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RESUMEN

La estimacion "tradicional" de modelos de panel con datos de niimero de ocurrencias
(count data) ha estado basada en el estimador condicional por maximaverosimilitud. El
principio de la pseudo maximaverosimilitud puede utilizarse para obtener condiciones de
ortogonalidad que generan un estimador robusto. Sin embargo, dicho estimador serd
inconsistente si los instrumentos no son estrictamente exogenos. Este trabajo propone un
estimador por el método generalizado de los momentos para modelos de count data con
efectos fijos, basado en una transformacién de 1@§especificaci6n de la media condicionada,
que es consistente incluso cuando las variables explicativas son predeterminadas. Esta
aproximacion se aplica a dos casos de count data: la relacién entre patentes y gastos en [+D
y la explicacion del nimero de licencias obtenidas por las empresas en el caso de
transferencia de tecnologia.

PALABRAS CLAVE: Momentos condicionales, estimador condicional por
maximaverosimilitud, principio de pseudo-maximaverosimilitud.

ABSTRACT

The "traditional" approach to the estimation of count panel data models with fixed
effects is the conditional maximum-likelihood estimator. The pseudo maximum-likelihood
principle can be used in these models to obtain orthogonality conditions that generate a robust
estimator. However, this estimator is inconsistent when the instruments are not strictly
exogenous. This paper proposes a GMM estimator for count panel data models with fixed
fixed effects, based on a transformation of the conditional mean specification, that is
consistent even when the explanatory variables are predetermined. Two applications are
discussed: the relationship between patents and R&D expenditures and the explanation of
technology transfer.

KEYWORDS: Conditional moment restrictions, conditional maximum-likelihood estimator,
pseudo maximum-likelihood principle.




1. INTRODUCTION

The use of count data models to analyze economic dependent variables
that take only non-negative integer values has some tradition in econometrics.
Count data models are specially useful when a researcher wants to explain
the number of times that an economic phenomenon takes place in a given
period of time. Economic examples are the number of patents applied for by a
firm in a particular year (Hall, Griliches and Hausman 1986; Hall, Hausman
and Griliches 1984), the number of lifcensing agreements signed by a firm
(Montalvo and Yafeh 1994), the number of coffee cups that an individual
consumes in a day (Mullahy 1986) or the number of medical consultations

during a two-weeks period (Cameron and Trivedi 1986).

Regarding to cross section data the basic framework for this kind of mod-
els has been the Poisson regression. The main disadvantage of this simple
model is the assumption of equality between conditional mean and condi-
tional variance. The usual finding when estimating a Poisson regression is
overdispersion: the estimated variance is significantly larger than the es-
timated mean [for a recent treatment of the issue see, for instance, Efron
(1992)]. Some authors have proposed to generalize the Poisson model using
distributions derived from the Poisson but that do not imply the equality be-
tween conditional expectation and variance. This is the case of the negative
binomial in Hall et al. (1984) or the truncated Poisson in Mullahy (1986).
In both cases the estimation procedure is maximum-likelihood. The pseudo

maximum likelihood methods proposed by Gourieroux, Monfort and Trognon




(1984a) can be used in order to obtain consistent estimators even when the
family of probability distribution does not necessarily contains the true dis-
tribution. This approach was applied by Hall el al. (1986) and Cameron and
Trivedi (1986).

Regarding to count panel data models the basic reference is the so called
conditional maximum likelihood fixed effects specification used be Hall et
al. (1984) [Gourieroux et al. (1984a) propose a double indexed count data
as an alternative to the specification in Hall et al.(1984), that can be es-
timated using a quasi-pseudo maxirﬁilm likelihood estimator]. The fixed
effects model is appealing given that in many cases the individual effect has
a significant correlation with the explanatory variables. For instance, firms
that have a higher propensity to patent for unobserved reasons may invest
more on R&D because the returns of this kind of expenditures are higher
than other investment projects. The main advantage of the conditional max-
imum likelihood specification is analytical tractability. The fact that the
Poisson distribution belongs to the exponential family makes the sum of the
dependent variable over time a Poisson distribution too. The problem with
this approach is its dependence on the distributional assumptions. Addi-
tionally it has a disadvantage: the consistency of the conditional maximum
likelihood estimator relies on the strict exogeneity assumption. Wooldridge
(1990) develops distribution-free estimation procedures for count panel data
and shows that consistency and asymptotic normality are guarantee when
the conditional mean is correctly specified. However, the need for strictly

exogenous explanatory variables remains.




