
International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 4, Nº3

- 34 - DOI: 10.9781/ijimai.2017.436

Abstract — Software technology is constantly evolving and
therefore the development of applications requires adapting
software components and applications in order to be aligned to
new paradigms such as Pervasive Computing, Cloud Computing
and Internet of Things. In particular, many desktop software
components need to be migrated to mobile technologies. This
migration faces many challenges due to the proliferation of
different mobile platforms. Developers usually make applications
tailored for each type of device expending time and effort. As a
result, new programming languages are emerging to integrate
the native behaviors of the different platforms targeted in
development projects. In this direction, the Haxe language allows
writing mobile applications that target all major mobile platforms.
Novel technical frameworks for information integration and
tool interoperability such as Architecture-Driven Modernization
(ADM) proposed by the Object Management Group (OMG)
can help to manage a huge diversity of mobile technologies. The
Architecture-Driven Modernization Task Force (ADMTF) was
formed to create specifications and promote industry consensus
on the modernization of existing applications. In this work, we
propose a migration process from C/C++ software to different
mobile platforms that integrates ADM standards with Haxe. We
exemplify the different steps of the process with a simple case
study, the migration of “the Set of Mandelbrot” C++ application.
The proposal was validated in Eclipse Modeling Framework
considering that some of its tools and run-time environments are
aligned with ADM standards.

Keywords — Architecture-Driven Modernization, Haxe,
Migration, Metamodeling, Mobile Platform, Model-Driven
Development

I.	 Introduction

Today, mobile phones are the most used computing platform
worldwide. The wide spread use of mobile computing, that

emerged from the integration of cellular technology with the Web, has
contributed to opening up opportunities for new paradigms such as
Pervasive Computing, Cloud Computing and Internet of Things (IoT).

Pervasive Computing, also called Ubiquitous Computing is the idea
that almost any device can be embedded with chips to connect the
device to a network of other devices. The goal of pervasive computing,
which combines current network technologies with wireless computing,
voice recognition and Internet capability, is to create an environment
where the connectivity of devices is unobtrusive and always available.
Smartphones come with a variety of sensors (GPS, accelerometer,
digital compass, microphone, and camera), enabling a wide range of
mobile applications in Pervasive Computing.

Cloud Computing is an Internet-based computing for enabling
ubiquitous, on-demand network access to a shared pool of configurable

computing resources (e.g., networks, servers, storage, applications and
services) that can be rapidly supplied with minimal management effort.
This generates enormous amount of data, which have to be stored,
processed and accessed. Cloud computing has long been recognized
as a paradigm for Big Data storage and analytics providing computing
and data resources in a dynamic and pay-per use model. Mobile Cloud
Computing is the combination of Cloud Computing, Mobile Computing
and Wireless Network to provide computational resources to mobile
users, network operators, as well as cloud computing providers.

There is no single universal definition for Internet of Things. The
Oxford Dictionaries defines IoT as “the interconnection via the Internet
of computing devices embedded in everyday objects, enabling them to
send and receive data”. Gartner defines the Internet of Things (IoT) as
“the network of physical objects that contain embedded technology to
communicate, sense or interact with their internal states or the external
environment” [1]. This can generate volumes of real-time data that can
be used by enterprises for a variety of business applications. The IoT
is becoming so pervasive and several studies predict that will be more
than 30 billion IP-connected devices and sensors in the world by 2020.

Connectivity is central in Internet of Things. IoT extends Internet
connectivity beyond traditional mobile devices to a diverse range
of devices and everyday things that utilize embedded technology
to communicate and interact with the external environment, all via
Internet. Every object is integrated to interact with each other, allowing
for communications between objects, as well as between human and
objects, and the control of intelligent systems.

Pervasive computing, Cloud Computing and IoT face similar
problems and challenges and smartphones have been one of the greatest
facilitators of them. They are pursuing similar use cases, including smart
cities, environmental monitoring, agriculture and home automation,
and health and monitoring. These technologies will evolve and merge
into only one following the vision of Mark Weiser: “The most profound
technologies are those that disappear. They weave themselves into the
fabric of everyday life until they are indistinguishable from it” [2]. IoT
hardly could exist without the existence of Cloud Computing, as IoT
need a network, storage, very cheap analytical possibilities to collect
this information and analyze it in a meaningful way. IoT is also based
on the same concept of the Pervasive Computing: having sensors and
processors in everyday objects to determine their operation.

IoT is possible because thanks to mobile computing, the electronic
miniaturization advances allow cutting-edge computing and
communication technology to be added into very small objects. Besides
mobile computing promoted the globalizations of 3G and 4G networks
and today it is promoting 5G. Mobile Computing also facilitated the
development of distributed processing to create a network of billions
of devices. In summary, Mobile Computing is crucial to harnessing
the potential of Pervasive Computing, Cloud Computing and IoT and,
without the existence of smartphones these paradigms would not exist.

