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The Dirichlet-Neumann Operator
on Continuous Functions

JOACHIM ESCHER(*)

1. - Introduction and main results

Concern of this paper is to investigate a semigroup which is a closely
related to elliptic problems with so-called dynamical boundary conditions of the
following type:

Here, (A, B ) denotes a normally elliptic boundary value problem of second order
on a bounded smooth domain 2. This means that (A, B) is given
by

where we use obvious summation conventions throughout. We assume that the
coefficients of these operators are smooth, i.e.,

Besides, -1 denotes the trace operator with respect to the boundary r of Q.
Finally, we suppose that the operator is uniformly strongly elliptic, i.e.,

The natural spaces to treat problem (E) are the Besov spaces over the

boundary r, where s E R and p E ( l, oo). More precisely, it is shown in [10]

(*) Supported by Schweizerischer Nationalfonds.
Pervenuto alla Redazione il 19 Marzo 1993 e in forma definitiva il 14 Gennaio 1994.
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(cf. also [12] in the case s = 1 - 1 /p) that, given any initial value zo in 
with s &#x3E; 0, there exists a unique solution u( - , zo) E C([O, oo), of

problem (E). The trace of this solution, i.e.,

defines a strongly continuous analytic semigroup (T(t))t&#x3E;o on the Besov space
Note that due to our assumption s &#x3E; 0 and due to the trace theorem

the definition in (1.4) is meaningful. However, it is possible to extend these
semigroups to any Besov space with s e R, cf. [10, Theorem 1.5]. Let
Bs,p denote the corresponding generator of the semigroup (T(t))t&#x3E;o on Bpp(r),
s E R. Following A.P. Calderon [7], J. Sylvester and G. Uhlmann [29-31],
and A. Nachmann [20] (cf. also J.L. Lions [15]), Bs,p is called generalized
Dirichlet-Neumann operator (see Remark 4.2).

The aim of this paper is to extend the results in [10] by establishing
well-posedness of the above problem in the space C(r). To be more precise,
observe that

Thus, given any s  0, we may define the C(r)-realization B of Bgp, i.e.,

(1.6) 
dom(B) := ~z E dom(BS,p) n C(r);Bspz E C(r)}

and Bz := Bs,pz for z E dom(B).

Using these notations, our main result reads as follows:

THEOREM. The operator B is well-defined, i. e., it is independent of
p E ( 1, oo) and s  0, and -B generates a strongly continuous, positive,
compact and analytic semigroup on C(r).

The proof of the Theorem is given in the main part of this paper. It is
based on the same ideas as introduced in the articles of Stewart [27, 28]. On one
hand one uses sharp a priori estimates in the case of constant coefficients and
with S2 being the halfspace := x (0, oo) with boundary r = and for
functions with small support. These estimates can be established by introducing
appropriate pseudo-differential operators and by applying the Mihlin-Hormander
multiplier theorem.

On the other hand the "local structure" of the norm in C(r) is heavily
used. This means that, given e &#x3E; 0, we have that

where ê) denotes the open ball in with center x and radius ê. This
local structure makes it possible to overcome the obstacle that the number of
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covering balls 6-), x E r, tends to infinity as - goes to zero, and therefore
it enables us to work with parameter-dependent radii -(A) of these covering
balls 1BSn (x, 6-).

The material in this paper is organized as follows. In Section 2 we collect
some known facts about Besov and Bessel potential spaces, which are needed
in our treatment. Section 3 contains sharp a priori estimates for a class of

pseudo-differential operators with constant symbols. In Section 4 we introduce
a scale of analytic semigroups on the Besov spaces over the surface r. Some
(more or less) technical estimates for two commutators are derived in Section
5. Finally, in Section 6 we prove the main result of this paper.

Acknowledgement. I would like to express my gratitude to the Equipe
de Mathémathiques de Besangon and in particular to messieurs Prof. W. Arendt
and Dr. V. Keyantuo for many interesting and helpful discussions.

2. - Preliminaries

In this section we collect some basic facts about Besov spaces. We refer
to [6, 32, 33, 34] for proofs of the statements below. Furthermore we estimate
the behaviour of the norm of some of these spaces under dilation (cf. Lemma
2.1).