The strict exogeneity of the explanatory variables is a well known re-
quirement for consistency in the context of panel data models. However, this
assumption is likely to fail in many applications: for instance, firm patents
are assumed to be a funcion of current and lag R&D expenditures. Since
patents derive, most of the times, on additional R&D expenditures for its
full development or improvement, R&D expenditures cannot be considered
as strictly exogenous. In the case of licensing agreements and firm’s sales it
is obvious that the licenses obtained by a firm will generate higher sales in

future periods.

In the linear case any estimator that demeans or quasi-demeans the full
sample in the original specification, as the fixed or the random effects estima-
tors, will lead to inconsistent estimators when the explanatory variables are
not strictly exogenous. Several alternatives have been proposed to estimate
linear panel data models without imposing the strict exogeneity assumption
on the explanatory variables. Most of them are based on the first difference
of the original specification, since this transformation opens the possibility
for finding valid instruments [see Anderson and Hsiao (1981) or Holtz-Eakin,
Newey and Rosen (1988)]. Arellano and Bond (1991) propose a forward
demeaning procedure. Keane and Runkle (1992) suggest using a forward
filtering based on Hayashy and Sims (1983) to eliminate serial correlation in
the residuals. The set of valid instruments depend on the chosen procedure.
However, these procedures do not extend easily to the case of count models,

given their nonlinear nature.




The purpose of this paper is to present the theory and some economic ap-
plications of count panel data models when the strict exogeneity assumption
is likely to fail. The outline of the paper is as follows. Section 2 describes the
conditional maximum-likelihood approach to the estimation of count panel
data models. Section 3 contains a discussion of several alternatives, proposed
in the economic literature, to relax the distributional assumptions used in the
conditional ML approach. Section 4 presents a transformation strategy to
obtain consistent estimators in the presence of explanatory variables that are
not strictly exogenous. Section 5 contains two applications of the Generalizad
Method of Moments estimator described in section 4. Section 5.1 describes
an application to technology transfer to Japanese firms studied using cross
section techniques by Montalvo and Yafeh (1994). Section 5.2 presents a
application to the relationship between patents and R&D, previously ana-
lyzed by Hall et al. (1984). In both cases there are good reasons to doubt
about the strict exogeneity of the explanatory variables as we argued above.

Section 6 concludes.
2. THE CONDITIONAL ML APPROACH

Let y;+ be a count variable, y;; = 0,1, 2... , y; an unobservable random vari-
able and z;; a k-dimensional vector of conditioning variables. Assume that

Yi1, Yi2, ---» Yir are independent conditional on y; and z; (z; = (zi1, Tizy .-, TiT))

and distributed as a Poisson distribution

Plyit | @i, i) = (M exp(—Xir)) [y (1)




where the mean of the distribution is specified as
At = exp(ai + Bozie) = pi exp(Byzit) (2)

This specification for the conditional mean has, by now, some tradition in
economics (Hall et al. 1984; Hall et al. 1986).

Equations (1) and (2) include the strict exogeneity of z; conditional on
i

Hall et al. (1984), following Andersen (1970), propose a conditional MLE
to deal with the estimation of this model. The conditional MLE takes ad-
vantage of the fact that, given (1), the distribution of n; = Zthl Y;¢ is also
a Poisson distribution with mean equal to 23;1 Ait. The joint distribution
of y; = (yi1,Yi2,...,¥i7) conditional on n;, the unobservable effect and the

explanatory variables is

T
Py | zi,04,m:) = (—Z*rf;:ly—”)' 1B (3)
Ht::l Yie! t=1
where
oz o _oalin o
1 At Dosmr €XP(ByTis)
and

Epit =1 (5)

Equation (4) shows one of the main advantages of the CML approach under

the Poisson specification: the conditioning eliminates the individual effects.