The development of applications aligned to these new paradigms
requires adapting desktop software components to mobile platforms

Migrating C/C++ Software to Mobile Platforms in
the ADM Context

Liliana Martinez1, Claudia Pereira1, Liliana Favre1,2

1 Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Argentina
2 Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, Argentina

Special Issue on Advances and Applications in the Internet of Things and Cloud Computing

- 35 -

facing many challenges due to the proliferation of different mobile
platforms. The high cost and technical complexity of targeting
development to a wide spectrum of platforms, has forced developers to
make applications tailored for each type of device. New programming
languages are thus emerging to integrate the native behaviors of the
different platforms targeted in development projects. In this direction,
the Haxe [3] language allows writing mobile applications that target
all major mobile platforms, such as Android, iOS and BlackBerry, in a
straightforward way.

Novel technical frameworks for information integration and tool
interoperability such as the Model-Driven Development (MDD) can
help to manage a huge diversity of mobile technologies [4]. MDD
provides principles and techniques to represent software through
models at different abstraction levels. A specific realization of MDD
is the Model-Driven Architecture (MDA) proposed by the Object
Management Group (OMG) [5]. The outstanding ideas behind MDA
are separating the specification of the system functionality from
its implementation on specific platforms, managing the software
evolution from abstract models to implementations. The essence
of MDA is Meta Object Facility (MOF), an OMG standard for
defining metamodels that provides the ability to design and integrate
semantically different languages such as general-purpose languages,
domain specific languages and modeling languages in a unified way.
Significant advantages can be made of this unification to construct
powerful mobile design environments. The modeling concepts of
MOF are classes, which model MOF meta-objects; associations, which
model binary relations between meta-objects; Data Types, which
model other data; and Packages, which modularize the models [6].
Consistency rules are attached to metamodel components by using
OCL [7]. MOF provides two metamodels EMOF (Essential MOF) and
CMOF (Complete MOF). EMOF favors simplicity of implementation
over expressiveness. CMOF is a metamodel used to specify more
sophisticated metamodels.

The Architecture-Driven Modernization (ADM) approach has
established a set of solutions for information system modernization.
ADM is defined as “the process of understand and evolve existing
software assets for the purpose of software improvement, modifications,
interoperability, refactoring, restructuring, reuse, porting, migration,
translation, integration, service-oriented architecture deployment” [8].
The OMG ADM Task Force (ADMTF) is developing a set of standards
(metamodels) to facilitate interoperability between modernization
tools. To date, ADMTF has published the standards such as KDM
(Knowledge Discovery Metamodel) and ASTM (Abstract Syntax Tree
Metamodel) [9][10].

The success of approaches such as ADM and MDA depend on the
existence of CASE tools that make a significant impact on software
processes such as forward engineering and reverse engineering
processes. The Eclipse Modeling Framework (EMF) was created for
facilitating system modeling and the automatic generation of Java code
[11]. EMF started as an implementation of MOF resulting Ecore, the
EMF metamodel comparable to EMOF. EMF has evolved starting
from the experience of the Eclipse community to implement a variety
of tools and to date is highly related to MDD [12]. In this context,
the subproject Model to Model Transformation (MMT), hosts model-
to-model transformation languages. Transformations are executed by
transformation engines that are plugged into the Eclipse Modeling
infrastructure. For instance, Atlas Transformation Language (ATL)
is a model transformation language and toolkit that provides ways
to produce a set of target models from a set of source models [13].
Another subproject is Acceleo, which is an implementation of the
Model-to-Text (M2T) transformation standard of the OMG for EMF-
based models [14]. Acceleo is used in forward engineering processes.

Today, the most complete technology that support ADM is MoDisco,

which provides a generic and extensible framework to facilitate the
development of tools to extract models from legacy systems and
use them on use cases of modernization. As an Eclipse component,
MoDisco can integrate with plugins or technologies available in the
Eclipse environment [15].

In the Eclipse environment, ADM is integrated with Java language
but it is weakly supported for other programming languages such
as C++ [11]. In particular, C++ is one of the most commonly used
programming language in science and engineering domains and
numerous legacy software components written in C++ require to be
modernized. EMF4CPP is the first step at providing a set of tools for
MDD in C++ as an alternative to the Eclipse tools for Java [16]. It
is a C++ implementation and type mapping for the EMF core, the
Ecore metamodel. The main facilities provided by EMF4CPP are to
generate C++ code from Ecore metamodels and to parse and serialize
models and metamodels from and into XMI documents [17]. However,
an implementation of a MOF-compliant C++ metamodel would
be necessary for other MDD processes (e.g., reverse engineering or
software modernization).

In this work, we propose a migration process from C/C++ software
to different mobile platforms that integrates ADM standards with Haxe.
On the one hand, the process follows model-driven principles: all
artifacts involved in the process are viewed as models and the process
is viewed as a sequence of model-to-model transformations. On the
other hand, Haxe easily adapts the native behaviors of the different
platforms targeted in development projects enabling extremely efficient
cross-platform development, ultimately saving time and resources. It is
worth mention that an Ecore metamodel and a model injector for the
C++ language are provided.

 The article includes a simple case study, the migration of a C++
application “the Set of Mandelbrot” that allow us to exemplify the
different steps of the process. We believe that our approach provides
advantages over processes based only on traditional ad-hoc migration
techniques increasing productivity due to the automation introduced in
the generation of the new software.

