design/construction cycles

necessary in such plants. Hence, it can be classified
as a database management system for structural
design.

The GUI [12] design of the system is object-
oriented, i.e. can be graphically represented as a
Booch diagram [2], and is implemented in C. The
database management technology used includes a
relational data model written in FORTRAN with
a FORTRAN data manipulation interface. Its
major capabilities include optional run-time
binding, a query report model, a database editor,
reorganizational utilities, performance timing fea-
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Fig. 5. Anindustrial building: (a) elevation; (b) floor plan.



Education for Automation in Structural Design 205

tures, sequential, direct, and keyed access levels,
multiple key support, security tracking to record
level, and user-defined access passwords for data-
base access control. The data structure of the LMS
includes structure geometry, structure loadings,
static analysis, stress check, connection check and
design investigation. It is also implemented in
FORTRAN.

The combination of database management, load
monitoring and GUI forms a useful tool for moni-
toring loads in nuclear power plants. This tool
allows the user to temporarily change design data,
to use graphic plots of the structure for reference
and data selection, to perform quick online load
monitoring limited to areas affected by changes, to
review results of the monitoring, and to save
changes permanently in the database. Figure 5
shows the application of the LMS to an industrial
building.

EXPERT SYSTEMS

Theoretical background

Although expert systems often represent knowl-
edge in a manner similar to a DMBS, they have
increased capabilities for reasoning about the
knowledge in the form of logical manipulations.
An expert system stores initial data, and rules for
reasoning, which in our example take the form of
implications and assertions which are to be derived
from the initial data.

An example is the following: suppose that the
assertions are

A = “The load on reinforced concrete beam no. 1 is
20,0001b.

B =“The cross-section of reinforced concrete beams
no. lis 10in. by 15in.’

C = ‘The torsion reinforcement area of reinforced
concrete beam no. 11is 2.0 inch square.’

X = ‘The maximum moment in reinforced concrete
no. 11s 50,000 ft.-1b.’

Y = “The resisting moment is 60,000 ft.-1b.’

Z = ‘Reinforced concrete beam no. 1 will not fail.’

Suppose in addition that the rules are

(1) Aimplies X
(2) (Band C)implies Y
(3) (Xand Y)implies Z

When the size of the initial data and/or number of
rules is large, computing output assertions may be
time consuming. Deductions using forward chain-
ing begin with the input data and computer possible
output assertions. For example, from the above
input data and rules, the output assertions X, Yand
Z can be derived. However, computing all possible
assertions can be time consuming. When desired
output assertions are known in advance, backward
chaining can be used to work backwards to verify
using the rules. For example, if the desired output
assertion Z is to be true, then X and ¥ must be true

by rule (3), B and C must be true by rule (2), and 4
must be true by rule (1). Since 4, B and C are all
true by the initial data, Z can be derived.

The number of assertions may be reduced by
introducing variables into them. For example,
assertion 4 may be expressed as “The load on rein-
forced concrete beams Sis 7"’ so that it applies to all
reinforced concrete beams in the building, not
merely to beam no. 1.

Complications arise when the initial data and
rules change over time, because in that case the con-
clusions may depend on the order in which the rules
are applied. Problems can also result when rules
give rise to contradictory conclusions. Durkin [13]
suggests several strategies to help decide the order
in which to apply rules:

1. Execute the rules in a first come, first served
order.

2. Place priority on more important rules.

3. Place priority on more specific over more general
rules.

4. Place priority on rules most recently added to
working memory.

5. Do not apply a rule which has already been
applied. This avoids cyclical reasoning.

6. If applying a rule contradicts an already
obtained conclusion, apply if anyway, but store
its conclusions in a separate working memory to
maintain separate lines of reasoning.

Application

Flue gas desulfurization (FGD) [14] has become
avery common term within the utility industry and
among those industries associated with air pollu-
tion control. As power generation facilities con-
tinue to expand their use of coal as a primary fuel,
the need for effective and reliable FGD systems
becomes important to maintain environmentally
acceptable plants. Therefore, a corrosion consul-
tant expert system (CCES) [15] was developed.
CCES is an expert system, and is also developed
with GURU [16]. CCES consists of a rule set and
two databases. The rule set includes the basic rules
to be used in the inference process. The first data-
base maintains application and material property
for various coatings and linings. The second data-
base maintains historical performance data. When
an FGD component and its service environment
are specified, CCES can be used to obtain a list of
recommended coatings tabulated in order of their
ranking scores (see Fig. 6).