Let be the Fréchet space of all rapidly decreasing C°°-functions and
let S’(R~) denote its dual space, i.e., the space of all’ tempered distributions
over The Fourier transform on is denoted b~ V. It is well-known that
7 E Besides, let := 1  p  oo,
denote the Lebesgue spaces over R7.

Next, we introduce the following open covering of let

Oo := {x E JR1&#x26;; lxl  2} and OJ := {x E  lxl  2j+l} for j = 1,2,3, ....
Furthermore, pick a smooth partition of unity on subordinate to the

covering 10iliEN. Given p, q E [I, oo] and 5 G R, we set

and we define the Besov spaces over to be

It is well-known that these spaces are well-defined Banach spaces satisfying
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and

Moreover, the following generalized Sobolev embedding theorem holds

If p E [1, oo), we identify the dual space [Lp(R")]’ of Lp(R") with where

p’ := P/(p - 1), according to the duality pairing

Let us further note the following duality properties of the Besov spaces

with respect to the duality pairing induced by (2.7).
It is also worthwhile to mention that the Besov spaces are stable under

interpolation. Here, we restrict ourselves to the complex interpolation method and
refer again to [6, 32, 33, 34] for further interpolation properties. More precisely,
let [ ~ ; ~ ]e, 9 E (0, 1), denote the standard complex interpolation functor and let
POI pi, qo, ql E (1, oo) and so, s, E R be given. Then

where

In the following, we will use the Besov spaces only in the case where
p = q. Thus, we set

to shorten our notation.

Finally, let cp E u E and p &#x3E; 0 be given. We define the
dilation up by upcp(x):= x and (upu, p) 

LEMMA 2.1. Assume that p E ( 1, oo) and that p E (0, 1]. Then there exist
positive constants ao, a,, /30, and /31 (independent of p) such that
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PROOF. a) First, we introduce an equivalent norm on the space 
Set

It is well known (cf. [1, Theorem 7.48]) . defines an equivalent
norm on Moreover, the transformation theorem for the Lebesgue
integral yields

for u E Hence, we find that

Observe now 1 for p E (o,1] and p E (1, oo). Thus, we conclude
from (2.11 ) that

Since ) ) ) . ) defines an equivalent norm on the first assertion
follows from (2.12).

b) Recall that

cf. (2.8). Consequently, we have

Further, we mention that it suffices to prove assertion b) for u E S (Rn) since

by (2.5). Recall also that - Lp’(Rn), cf. (2.3) and
(2.4). Hence, the duality pairing in (2.13) is given by

Consequently, a change of variable shows that

(2.14) = 

P,

Finally, replacing p by p’, we conclude from a) that
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These estimates together with (2.14) imply now the assertion. D

We also introduce the so-called Bessel potential spaces for s E R
and p E (l, oo):

where Ai(0 := (1 + I~I2)1~2 for £ E Rn and )] . := /.1-1 Ai.1 . Ip.
Observe that, = In general, it is well-known that the Bessel

potential spaces with integer exponents coincide with the Sobolev spaces, i.e.,

However, let us mention that B2(Rn) = iff p = 2, cf. [32, Theorem 2.1.2].
Also, the Bessel potential spaces are stable under complex interpolation:

In contrast to this, we obtain the Besov spaces as real interpolation spaces of
Bessel potential spaces. More precisely, let p, q E (1, oo) and so, s 1 E R be given
and let ( . ; . denote the real interpolation functor. Then, given 0 E (0, 1), we
have

Our next step is to introduce the so-called "local" spaces. To this end, let U be
an open subset of I~n and let ru denote the restriction map with respect to U,
i.e., ruu := ulU for u E Given s &#x3E; 0, we define and to be
the images under ru of and in respectively. Observe that
these spaces are well-defined, since and Bps(IR7) are subspaces of 
for s &#x3E; 0, cf. (2.4) and (2.15). We equip these spaces with the corresponding

o 0

quotient topologies. Moreover, let HP(U) and denote the closure of the

test-functions D(U) in HSp (U) and respectively. Finally, we set

Recall that we have assumed that Q is a bounded domain in I~n having a smooth
boundary r. 