Equations (3) and (5) show that the resulting conditional distribution is

multinomial.

The log-likelihood function derived from the conditional approach is
N
L(B) =Y > yulog(pi(B)) (6)

=1 t=1

where the constant part has been eliminated for the sake of clarity.
3. PSEUDO ML ESTIMATION OF COUNT PANEL DATA

In order to construct the likelihood function (6) it is necessary to assume
that the probabilistic mechanism that generates the original observations is
Poisson. However, there is often no theory available to justify the shape of
the distribution. In many cases the only argument is the non-negative in-
teger nature of the dependent variable. Gourieroux, Monfort and Trognon
(1984a,b) show how to obtain consistent and asymptotically normal esti-
mators of parameters maximizing a likelihood function associated with a
probability distribution that is not necessarily the true one. These proce-
dures are grouped under the name of pseudo maximum likelihood methods
(PML) [some other authors, like McCullagh and Nelder (1989), have used
the terminology ”quasi maximum likelihood methods”]. The general idea is
to construct a function that has properties in common with the score of the
original likelihood function. It is specially important that such a function

has a zero expected value.
In particular, when the distribution belongs to the exponential family
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Gourieroux et al. (1984a) have shown that the PMLE is strongly consistent.

This is the case of the Poisson and the multinomial distributions.

The main advantage of the PMLE is its robustness, in the sense that it
is not necessary to specify a particular distribution function. It is usually
sufficient to specify some characteristic features of the data. For instance,
let’s assume that y;; is a nonnegative random variable with conditional ex-

pectation specified as
E(yi | 24, 5) :"t'exp(az‘ + Bizit) (7)

expression that coincides with the specification of the mean in section 2 and
keeps the property of representing nonnegative random variables. Given this

conditional expectation the function

Y(yi, x4, B) = Z yztpzt(ﬂ) ! aptt(ﬂ) (8)

t=1

has a expected value, conditional on z;; and «;, equal to 0.

Op:
E["/)(yi,l‘i,ﬁo) i xi,ai] = ZE Yst l xl’al Pﬁl—g‘t‘%@o—)

) Z;l Ais Opit(Bo)
2 /\h 8ﬂ

i Z apzt 50) —0 (9)

t=1

fp
fy

because E;‘rzl %@ =0 by (5). Under some regularity conditions (Hansen
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1982) the law of large numbers will apply to the sample analog of (9)

N—oo

N
) 1 .
lim N ; Y(yi,zi, 8) =0 (10)

Condition (10) can be used to construct a GMM estimator that is equivalent
to the conditional MLE [in general, the MLE can be interpreted as a GMM
estimator in which the moments are the elements of the score vector], given

that the first order conditions derived from (6) are

N T 2
51 OPit
Z Zyztpit(ﬂ)_lpa—’gm =0 (11)

This GMM estimator can be reinterpreted as a pseudo maximum-likelihood

estimator.

Wooldrige (1990) has used the pseudo maximum likelihood principle to
propose, by analogy with the multinomial case, orthogonality conditions

based on the function
Uz‘t(,@) = Yit — Pit(ﬂfit, ﬁ)nz (12)
that has a conditional expected value equal to 0.

Eluir(Bo) | zi,ci] = Elyi | i, o] — pis(zs, Bo) Elns | 24, v
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The implied orthogonality conditions take the form
E[Zi(2:)ui(o)] = 0 \ (14)

where Z; is any function of z; that guarantees the existence of appropriate

moments. Z; could also be a function of 3.