In the system a user interface module, written in
GERU’s procedural language, is used to direct the
overall consultation process and to provide the link
between the system and the user. The inference pro-
cess is driven by GURU’s inference engine accord-
ing to the expert’s knowledge stored in the rule set.
Material property and historical performance data
are stored in two separate databases and can be
manipulated, added to and interrogated using the
GURU expert system shell.
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Ranking Score Summary:

Mat'l Property Wt = 0.2000 Atlas Cell Test Wt = 0.2000
Performance Wt = 0.6000

Score
Coating Name Mat*'l Prop. Atlas Test Perform. Total COST
PENNGUARD BLOCK SYSTEM 38 100 100 88 40
STEBBINS LINING SYSTEM 38 75 80 71 30
214 TL 75 75 64 68 20

Fig. 6. Ranking score summary for qualified coating materials.

NEURAL NETWORKS
Theoretical background

Definitions. Anartificial neural network attempts
to model mathematically a biological brain by
forming "an interconnected system of neutrons
called nodes. Although the first mathematical
model of a neuron was formulated in 1943 by
McCulloch and Pitts [17], using neural networks to
solve practical problems has only recently become
feasible with modern computers. Figure 7(a) shows
the essential components of this model: the inputs,
summation unit, thresholding unit, and output.
The inputs come from switches, sensory devices
and other nodes. The summation unit computes a
weighted sum of the inputs and passes this sum to
the threshold unit. Then the threshold unit subjects
the sum to a threshold function and passes the
result to the output. The result is called the com-
puted output.

The outputis then compared to the desired output
which is obtained from a training sample. If there is
a discrepancy between the desired output and the
computed output, the weights of the weighted sum
are changed to reduce the discrepancy.

Two commonly used threshold functions are
shown in Fig. 8. Figure 8(a) shows the hardlimiting

I
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-2 —® 0.731
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Fig.7. (a) The McCulloch—Pittsmodel of a neuron. (b) A neuron
with example weights. The top input is clamped at 1.

threshold function. If the sum entering the thresh-
old unit is negative, the threshold unit outputs 0
meaning ‘no’, ‘false’ or ‘don’t accept’, but if the sum
is zero or positive, the threshold outputs 1 (‘yes’ or
‘true’). The function is named ‘hardlimiting’
because of the binary nature of the decision.

Figure 8(b) shows a smoother threshold function
called the sigmoid threshold (the name is due to the
S-shape of the curve). This function is defined as
flx = 1/(e* + 1). For highly negative inputs, this

1.0
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1.0
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T T T T T
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Fig. 8. (a) The hardlimiting threshold function. (b) The sigmoid
threshold function.
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Weight
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Weight
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Fig.9. A neural network with three layers.

threshold function outputs a value close to 0; for
highly positive inputs, the function outputs a value
close to 1. However, for intermediate values a defi-
nite decision is postponed: a number between 0
and 1 is returned. The closer the return value is to
0.5, the more indecision is present. The sigmoid
threshold function is useful because it is differenti-
able, which will be useful in the back-propagation
algorithm described later in this section. In this
algorithm, the input weights of a node are changed
or adapted to allow a better agreement between the
desired outputs and the computed outputs.

As an example, consider the weights 2, 3 -2, —1
shown in Fig. 7(b). The top input is clamped at 1
and the inputs are x; = 7, x, =9 and x3 = 4. The
weighted sum passed to the threshold unit is 2-1 +
37+ (=2)9 + (=1)4 = 1. The sigmoid threshold
unit then computestof(1)=1/(e™' + 1)=0.731.

Supervised learning. Neural networks are used in
supervised learning situations. This means that
training data are collected and used to train (or cali-
brate) the neural net. The inputs are presented cycli-
cally to the neural net which calculates the output.
If there is a discrepancy, the weights are adjusted
and the training cycle is repeated. If the training is
successful, the inputs will result in correct or nearly
correct outputs for every possible input.

Ghaboussi et al. [18] use a neural net to approxi-
mate the hysteresis loops describing the behavior of
concretein the state of plane stressin two situations:
monotonic biaxial loading and compressive uniax-
ial cycle loading. The stresses for the two axes (o,
and ;) and the strains for the two axes (g; and ;)
are obtained for a set of uniformly spaced time
points. The differences Ao, Ac,, Ag; and Ag? are
computed from o,, 0,, €; and &, respectively as the
value for the current time point minus the value for
the previous time point. Ghaboussi ef al. [18] then
construct a neural network with four levels of
nodes (k = 3). The inputs (level 0) are oy, 3, €, &,
Ao, and Ao, and the outputs (level 3) are Ag; and
Ag,. There are 40 nodes each in layers 1 and 2. The
computed outputs—the changes in strain for the
two axes—are then compared with the changes in
strain which were obtained experimentally. The

weights are adapted to produce a closer agreement
and the training process is repeated.