The article is organized as follows. Section II presents related
work highlighting our contribution. Section III, Background, briefly
describes OMG standards for modernization and the Haxe and C++
metamodels. In Section IV, we present the migration process from
C++ to mobile platforms. Section V details the different stages
of the migration process through of a simple case study. Finally, in
Sections VI and VII we present a critical analysis of our approach and
conclusions respectively.

II.	 Related Work

In this section, existing approaches for the development of mobile
applications that are related in some way with our approach are
described.

Reference [18] proposes a new software architecture with the
objective of providing the same service as mobile Web service as
well as mobile application. The authors report on the feasibility study
that they conducted in order to evaluate whether to use model-driven
software development for developing mobile applications. They argue
that the architecture is flexible enough to support mobile Web services
and mobile applications at the same time. They have developed a
metamodel to describe mobile application and have shown how to
generate mobile application from that model.

The project BAMOS and an architecture designed and implemented
for the generic and flexible development of mobile applications
are described in [19]. The architecture is based on the declarative
description of the available services. The authors describe a model-

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 4, Nº3

- 36 -

driven approach for generating almost the complete source code of
mobile services.

Reference [20] goes through mobile development process and
architectural structures and their analysis with empirical mobile
application development. The architecture and architecture role on the
development has been studied in mobile application and multiplatform
service development.

Various authors describe challenges of mobile software
development, for example, in [21] authors highlight creating user
interfaces for different kinds of mobile devices, providing reusable
applications across multiple mobile platforms, designing context
aware applications and handling their complexity and, specifying
requirements uncertainty. Issues related to ensuring that the application
provides sufficient performance while maximizing battery life are
remarked in [22].

A proposal for supporting mobile application development by using
models as inputs to an emulator is outlined at [23]. The authors describe
an MDD-based emulator for using in the design of graphical interfaces
and interactions. They propose transform functional behavior and
requirement models with design restrictions into emulated applications.

Reference [24] describes a DSL (Domain Specific Language), named
MobDSL, to generate applications for multiple mobile platforms. They
perform the domain analysis on two cases in the Android and iPhone
platforms. This analysis allows inferring the basic requirements of the
language defined by MobDSL.

A reengineering process that integrates traditional reverse
engineering techniques such as static and dynamic analysis with MDA
is presented at [25]. The article describes a case study that shows how
to move CRM (Customer Relationship Management) applications from
desktop to mobile platforms. The proposal was validated in the open
source application platform Eclipse, EMF, EMP, ATL and Android
platform. Reference [26] describes a migration process from Java to
mobile platforms through the multiplatform language Haxe.

ANDRIU, a reverse engineering tool based on static analysis
of source code for transforming user interface tiers from desktop
application to Android, is described in [27]. ANDRIU has been
developed for migrating traditional systems to Android applications
although it was designed to be extended for different migrations to
others mobile platforms.

Reference [28] describes six major trends affecting future smartphone
design and use: personal computers, IoT, multimedia delivery, low
power operation, wearable computing and context awareness.

Reference [29] describes a comprehensive tool suite called
WebRatio Mobile Platform for model-driven development of mobile
applications. It is based on an extended version of OMG standard
language called IFML (Interaction Flow Modeling Language)
empowered with primitives tailored to mobile systems that enable
specification of mobile specific behaviors.

Reference [30] brings out the findings of the experiments carried
out to understand the impact of application characteristics, cloud and
architecture and the android emulator used, on application performance
when the application is augmented to cloud.

Reference [31] presents a solution for facilitating the migration of
applications to the cloud, inferring the most suitable deployment model
for the application and automatically deploying it in the available
Cloud providers.

A.	 Our Contribution: The Migration Process
In this article, we describe an original model-driven migration

process based on ADM standards (Figure 1). The process includes:
1.	 Recovering the generic abstract syntax tree (AST) model,

instance of GASTM, from code: this step is different for each
programing language.

2.	 Transforming the AST model to a target model in the Haxe
platform through an intermediate transformation to obtain the
KDM model. The advantage of this intermediate step is that,
starting from the KDM model it is possible to obtain high-level
models such as UML class diagrams, activity diagrams and
use cases diagrams. These models could be refactored and be
the starting point for generating code. This step is common for
each source language.

3.	 Generating Haxe from the Haxe model. Then, Haxe allows
compilation of programs to multiple target languages such
as Javascript, Neko, C++ and Java and to all major mobile
platforms.

III.	Background

In this section, we describe OMG standards for modernization.
Next, we briefly describe the Haxe language and the Haxe metamodel.
Finally, we describe the C++ metamodel that we defined via the Ecore
metamodel.

A.	 Standards for Modernization
The purpose of standardization is to achieve well-defined interfaces

and formats for interchange of information about software models to
facilitate interoperability between the software modernization tools
and services of the adherents of the standards. This will enable a new
generation of solutions to benefit the whole industry and encourage
collaboration among complementary vendors.