_

Thus, there exists a smooth atlas for S2. That is, given r &#x3E; 0, there
are an integer mr, open subsets Uj of Rn, and smooth diffeomorphisms
pj E r), Uj), 1  j  mr, such that
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In particular, it follows from [33, Theorem 3.3.4] that the operators rU~ E

BP5 (Uj)) and E ,G(B~(I1~~), r)) are retractions. Therefore,
Theorem 3.3.6 in [33] implies that

(2.20) 
the interpolation properties (2.9), (2.16) and (2.17) remain true

if we replace R" by Uj or r).

Given u E P’(Uj) and v E ~(B~(0,r)) we define the following pullback and
pushforward operators

Then we have

for k e Z and 1  j  mr. In fact, this follows immediately from the
transformation theorem for the Lebesgue integral, the chain rule, and (2.15)

we use again a duality argument.
By interpolation, cf. (2.16) and (2.20), it follows from (2.22) that

for s E R and 1  j  mr .

Finally, let denote the smooth atlas for the submanifold r

induced by the atlas (Uj, of Q, i.e., tlj := Uj nr and := 0)
with x = (x’, xn) E H’. Then we define

:= As an immediate consequence of this
definition we note that 

Let be a smooth partition of unity on 0. subordinate to the open
covering 

Given s E R and p E (1, oo), we set

where
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The following Lemma collects some of the basic properties of these spaces.
A proof follows from the corresponding results in Rn-l by a well known
localization procedure, cf. [17, 33].

LEMMA 2.2. Let p E ( 1, oo) and s, t, r with s  t, r &#x3E; 0 be given.
Then the following assertions hold:

a) B;(r) is a well-defined (i. e., independent of the choice of the atlas),
reflexive, and separable Banach space.

e) [B~(r))’ - Bp-,5(1[’), according to the duality pairing induced by the

identification of [Lp(r)]’ with Lp,(r).
f) [Bp(r), B§(r)]o = for 0 E (0, 1).

g) I E L (Hp-’(0), if s &#x3E; lip.
Moreover, all the preceding embeddings are compact.

3. - Pseudo-differential operators with constant symbols

It is a powerful tool to localize and to transform differential operators with
variable coefficients on a bounded domain to a problem with constant coefficients
on a half space. This procedure leads in a natural way to pseudo-differential
operators with constant symbols. The main concern of this section is to study
these pseudo-differential operators according to problem (E) by means of the
Mihlin-H6rmander multiplier theorem.

Throughout this section we assume that

Given u E where IHIn := ~x = (x’, xn) E &#x3E; 01, we set

It is well known that

for A E [Rez &#x3E; 01BfOl.
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Without restriction we may assume that = 1. Moreover, given £ e JRn-l
and a G C, we define

where

The function b(a, ~ ) serves as the symbol of the following pseudo-differential
operator 

- -

Roughly speaking, the symbol b(cx, - ) arises by applying (partial) Fourier
transform to solve certain boundary value problems on the half space (cf.
the proof of Lemma 3.6, where also a characterization of will be given).

Observe that, due to (3.1 ), the function b(a, - ) is a multiplier on 
for each a E C with a2 E [Re ~ &#x3E; 01B{Ol, i.e., b(a, - ) belongs to QM, (cf. [23]).
Hence, we know that

However, we need more detailed information about the multiplier properties of
b(a, .) for our purposes. To this end, we introduce the following Banach space

where := E 118n-1, 10  [n/2] + 11. It follows Leibniz’
rule that M is a continuous multiplication algebra. However, the fundamental
property of M is the fact that it is a subspace of the space of all multipliers
on Indeed, it follows from Mihlin-Hormanders multiplier theorem (cf.
[26, Theorem 4.3.2]) that

Moreover, the elements of M are also multipliers for the Besov and the Bessel
potential spaces. In fact, by the definition of we have