In cases where complex relationships exist
between the inputs and the outputs, the neural net
requires many thousands of iterations before the
net produces nearly correct responses. The neural
net described in the previous paragraph required
abut 30,000 training cycles. In general, a neural net
will never produce a ‘correct’ answer; it will only
produce successively more accurate approxima-
tions to the correct answer. A correct answer is
‘found’ when the change in weights from one itera-
tion to the next becomes smaller than some prede-
termined amount.

Feedforward networks and the back-propagation
algorithm. In order to perform calculations, the
nodes are often interconnected so that the output
from one node becomes one of the inputs to another
node. Ideally, the nodes could be constructed on
special hardware chips so that each node could run
independent of every other node. However, such
hardware is expensive to construct, so neural net-
works are also simulated in software which runs on
conventional computers.

In principle, any node could be connected to any
other node, including itself, but often it is useful to
organize the nodes into layers as shown in Fig. 9,
where the number of layers is K = 3. Outputs from
one layer are passed to ever node in the next layer in
the feed-forward phase. Then the computed outputs
are compared with the desired outputs and the
weights are corrected in back-propagation phase.
The feed-forward and back-propagation phases
are repeated, perhaps several thousand times, until
the weights and outputs cease to change substan-
tially. The actual computation formulas are shown
below using the sigmoid function f(x) = 1/(e* + 1).
The values x, are the inputs and x,* is the value of
the node i in layer k. The desired output values are
d,j=0,...,N®,

Feed-forward phase

~l

®-1) () k=1 | 2

x; =f(§ Wy X; J.;:] ..... Nok=1.,,
i=0
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Back-propagation phase

(K _ LK) (K) (K)
A =t —x e —d )

M,
A\JU:.r:il”_x:‘il)zﬂl:fllw:'iq’h‘k=K_l ..... 1 (4)

=l

wit —wi —cAY k=1,..k

The feed-forward equation (3) is simply a re-
expression of Fig. 3; however, to derive the back-
propagation update formulas (4), the method of
steepest descent is used. This method is used in gen-
eral for minimizing a function F(x,,....,x,) of nvari-
ables: choose starting values for the variables
Xp,. .. .,X,and then iterate using the update formula

aF

=—_x X =cA fori=l,....n (5)

repeating (5) until the variables cease to change sig-
nificantly.

1
:Eg(d‘ﬂjn)z (6)

To obtain the back-propagation equations (4) for
updating the weights, apply the method of steepest
descent to the following error function E of the
weights
and use the fact that 8f/8s = f(s)(1 — f(s) ) for the
sigmoid threshold function. f(x) = 1/(1 + e™ + 1).
Equation (4) is applied to all of the weights be-
ginning at layer K and proceeding backwards to
layer 1.

When using neural nets, the following design
issues and parameters must be addressed: the
number of hidden layers and the number of nodes
in each of those layers, the method for initializing
the weights, the choice of the constant ¢. The choice
of parameters is crucial to the performance of the
neural net, but predicting how changes in the para-
meters will impact on performance is difficult.
More research is needed to reduce the uncertainty.

Application

NNISE[19] stands for Neural Networksin Struc-
tural Engineering. Similar to NNEPC, NNISE can
be trained based on observed information, and dif-
fering network types are discussed. The system is

written in FORTRAN. The goal for NNISE is to
develop a package that may be widely used to solve
design problems in structural engineering.

The demonstration involves a simple concrete
beam design and a rectangular plate analysis. The
concrete beam problem indicates that typical
design decisions can be made by neural networks.
The rectangular plate problem demonstrates that
numerically complex solutions can be estimated
quickly with a neural network.

Currently, most of the applications of neural
networks to structural design involve function
approximation, e.g. approximating the sometimes
complex hysteresis loops which describe the force—
displacement relationship of a structural member
under cyclic loads. Describing these relationships
with precise rules may be difficult, but by presenting
aneural network with enough examples, the hyster-
esis loop may be reproduced under new situations.
Where precise rules are available, neural networks
work best. As research in these two areas matures,
the two approaches can be expected to complement
each other.

CONCLUSIONS

An evolution of the traditional structural design
methodology is currently underway, driven by the
rapid advances in computer technology. Structural
design is becoming more software dependent and
more software intensive. The success and pace of
this evolution depends on the rapid and economic
development of automated systems. The mathema-
tical background for automation is described in
this paper. Modern automation technologies are
expected to lead to higher software productivity,
and great improvements in software quality, relia-
bility, maintainability, flexibility for modification,
and extendability.

The presented applications to structural design
are examples of the four types of automation. Com-
puter hardware and software potential has created
an unprecedented opportunity to develop auto-
mated systems for structural design. Although
some progress has been made in this area, much
remains to be done.
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