ADMTF is developing a set of standards of which we are
interested in KDM and ASTM, both metamodels are defined via
MOF. KDM is a metamodel for knowledge discovery in software that
allows representing information related to existing software assets,
their associations, and operational environments regardless of the
implementation programming language and runtime platform. KDM
is the foundation for software modernization representing entire
enterprise software systems, not just code. ASTM is a specification for
modeling elements to express abstract syntax trees. KDM and ASTM
are two complementary modeling specifications. KDM establishes
a specification that allows representing semantic information about
a software system, whereas ASTM establishes a specification for
representing the source code syntax by means of AST. ASTM acts as
the lowest level foundation for modeling software within the OMG
ecosystem of standards, whereas KDM serves as a gateway to the
higher-level OMG models.

B.	 The Haxe Language
Haxe is an open-source high-level multiplatform programming

language and compiler that can produce applications and source code
for many different platforms from a single code-base [3].

Fig. 1. Our contribution: The Migration Process

Special Issue on Advances and Applications in the Internet of Things and Cloud Computing

- 37 -

Reference [32] summarizes the Haxe principles as follows:
“support mainstream platforms”, “write once, reuse everywhere”,
“always native, no wrapper”, “generated but readable” and “trust the
developer”. Some languages allow cross-platform development, but
neither their features nor their standard libraries are designed to run
on multiple platforms. Haxe was designed from scratch to run and
compile for many different platforms.

The Haxe programming language is a high level programming
language that mixes features of object-oriented languages and
functional ones. It is similar (but not pure) to object-oriented languages.
The compiler supports novel features such as type inference, enforcing
strict type safety at compile time.

Since language can be compiled for different platforms, it is useful
for a wide variety of applications such as games, web and mobile. Haxe
easily adapts the native behaviors of the different platforms targeted
in development projects enabling extremely efficient cross-platform
development, ultimately saving time and resources. Currently there
are nine supported target languages: Javascript, Neko, PHP, Python,
C++, Actionscript3, Flash, Java and, C#. In the context of Mobile App
Development, Haxe allows writing mobile apps that target all major
mobile platforms and run at native speed. The C++ target allows us
to target Android or iOS, and OpenFL provides support for creating
interfaces using a Flash-like API. OpenFL is a free and open source
software framework and platform for the creation of multiplatform
applications and video games [33]. OpenFL programs are written in
Haxe and may be published to Flash movies, or standalone applications
for Microsoft Windows, Mac OS X, Linux, iOS, Android, BlackBerry

OS, Firefox OS, HTML5 and Tizen.
In previous work, we show an integration the Haxe with MDD

defining an Ecore metamodel of the Cross-Platform Framework
Haxe [26]. This metamodel allowed us to integrate Haxe with MDA
migration process from Java or C/C++ to mobile platform.

C.	 The Haxe Metamodel
The Haxe metamodel conforms to Ecore and is partially shown

in Figure 2. The main metaclasses of the Haxe metamodel are those
that allow specifying an application using Haxe as language. One of
the main metaclasses of the metamodel is HaxeModel, that serves as
element container used to describe an application and store additional
information on it, for example, some options of compilation and
different metaclasses for modeling such as modules, classes and
packages. HaxeModel owns HaxeModule and HaxePathReferentiable.
Starting from the relations haxeModules, referenced and elements,
the class HaxeModel allows storing different information. Relation
haxeModules allows accessing the different Haxe modules used in the
project. Through relation elements, it is possible to access the different
elements of the package tree. Relation referenced provides access
to elements, which are referenced in the project but are not defined
completely. In the case of relations and referenced elements, the type
used is HaxePathReferentiable, which is the parent type of metaclasses
such as HaxeType and HaxePackage. The Haxe language includes
different kind of types such as class (the types class and interface),
function, abstract type, enumeration, and anonymous structures. The
full Haxe metamodel can be found in [34].

Fig. 2. The Haxe Metamodel

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 4, Nº3

- 38 -

D.	 The C++ Metamodel
The C++ metamodel conforms to Ecore and is partially shown

in Figure 3. The root metaclass is Program that represents a C++
program, which owns source files, instances of TranslationUnit.
A translation unit contains declarations such as block declaration,
function definitions and template declarations. A SimpleDeclaration,
instance of BlockDeclaration, has a DeclSpecifierSeq that is a sequence
of DeclSpecifiers which refers to a declaration specifiers and a type
specifier. In addition, a simple declaration has an InitDeclaratorList
containing a variable declaration list that is a list of specifiers
and the name of a variable and its corresponding initialization. A
FunctionDefinition has a Declarator containing the function identifier
and the parameter list. Function and CtorOrDestFunction, instances
of FunctionDefinition, have a body that contains a compound
statement that owns statements such as declarations, iterations
and selections. In addition, a Function has a DeclSpecifierSeq that
is a sequence of DeclSpecifiers such as function specifiers and a
type specifier. TypeSpecifier subclasses are SimpleTypeSpecifier,
ClassSpecifier and EnumSpecifier among others. A ClassSpecifier
has a ClassHead containing the class key (class or struct) and a
MemberSpecification that contains MemberDeclarations such as
variables, function declarations, function definitions, constructors,
destructor, template members, etc.