Thus by interpolation it follows from (3.6), (3.7) (with t = 0), (2.16), and (2.17)
that
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LEMMA 3.1. Given a2 E [Re A &#x3E; 0]~{0}, we have

and there is a positive constant ca such that

PROOF. a) We first introduce some notation. Let A(ce, ~) := (lal2 + l~12)1/2
and (r~ * , ~* ) : := (1r¡12 + lç/2)-1/2(r¡, ç) for a c- C, q E Ck and ~ E R7- 1. Observe
that Al = A(l, ’) and that, given a2 E [Re a &#x3E; 0]B{0}, there is a constant can

such that

Furthermore, we note that

Differentiating this identity with respect to ~ we find that A -1(0:, . )b(o:, . ) E .M
and consequently, (3.9) yields

b) Again, by homogeneity we conclude that

Thus, there is a constant ca &#x3E; 0 such that

On the other hand, we have

Therefore, given I E N’~~~ , it follows that

and consequently, setting
c such that

we find a positive constant
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Leibniz’ rule now implies that

for 1-£ E [Re z &#x3E; 0], ~ e Rn-l and {3 e This means that A(a, ~ ) [~ +
b(a, . )]-1 E .M and that 

’

Finally, we apply again (3.9) to complete the proof. D

COROLLARY 3.2. Given s E Rand a2 E [Re z &#x3E; 0] B { 0 }, there exists a

positive constant c such that for E [Re z &#x3E; 0] and z E 

PROOF. a) Observe that

This follows from (3.7) and (2.17) by interpolation. The first assertion is now
an immediate consequence of (3.11), (3.8) and Lemma 3.1.

b) Since M is a multiplication algebra, Lemma 3.1 yields

for all tt e [Re z &#x3E; 0]. Now, observe that

Thus the assertion follows from (3.8). D

Finally, let a2c= [Re z &#x3E; 0]B {O} be fixed. We introduce the following
symbol:

and

Then we have: .

LEMMA 3.3. There exists a constant c &#x3E; 0 such that
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for all p E [Re A &#x3E; 0].

PROOF. Note that = for À &#x3E; 0. Thus,
letting À := (1J.t12 + I çI2)1/2, we find that

Now, by an argument similar to that given in the proof of Lemma 3.1, the
assertion follows from (3.12), (3.10) and Leibniz’ rule again. D

COROLLARY 3.4. Given a2 E 0]B{0}, there exists a positive
constant c such that

for all p E I I and z E 

PROOF. Pick 1L E [Re z &#x3E; 1 ] . Then p : := 1/1J-l1 E (o, 1 ) . Furthermore let .7
denote the Fourier transform on Note that

which follows again from basic transformation properties of the Lebesgue
integral. Thus we find
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Applying Lemma 2.1, we obtain

On the other hand, observe that

Hence, Lemma 3.3 yields

for all p, E [Re ~ &#x3E; 1]. So (3.13) implies the assertion. D

COROLLARY 3.5. Assume that p &#x3E; n and that a2 E 0]~{0}. Then
there is a positive constant c such that

for all it E [Re A &#x3E; 1] and z E 

PROOF. Pick a E [Re A &#x3E; 1 ] and set again p := 1 E (0, 1]. From
Corollary 3.2b) we know that there is a c &#x3E; 0 such that

On the other hand, we have assumed that p &#x3E; n. Thus Sobolev’s embedding
theorem implies that

Hence

From Corollary 3.4 we now obtain

Finally, Corollary 3.2b) implies that

which completes the proof. D

In the following we collect some of the basic properties of the so-called
Lions-Magenes extension of (,~~, ~r). We refer to [4, 16] for a proof of the
assertions below. First of all, the operator Al is closable in Let ’ A 71
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denote its closure and let := be the domain of this closure. Then

there is a unique extension (8~, 1~) e x of

(B(, u) to such that Green’s formula holds. In addition, it can be shown
that

Now let := e E (o,1). Then, using (3.3), it follows by
interpolation that

for A E [Rez &#x3E; 0)B{0}. Thus we may define

for a e C such that a2 E 01B{Ol. Observe that 7~(o:) ~

f(B~’’~(R"-’),P~~) and ~,20 ~ imply that

for a2 e 0]B{0}. Moreover, since (a2 + .~~, ~y~) is an extension of

(a2 + .~~, ~), we find that

where := The following Lemma
gives a characterization of the pseudo-differential operators using these
Lions-Magenes extensions.