IV.	Migrating Legacy Code In The Adm Context

In this article, a process to migrate legacy code to Haxe in the ADM
context is proposed. The migration process follows model-driven
development principles: all artifacts involved in the process can be
viewed as models that conforms to Ecore meta-metamodel, the process
itself can be viewed as a sequence of model-to-model transformations
and the extracted information is represented in a standard way through
Ecore metamodels. For each transformation, source and target
metamodels are specified. A source metamodel defines the family
of source models to which transformations can be applied. A target
metamodel characterizes the generated models. Figure 4 summarizes
the proposed process.

The first step is the reverse engineering of source code to obtain the
abstract syntax tree of the code and consists of two stages:

1.	 Generating the first model of the code by using a model
injector. This model conforms to source code metamodel, such
as C++ and Java. The obtained model could be refactored to
reorganize and modify the syntactic elements to improve the
design. The refactoring is implemented as a model-to-model
transformation whose source and target models are instances
of source code metamodel.

2.	 Generating the abstract syntax tree model, instance of the
GASTM metamodel, from the model obtained in the previous
stage by an ATL model-to-model transformation.

In this first step of the process, an injector and a transformation to
obtain the GASTM model must be implemented for each language,
whereas the sequence of transformations involved in the followings
steps of the migration process are independent of the language of the
legacy code.

The second step generates the KDM model. This process is carried
out by means of an ATL model-to-model transformation that takes as
input a model conforming to the GASTM metamodel and produces a
model conforming to the KDM metamodel.

The next step is related to an ATL model-to-model transformation
that generates a model of the Haxe platform from a KDM model. Then,
it is possible to generate Haxe code from the Haxe model by using
model-to-text transformations expressed in Acceleo. Considering that
Haxe has one cross-platform standard library and various platform
specific APIs used to natively access platform features, it is possible
to write a mobile application once and have this application instantly
available to different mobile devices.

The proposal was validated in the open source application platform
Eclipse considering that some of its tools and run-time environments
are aligned with ADM. Eclipse provides implementations of several
metamodels such as Java, GASTM and KDM conforming to Ecore
metamodel. We contribute with the implementation of C++ and
Haxe metamodels, instances of Ecore metamodel. Model-to-
model transformations were implemented in ATL that is a model
transformation language in the field of MDE developed on top of the
Eclipse platform. ATL is a hybrid language that provides a mix of
declarative and imperative constructs.

V.	 Case Study: Migrating C++ Code To Mobile Platforms

In this section, we describe a migration process from C++ code to
different mobile platforms through Haxe. This process starts extracting
models from the C++ code. Next, these models are transformed into
Haxe models that allow generating Haxe code which can be compiled
to multiple target languages in a straightforward way.

To illustrate the migration process, we describe a simple case study,
how to migrate the C++ code of “the Set of Mandelbrot” to Haxe code. Fig 3. The C++ Metamodel.

Special Issue on Advances and Applications in the Internet of Things and Cloud Computing

- 39 -

The original application consists of a main class, called Mandelbrot,
that is responsible for the calculation of the set of Mandelbrot and
displaying it as image. To perform these tasks, the Mandelbrot class
depends on Picture and Complex classes, the first is used as a data
type that supports the manipulation of digital images. The second class
is a data type used to model complex number with their respective
operations. The following subsections describes the steps of the
migration process.

A.	 Obtaining GASTM models from C++ code
Below, we describe the model-to-model transformations to generate

generic abstract syntax tree (AST) models from C++ models.
This first transformation extracts an AST model specific to C++

from code. To carry out this task, we constructed a model injector
by using EMFText [35]. To generate this injector, EMFText requires
the language metamodel and the concrete syntax specification. In
our approach, to generate the injector we first specified the C++
metamodel based on the C++ grammar [36]. Then, we specified the
concrete syntax that defines the textual representation of all metamodel
concepts. Taking these specifications, the EMFText generator derives
an advanced textual editor that uses a parser and printer to parse
language expressions to EMF models or to print EMF models to
languages expressions respectively.

Figure 5 exemplifies the first step of the process. It partially shows
C++ code of Mandelbrot Set, that is the input of the model injector, and
the C++ model of the application in XMI format.

The second transformation takes as input the model obtained in
the previous step and release a generic AST model conforming to the
GASTM metamodel. This transformation specifies the way to produce
GASTM projects (target) from C++ programs (source). Figure 6

partially shown the obtained GASTM model from the transformation.
A project owns files that are obtained from the source files of the
program. Each file, instance of CompilationUnit, owns fragments such
as aggregate type definition, function definition and variable definition
obtained from the translation of classes, function definitions, variables,
etc.

B.	 Obtaining Haxe models
The previous transformations are dependent of the legacy code

language, that is, for each language, the model injector and the
transformation to obtain the generic AST model must be implemented.

In contrast to the previous stage, the sequence of transformations from
GASTM models to Haxe models are independent of the language, that
is, these transformations are common for all language of the legacy code:
•	 Transforming a GASTM model to a KDM model.
•	 Transforming a KDM model to a Haxe model: This transformation

takes into account the characteristics of the Haxe language, for
example, Haxe does not support neither multiple inheritance nor
multiple class constructors.

These transformations are implemented in ATL and specified by
means of ATL modules composed of the following elements:
•	 A header section that defines the names of the transformation

module and the variables of the source and target metamodels.
•	 An optional import section that enables to import some existing

ATL libraries.
•	 A set of helpers that can be used to define variables and functions.
•	 A set of rules that defines how source model elements are matched

and navigated to create and initialize the elements of the target
models.

Fig. 4. The Migration Process.

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 4, Nº3

- 40 -

To exemplify the ATL transformations, the GASTM-to-KDM
transformation is partially shown in Figure 7. The module ASTM2KDM
specifies the way to produce KDM models (target) from GASTM
models (source). Some rules that carry out the transformation are the
followings:
•	 The rule Project2Segment transforms each ASTM project into a

KDM segment that owns models such as CodeModel containing
code elements (data types, methods, variables, etc.) and
InventoryModel that contains physical artifacts of the existing
software system (source file, binary file, etc).

•	 The rule AggregateTypeDefinition2ClassUnit transforms each
ClassType into a ClassUnit. Code elements are obtained from the
variables and function of the original class; source is obtained from
the source code location.

•	 The VariableDefinition2StorableUnit transforms each variable
definition into a storable unit.

•	 The FunctionDeclaration2MethodUnit transforms each function
declaration into a method Unit.

The resulting model of this transformation is partially shown in
Figure 8.

C.	 Generating Haxe Code
From a model Haxe, it is possible to generate a source code in

Haxe by using Acceleo. Haxe allows writing mobile applications
that target all major mobile platforms in a straightforward way. The
generated code is syntactically correct, although, it does not compile

on other platforms without doing changes due to the code refers to
proprietary technologies of C++. To run on mobile environments, these
technologies can be replaced with OpenFL and HaxeUI (that is an open
source, multi-platform application-centric user interface framework
designed for Haxe and OpenFL). The code obtained is partially shown
in Figure 9.

VI.	Critical Analysis of Our Approach

This section analyzes critically our approach. First, we discuss
advantages and limitations with regard to the application of an ADM
approach. Next, we analyze the proposed migration process.

With regard to ADM, one of the well-known benefits is the
increment of development productivity due to automation introduced
in the generation of artifacts of the final system.

When a migration process is defined, it is important to consider that
it is independent of the source and target technologies. In ADM, the
intermediate models act as decoupling elements between source and
target technologies. The independence is achieved with injectors and,
M2M and M2T transformations. Besides, in a transformation sequence,
models are an extension point to incorporate new stages.

ADM is based on MOF-like metamodeling that is a powerful
approach for interoperability. For instance, a reverse engineering
process recovers knowledge that must be represented using any
formalism. For example, the XML technology seeks to solve the
problem of expressing structured data in an abstract and reusable

Fig. 5. The Mandelbrot Class: Code and Model.

Special Issue on Advances and Applications in the Internet of Things and Cloud Computing

- 41 -

way. Metamodeling languages as MOF or its implementation
called Ecore will outperform XML for its expressive power and the
existence of powerful model transformation languages to implement
transformations that are required at the different stages of the migration
process. MOF-like metamodeling also includes the possibility to attach
OCL restrictions to complete the model specification. In addition,
MOF-like metamodels allow a clear separation of abstract and concrete
syntax and thus, associate different notations for a model.

On the other hand, we can mention the following limitations of
ADM. There are no available open and free injectors for different
languages and it is often necessary to implement them. As regard

Fig. 6. The Mandelbrot Set: GASTM Model.

Fig 7. The ASTM2KDM Transformation.

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 4, Nº3

- 42 -

KDM metamodel, it is designed to support interoperability between
modernization tools. For some aspects such as user interfaces, KDM
provides a reduced level of detail and does not allow to express common
concepts to many technologies. This requires to extend the metamodel
(which leaves to conform to a standard) or define stereotypes. With
regard to model transformation languages, they suffer limitations due
to it does not allow defining complex data structures and algorithms.

 Regarding the proposed migration process, we show the viability of
semi-automatic migration processes based on ADM. Due the fact that
the objective of the migration is not only “compile” an application in a
mobile platform but also to create a modified version of the application
using quality criteria, the process can not be fully automated. Next,
we informally compare the model-driven migration process with brute-
force redevelopment migration.

Our approach involves preliminary activities that require time and

cost, for instance we need to define metamodels and transformations if
they do not exist. It is assumed that using a brute-force redevelopment,
developers do not need training to write metamodels and model
transformations. However, model transformations allow developers to
concentrate on conceptual aspects of the relations between models and
then to delegate most of the migration process to the transformation
rules, whereas in the brute-force redevelopment, developers need to
migrate by hand the legacy systems, making over and over again the
same task. It is worth mentioning that the generation of models by ATL
transformations, aims to generate models “Correct-by-Construction”
with regard to metamodel specifications.

A general limitation on migration processes is the cost of testing
due to these activities in general are handled manually. In the context
of model-driven approaches, the cost of testing could be reduced by
defining semiautomatic process based on metamodels.

Fig 8. The Mandelbrot Set: The KDM Model. Fig 9. The Mandelbrot Set: Haxe Code.

Special Issue on Advances and Applications in the Internet of Things and Cloud Computing

- 43 -

Beyond the previous issues, we consider that mobile application
developers need frequently adapt software components and applications
developed in languages such as Java or C/C++. Then, model-driven
migration processes could be reused and the cost of preliminary
activities is recovered.