LEMMA 3.6. Given a2 e 0]B{0} and z e we have

PROOF. Recall that

We now define

Observe that the polynomial has no zeros on since

for q E Rn and by the choice of a. Moreover, we have
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Consequently, given ~ E the polynomial pi,a admits a unique root in the
left half-plane, which is given by

Denoting by 1 the Fourier tranform in we now set

Since Re ~ ( ~, a)  0 for ~ E it follows from the Mihlin-Hormander

multiplier theorem that u E Moreover, recalling that pi,a(À(£, a)) = 0,
we find

In other words we have

Now using the definition of B~ and b(a, ~ ), it follows that

Finally, observe that for z E Bp-1~~(Il~n-1). Thus the

density of in and Lemma 3.2a) complete the proof.
0

It should be mentioned that the operator B~ T’~ (a) was introduced by
Hintermann in [12] and that Corollary 3.2 is a special case of [12, Lemma
1.8]. However, due to our simpler situation (a single second order equation),
we have been able to give a much more transparent proof of Corollary 3.2 than
the one in [12, Lemma 1.8].

4. - Scales of analytic semigroups

The main concern of this section is to construct two families of

generators of strongly continuous analytic semigroups on the Besov spaces
Moreover, we establish some duality properties of these scales.

Given u we set
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We assume that the coefficients of (A, B ) satisfy the regularity assumption (1.2)
and the ellipticity condition (1.3). It is well known (cf. [3, 4]) that there exists
a constant ao E R such that

for À E [Rez &#x3E; Ào]. for q C (l,oo) and s &#x3E; 1/q,
denotes the trace operator with respect to r. Moreover, ,~# stands for the formally
adjoint operator, i.e.,

for v E ~3(~). As in Section 3 we define the generalized Dirichlet operators
by 

. _ ~ . J

for À E [Re z &#x3E; Ào]. Observe that

Moreover, given z E let u := Tz. Then u E is the unique
solution of the inhomogeneous elliptic boundary value problem

We use these solution operators to construct the following linear operators

Due to the trace theorem (Lemma 2.2g) and the regularity assumption (1.2),
we have 

-

Consequently, (4.2) implies that

In virtue of we can (and will) also consider as

an unbounded, densely defined linear operator in 
Furthermore, we have the embeddings
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Thus the B~-realization Bg g of i. e.,

is well defined for s &#x3E; 1 - 1 /q. On the other hand, we also known that

So, we can consider as an operator in too. It is shown in [10,
Theorem 1.5] that is closable in Bq(r). Let Bs,q denote its closure.

Summarizing, we have constructed scales of linear operators on the Besov
spaces s E R, q E ( 1, oo). In the following theorem we will describe
some of the basic properties of these scales. In particular, it turns out that these
operators are negative generators of analytic semigroups on and that it
is possible to describe presisely their domains. Moreover, we will characterize
the dual operators of Bs,q.

d
Let Eo and El be Banach spaces such that El &#x3E;d Eo. We define

Eo) := {A E L(El, Eo); - A generates a strongly continuous

analytic semigroup on Eo } .

Then Theorem 1.5 in [10] implies the following result:

THEOREM 4.1. Suppose that s E Il~ and that q E (1, oo). Then

(as unbounded operators in [Bq (r)]’ = 

REMARK 4.2. a) Suppose that ask = 6jk (Kronecker symbol), that aj = 0,
bo = 0 and that ao &#x3E; 0 on SZ. Then the operator T is the solution operator of
the Dirichlet problem

and B reduces to the Neumann boundary operator Consequently, in this
situation the operator B T becomes the so-called Dirichlet-Neumann operator A
introduced by A.P. Calderon [7], J. Sylvester and G. Uhlmann [29] and J.L.
Lions [15] in the Hilbert space setting.