VII.	 Conclusion

This paper describes an approach for adapting object-oriented
software in C/C++ to mobile platforms. A migration process, based on
the integration of ADM and the HAXE platform, has been proposed.
The main contributions of our approach is a sequence of transformations
implemented to migrate C++ code to mobile platform based on ADM
standards allowing reusing both the transformations and the generated
models. Besides, we provide a definition of the C++ metamodel via the
Ecore metamodel and the implementation of an injector to obtain the
first model from C++ code.

We believe that our approach provides benefits with regard
to processes based only on traditional migration techniques. The
migration process can be divided in smaller steps focusing in
specific activities, and be automated thanks to the chaining of model
transformations. All the involved artifacts can be reused, modified for
evolution purposes or extended for other purposes. The metamodel
approach enables covering different levels of abstraction and satisfying
several degrees of detail depending on the needs of the migration and
is the key for interoperability. All artifacts can be actually represented
as models so that there is no information loss during the migration
process. Model transformations allow developers to concentrate on the
conceptual aspects of the relations between models and delegate the
implementation of the transformation.

The proposal was validated in the open source application platform
Eclipse considering that some of its tools and run-time environments
are aligned with ADM standards. Our approach has already shown to
work on real applications of medium size. We foresee to apply our
approach in real industrial projects.

References

[1]	 Gartner, http://www.gartner.com/it-glossary/internet-of-things/, 2016.
[2]	 M. Weiser. The Computer for the 21st Century, Scientific American, Vol.

265 No.9, pp. 66-75, 1991.
[3]	 B. Dasnois. Haxe 2 Beginner’s Guide. Packt Publishing, 2011.
[4]	 M. Brambilla, J. Cabot, M. Wimmer. Model-Driven Software Enginneering

in Practice, Synthesis Lectures on Software Engineering. Morgan &
Claypool Publishers, 2012.

[5]	 MDA. The Model-Driven Architecture. http://www.omg.org/mda/, 2016.
[6]	 Meta Object Facility (MOF) Core Specification, Version 2.5, OMG

Document Number: formal/2015-06-05. Available: http://www.omg.org/
spec/MOF/2.5/

[7]	 OMG 	 Object 	 constraint 	language 	 (OCL), 	 version 	
2.4. OMG Document Number: formal/2014-02-03. Available: http://www.
omg.org/spec/OCL/2.4

[8]	 ADM. Architecture-driven modernization task force. http://www.adm.org,
2016.

[9]	 Knowledge Discovery Meta-Model (KDM), OMG Document Number:
formal/2011-08-04. Available: http://www.omg.org/spec/KDM/1.3, 2011.

[10]	 Abstract Syntax Tree Metamodel, version 1.0, OMG Document Number:
formal/2011-01-05. Available: http://www.omg.org/spec/ASTM, 2011.

[11]	 D. Steinberg, F. Budinsky, M. Paternostro, E.Merks. EMF: Eclipse
Modeling Framework (2nd ed.). Addison-Wesley, 2009.

[12]	 EMF. Eclipse Modeling Framework (EMF). http://www.eclipse.org/
modeling/emf/ 2016.

[13]	 ATL. 	 Atlas 	 Transformation 	 L a n g u a g e 	
Documentation. http://www.eclipse.org/atl/documentation/, 2016.

[14]	 Acceleo. Obeo. Acceleo Generator. http://www.eclipse.org/Acceleo/,

2016.
[15]	 MoDisco. https://eclipse.org/MoDisco/, 2016.
[16]	 EMF4CPP: What is EMF4CPP? https://code.google.com/archive/p/

emf4cpp/, 2016.
[17]	 XML Metadata Interchange (XMI) Specification, OMG Document

Number: formal/2015-06-07. Available: http://www.omg.org/spec/
XMI/2.5.1

[18]	 P. Braun, R. Eckhaus, “Experiences on model-driven software
development for mobile applications” in Proc. of Engineering of
Computer-Based Systems, IEEE International Conference and Workshop
on the Engineering of computer Base Systems , Washington, DC, USA,
IEEE Computer Society, 2008, pp. 490-493.

[19]	 J. Dunkel, R. Bruns, “Model-driven architecture for mobile applications”.
Business Information Systems (LNCS), Berlin: Springer-Verlag, 2007, vol.
4439, pp. 464-477.

[20]	 H. K. Kim, Frameworks of process improvement for mobile applications.
Engineering Letters, 16(4), 2008, 550-555. Available: http://www.
engineeringletters.com/issues_v16/issue_4/EL_16_4_13.pdf

[21]	 J. Dehlinger, J. Dixon. “Mobile application software engineering:
Challenges and research directions” in Proc. of the Workshop on Mobile
Software Engineering, Berlin, Springer-Verlag, 2011, pp. 29-32.

[22]	 C. Thompson, D. Schmidt, H. Turner,J. White, “Analyzing Mobile
Application Software Power Consumption via Model-Driven
Engineering”, Advances and Applications in Model-Driven Engineering,
Chapter 16, IGI GLOBAL, 2014, pp.342-366.