As exhibited in the introduced, the generalized Dirichlet-Neumann operator
plays an important role in the study of dynamic boundary conditions. These
boundary conditions appear in various models in theoretical physics (heat
conduction, water waves, acoustic waves), see [2, 8, 9, 11, 13, 19], as well as
in colloid chemistry and in chemical reactor theory, see [5, 14, 24, 35].
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In addition, the Dirichlet-Neumann operator A is used in inverse scattering
problems and in electrical prospection. In the study of these problems the

operator A has been recently investigated in a series of papers by J. Sylvester,
G. Uhlmann and A. Nachmann, [20, 21, 29, 30, 31], see also [25].

b) Let us remark that the operators constructed above coincide with those
of the introduction. This follows from the well-known fact that generators of

strongly continuous semigroups are unique and the observation that the elliptic
problem (E) is well posed on the Besov spaces (see [10], Section 3).

c) The regularity assumption (1.2) for the coefficients as well as the

assumption that r is of class Coo are not really necessary. We have introduced
this strong regularity only to be able to construct the scale Bs,p for all s E R.
Indeed, one can weaken these regularity hypotheses in the following sense:

Suppose that for some u &#x3E; 0 we have

Then the conclusions of Theorem 4.1 remain true, provided s E [2013~ 20131,~+1].

5. - Estimates for two commutators

Let Eo and El be Banach spaces such that Eo. We introduce the
following linear subspace of £(El, Eo):

If we suppose in addition that El is dense in Eo then, given A e Eo),
there exists a unique extension Ae E L(Eo) of A, where A is considered as a
(generally) unbounded operator in Eo.

Next assume that A E Eo) and that B E £(Eo) such that likewise
B E Obviously, in this situation we have

However, the main results in this section show that there are nontrivial examples
such that

Let 0 E and z E be given. Then it is well known [34, Theorem
4.2.2] that 1/;z E and that there is a positive constant c such that
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We often write 0 for the multiplication operator induced by 0 E 
Moreover, if 0 E D(V), where V c Wn is open, we frequently consider
as an element of 

Finally, we need some notation from the theory of pseudo-differential
operators. Let K c be compact and let cx, {3 E Nm be given. If k, 6, p are
real numbers, 0  p  1, 0  b  1, we set

. for a e The space of all symbols of order k and type (p,8) is given
as

Given p E we define the following formal operators p(X, D) by

Then q¡;,8 denotes the space of all pseudo-differential operators of order k and
type (p,8), i.e., q¡;,8 consists of all operators which are locally of the form
p(X, D). 

Let us now return to the pseudo-differential operators of Section 3. We
choose a E C~ B~0} such that a 2c where Ào E R denotes the
constant of (4.1 ). To economize our notation, we suppress in the following the
dependence on a. We also fix 1  i  mr, where mr is given by (2.19).

LEMMA 5.1. Given o E D(Ui) we have

PROOF. Obviously, the multiplication operator ~pi ~ induced by y~2 ~ belongs
to ’P?,o. Besides, y~i ~ is properly supported (see [23, p. 180] for a definition).

On the other hand, it follows from

that

Consequently, we have &#x26;(c~ ’) ~ By definition, this means that

:r-lb(a, -)Y- E Tll,o. Now, Corollary 3.5.10 in [23] can be applied and
yields the result. 

’ 

0



254

COROLLARY 5.2. Assume that 1/; E 0(U;). Then, given s E Rand p E ( 1, oo),
we have

PROOF. Theorem 6.2.2 in [34] ensures that q¡?,o c for s E R

and p Ei (1, oo). 
’ 

D

Our next goal is to establish a result similar to Corollary 5.2 for the

operators B,,p To this end we note that each 0 E D(Ui) induces a (pointwise)
multiplication operator mo on BP8(]F), given by

If s  0 this definition has to be understood in the sense of distributions, of
course. Observe that we have

This follows from [34, Theorem 4.2.2] and the localization procedure based on
(2.19). Again, we write 0 for the operator mo if there is no risk of confusion.

LEMMA 5.3. Let 0 E D(Ui) and p E (1, oo) be given. Then we have

PROOF. a) We denote by

the so-called Lions-Magenes extension of ?’# to cf. [10, (2.4)]. Then
we have

O. j j / ’ rGiven Q c we set

Since 9j E L(H~(L2), ,G~ (S~)), it follows from (5.3) that

Next pick p e B ~(F). Then by Lemma 2.2b), there is a sequence

C such that in Bp, (r) as n --&#x3E; oo. Since

E as n - oo. Since Ocpn e Bj7~/"(r), n e N, it follows that
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Letting n -~ oo, we find that

0

b) Next, we consider (a2 + n H§(Q) as an unbounded operator
in Then it is known that this operator is closable in Let A*
denote its closure. It can be shown that

For a proof of these facts we refer to [4, Section 8].
0

Moreover, given v E (5.5) implies that

By definition of T~ the first two integrals vanish. Thus

Now letting n -~ oo, it follows from (5.4) and (5.7) that

0

Since H~,1 (SZ) _ [HPI(0)1’ this implies that
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Consequently, (5.4) and (5.7) yield

c) Let p E be given. Then we have

where we have used (4.3) to obtain the last equality. Thus the fact that
B e ,G (Hp, (SZ), Bp; 1 /p’ (r)), (5.8), and equality imply
that 

~ ~ ’ 

d) Finally, let z EE Bp’-llp(F) and p E be given. Again, choose
a sequence such that in as n - oo.

Note that = by Theorem 4.1. Thus we have

Since ,~e(B~,-1~~~(T), BP,-l~p~(r)), we can find a positive constant
c such that

Consequently, letting n --~ oo, we obtain together with (5.10) and 
that
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Taking the supremum of all p E B p 1; 1 ~p~ (r)B ~ 0 ~ in (5 .11 ), we find that

This proves the Lemma. D

6. - Proof of the main result

In the preceding section we have derived estimates for the commutators
[B7r’O] and 0]. To apply the estimates of Section 3 it remains to establish
appropriate bounds for for each 1  i  mr . This will be
done by means of local coordinates. After these technical preliminaries we
estimate the resolvent of the C(r)-realization of From this estimate the
main result follows then easily.

In the following we fix i E { 1, ... , Let us first introduce some notation
to work with the local coordinates (1Bn(0, r)Vi). We first note that we can assume
without restriction that = idaz .

Furthermore, we set xo := and := Besides, we define

gjk := and g . Let us also
remark that, given k c N, we may assume that there exists a positive constant
c such that C c for r E (o, 1 ] and 1  i  mr .

Recall that is a partition of unity subordinate to the open
covering of Q. Moreover, letting Vi := r/2)), we may assume
that is an open covering of Q and that = 1. Additionally, in the
following let E D (Ui) such that 1/Ji I supp Oi = 1 and I supp qbj = 1.

If there is no risk of confusion, we suppress the index i in our notation,
i.e., we write p = Vi, U = Ui, 0 = ei, and so on.

Finally, let T denote the so-called Lions-Magenes extension of the solution
operator T defined in (4.2). Let us note the following basic properties of this
extension (cf. [10, Section 2]).

LEMMA 6.1. Let z E and h’ E be given. Then we
have
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where aj := ao := 
and bo := 

PROOF. a) Observe that E p cf. (6.1 ).
Besides, the integrand in a) has compact support. Thus Gauss’ theorem yields
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Recalling the definition of T, T27 and T27, we find that 

T27Qp*(ez)] - 0, (a2 + ,A27)T27= 0 and y(Q*y. ?’h’) - Q*y. h’. Thus the first
two and the last integrand vanish. Now it follows from Lemma 3.6 that

Furthermore, observe that Bip* (0 . ) E as Corollary
3.2, (2.24) and (5.2) show. Since is dense in the assertion
follows.

b) The transformation theorem for the Lebesgue integral implies that

Since z E , we have that T(Oz) = cf. (6.1 ). Consequently, the
definition of T shows that the last integral vanishes. Moreover, Gauss’ theorem
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yields

Again by density, this implies the assertion. 0

LEMMA 6.2. Given E &#x3E; 0, there exists a positive constant c(E) such that

for all z e and h’ e 

PROOF. Using (2.23), (6.1) and (3.16), it follows that

Moreover, since we have (observe that E
- --+ 

Thus we find that

o

Next fix 6 c (0, Then it is well known that = 

thus [Hp (I~n)]’ _ H;8(Hn), cf. [32, Theorem 4.5.2]. Hence it follows that
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8j E Now we conclude from (2.23) and (6.1) that there
is a c &#x3E; 0 such that