[23]	 J. Bowen, A. Hinze, “Supporting mobile application development with
model-driven emulation”, Journal of the ECEASST, vol. 45, 2011, pp. 1–5.

[24]	 D. Kramer, T. Clark, S. Oussena, “MobDSL: A domain specific language
for multiple mobile platform deployment”, in IEEE Int. Conf. on
Networked Embedded Systems for Enterprise Applications (NESEA),
2010, pp. 1-7.

[25]	 F. Améndola, L. Favre, “Adapting CRM systems for mobile platforms:
An MDA perspective”, 14th ACIS Int. Conf. on Software Engineering,
Artificial Intelligence, Networking and Parallel/Distributed Computing
(SNPD´13), 2013, pp. 323-328.

[26]	 P. Diaz Bilotto, L. Favre, “Migrating Java to Mobile Platforms through
Haxe: An MDD Approach”, Chapter 13, Modern Software Engineering
Methodologies for Mobile and Cloud Environments. Antonio Miguel
Rosado da Cruz, Sara Paiva, eds. (pp.240-268), IGI GLOBAL, 2016.

[27]	 R. Pérez Castillo, I. García Rodriguez, R. Gómez Cornejo, M. R. Pérez
Castillo, I. García Rodriguez, R. Gómez Cornejo, M. Fernández Ropero,
M. Piattini, ANDRIU. A Technique for Migrating Graphical User
Interfaces to Android. In Proc. of The 25th International Conference on
Software Engineering and Knowledge Engineering (SEKE 2013), Boston:
Knowledge Systems Institute, pp. 516-519.

[28]	 N. Islam, R. Want. Smarthphones: Past, present and future. Pervasive
Computing, 13(4), 2014, pp.82-92.

[29]	 R. Acerbis, A. Bongio, M. Brambilla, S. Butti, Model-Driven
Development Based on OMG’s IFML with WebRatio Web and Mobile
Platform. Engineering the Web in the Big Data Era. Lecture Notes in
Computer Science, vol. 9114, 2015, pp. 605-608.

[30]	 P. Joshi, A. Nivangune, R. Kumar, S. Kumar, R. Ramesh, S. Pani,
A. Chesum, Understanding the Challenges in Mobile Computation
Offloading to Cloud through Experimentation. In 2nd ACM Int. Conf. on
Mobile Software Engineering and Systems (MOBILESoft), 2015, pp.158-
159.

[31]	 J. Ejarque, A. Micsik, R. M. Badia, “Towards Automatic Application
Migration to Clouds”, in IEEE 8th Int. Conf. on Cloud Computing
(CLOUD), 2015, pp. 25-32.

[32]	 N. Cannasse, Haxe. Too Good to be True? GameDuell Tech Talk. http://
www.techtalk-berlin.de/news/read/nicolas-cannasse-introducing-Haxe/,
2014.

[33]	 OPEN FL, http://www.openfl.org/, 2016.
[34]	 P. Diaz Bilotto. “Software development for mobile applications through an

integration of MDA and Haxe”. Undergraduate Thesis. Computer Science
Department, Universidad Nacional del Centro de la Provincia de Buenos
Aires, Argentina, 2015.

[35]	 EMFText, www.emftext.org , 2016.
[36]	 B. Stroustrup, The C++ Programming Language. Addison-Wesley, Third

Edition, 1997.

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 4, Nº3

- 44 -

Liliana Martinez has a Master degree in Software
Engineering. She is an assistant professor in Computer
Science area at the Universidad Nacional del Centro de la
Provincia de Buenos Aires (UNCPBA), Tandil, Argentina.
She is a member of the Software Technology Group, which
develops its activities at the INTIA Research Institute at
the UNCPBA. Her research interests are focused on system
modernization, reverse engineering in the ADM context

in particular. She has published book chapters, journal articles and conference
papers. She has been member of the program committee of international
conferences related to software engineering.

Claudia Pereira is an assistant professor in Computer
Science area at the Facultad de Ciencias Exactas,
Universidad Nacional del Centro de la Provincia de Buenos
Aires (UNCPBA), Tandil, Argentina. She is a member of the
Software Technology Group, which develops its activities
at the INTIA Research Institute at the UNCPBA. She has a
Master degree in Software Engineering from Universidad
Nacional de La Plata, Argentina. Her research interests are

focused on system modernization. She has published book chapters, journal
articles and conference papers. She has been member of the program committee
of international conferences related to software engineering.

Liliana Favre is Liliana Favre is a full professor of
Computer Science at Universidad Nacional del Centro de
la Provincia de Buenos Aires in Argentina. She is also a
researcher of CIC (Comisión de Investigaciones Científicas
de la Provincia de Buenos Aires). Her current research
interests are focused on model driven development, model
driven architecture and formal approaches, mainly on
the integration of algebraic techniques with MDA-based

processes. She has been involved in several national research projects about
formal methods and software engineering methodologies. Currently she is
research leader of the Software Technology Group at Universidad Nacional
del Centro de la Provincia de Buenos Aires. She has published several book
chapters, journal articles and conference papers. She has acted as editor of the
book UML and the Unified Process. She is the author of the book Model Driven
Architecture for Reverse Engineering Technologies: Strategic Directions and
System Evolution.