But we also have [B;l/p(r), by Lemma 2.2f). Hence,
the interpolation inequality

holds. Using Young’s inequality in the form

we find for each 6 &#x3E; 0 a constant c(e) &#x3E; 0 such that

On the other hand it follows from (3.16) that

Combining (6.2)-(6.5) the Lemma follows. D

LEMMA 6.3. Given - &#x3E; 0 there exist positive constants c(e) and c

(independent of r) such that

PROOF. Pick h’ c with = 1.

Furthermore, let
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Applying Lemma 6.1, we find that

To estimate Tl and T2 we use (2.24), Lemma 5.3, Corollary 5.2, (5.1 ), the fact
that and the hypothesis = 1, and we find that

where c is a positive constant.
Given e &#x3E; 0, there is a c(E) &#x3E; 0 such that

due to Lemma 6.2.

Moreover, using the same arguments which lead to (6.6) as well as (6.1 )
and (3.16), we conclude that

Now, observe that due to pj(0) = xo and idxx, we have 
ajk(xo) = aJk. Consequently, the mean value theorem implies that

with a constant c independent of r. This proves the Lemma. D

After those (more or less) technical preliminaries we are now going to
prove the main estimate.

Given s  0 and p E (I, cxJ), let B denote that C(r)-realization of Bs,p,
i.e., 

-

Then we have

LEMMA 6.4. B is a well-defined closed linear operator in C(r) having
dense domain. Moreover, B is the closure of in C(I-) if s &#x3E; 

n - 1.f S,p ( ) f 
P

PROOF. Observe that by Lemma 2.2c) and e) we know that

Consequently, the assertions follow from the definition of Bs,p, from the first part
of Theorem 4.1 (which in particular ensures that E 

for some ti E R) and from Lemma 2.2b) and d). D
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THEOREM 6.5. Suppose that p &#x3E; n. Then there exist constants c &#x3E; 0 and

Jj* &#x3E; 1 such that

for e and all z e dom(B), where r :_ ~ and mr is as in

(2.19).

PROOF. Combining Corollary 3.5 and Lemma 6.3, we find that for each
e &#x3E; 0 and each i e {1,...,~}:

Now observe that as Lemma 2.2 shows. Hence we

find the estimate

On the other hand, using 2.24 we find a constant c’ &#x3E; 0 such that

Hence it follow from (6.8) and (6.9) that
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Next observe sup &#x3E; 
= sup since

is an open covering of Q and since = 1. We also note that

C(r) ~ B;l/p(r). Thus (6.10) implies that

Finally, we choose e := 1 , r := In and u* := V 21nn V 1.Finally, we choose e := 
4c , 

r := /,t 1 -I’-- and J-l* := [2c(E)] P V [4c ]n- V 1.y 
4c

Then we have 
1 

= I,  and c(e + c . r) 1 forThen we have = 1, p- 
n 

 ’2013’ and c(6- + c - r)  forThen we have I /-z 1 11 n = 1, 
2 

and c + c - r - 
2 

for

p E J-l*]. It remains to subtract the last two terms on the right-hand side
in (6.11) to complete the proof. D

REMARK. Observe that mr (the "size" of the covering of Q)
tends to oo as r - 0 or, equivalently, as 1J-l1 - oo.

PROOF OF THE THEOREM. Theorem 6.5 and Lemma 6.4 imply immediately
that -B generates a strongly continuous analytic semigroup on C(r).

Since the embedding C(r) is compact for p &#x3E; n (see Lemma
2.2), Theorem 2.3.3 in [22] yields the compactness of the semigroup generated
by -B.

Finally, observe that p &#x3E; n, is an invariant subspace for the
resolvent of -B and that

On the other hand the positive cone of is dense in

[C(r)]+. But is a resolvent positive operator, as [10, Appendix] shows.
Consequently, -B is a resolvent positive operator too. This completes the proof.

D
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