Under suitable regularity conditions (Hansen 1982) the limiting distribu-

tion of the estimator B that solves

N
Zz(fﬂi)'ui(%,ﬁ) =0 (15)

is given by
VN(B — Bo) ~ N(0,A) (16)
where
A = (ATTA)T (17)
A = B[Z(:, B0)'Vsui(Bo)] (18)
® = E[Z(z:, fo) ui(Bo)ui(Bo) Z(xi, Bo)] (19)

Consistent estimators of these conditions can be obtained by using the fol-

lowing expressions

A = = Z(ai BYVauid) (20)
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b = = Z(e, BYulByuB) 2z, B) (21)

The conditional maximum likelihood estimator is just a particular case
of this class of estimators for an specific set of instruments. In order to see

this we can rewrite the score function (11) in fucntion of u;; as

Z pr 2 ”(ﬂ)uzt (22)

n=1 t=1 o

given that

szt(/@ (9pzt )(pzt(ﬂ)nl) =, Z _afg(ﬂﬁ()) -0 (23)

4. COUNT PANEL DATA WITH PREDETERMINED IN-
STRUMENTS

The consistency of the estimators derived in sections 2 and 3 relies on the
strict exogeneity of the instruments. However, in many relevant economic
cases, the explanatory variables cannot be considered strictly exogenous but
predetermined. An example in the context of count panel data models is the
specification in Hall et al. (1984) where patents depend on present and past
R&D expenditures. It is well known that new patents will generate the need

for future R&D expenditures (development).
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Let’s consider the conditional expectation specification
E(yit | 2}, i) = exp(as + Bozic) (24)

where z¢ = (24, Zi -1, ..., Tio). Condition (24) is weaker than (7), given that
the conditioning refers only to past values of z. In essence this means that

z is predetermined and not strictly exogenous.

The nonlinear specification of the conditional expectation eliminates the
possibility of using the transformation proposed in the literature for the case
of linear panel data with predetermined explanatory variables. However, the
general approach to the problem is similar. The basic idea is to transform
(24) in a way that eliminates the unobsevable effects and, then, use all the

valid moment conditions in order to obtain a GMM estimator.

The conditional expectation (24) could be written in generic form as
E(uit | z5) = E(di(yi, zi, fo) — ez, fo)ei | 27) = 0 (25)

where r; and d; are given functions, r(.,.)depends only on z! and 8 and ¢

is the unobservable fixed effect. Then, the transformation

¢t(yia$i7ﬂ) = dt(yia xiaﬂ) - T‘t<$§,ﬂ)7’tr($f’, ﬁ)—ldt'(yiv I, /B) t/ >1 (26)

eliminates the unobservable individual effect and has a expected value equal

to 0 conditional on z!. To show that we substitute d;(.) by its expression as
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implied by equation (25).

¢t(yi7$i7ﬂ) = rt(x;ﬂ)ci + Ut

— ryal, Byre(al, B) M ru(al, B)ei + wa]

= Uy — rt(xf,ﬂ)rt/(:cf’, ﬂ)_luit/ t' >t (27)

It is clear from this step that the transformation does not depend on the
unobservable ¢;. In addition, the conditional expectation can be calculated

as

Elpi(yirz0, B0) | 21 = Eluwie | ]
— Elrd(a}, fo)ru(al, Bo) ' Elwiv | 2] | 2] = 0(28)

A particular specification of (25) that is appropriate for models with non-
negative endogenous variable and predetermined explanatory variables can
be obtain as follows. First, the equation (25) can be particularized for the

case we are interested in just by seeing that

t

dt(yia xiaﬁ) = Yit, rt(xm 6) - exp(ﬁl‘xii)a ¢ = exp(ai)‘ (29)

From (26) the transformation 1(.) in this case takes the form

Ve(yis i, B) = Yir — yav exp(B'(zis — zip)) ' >t (30)
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The conditional expectation of (30) is

E[Y(yi, x4, Bo) | :z:f] = El(wi — w eXP(ﬁ{)(»’Cit — z;pr)) | If]
= —E[E[uy | 2}]exp(By(za — ziv)) | 2f] = 0 (31)

Transformation (30) has been proposed by Chamberlain (1992) in the context

of sequential moment restrictions for models with multiplicative fixed effects.

Set t' =t + 1. Then the transformation in equation (30) becomes

d)t(yi, T, ,3) = Yit — Yir41 exp(ﬁ'(mit - $it+1)) (32)
Define
[ pa(f) |
$i(8) = Yiz(6) (33)
Y (B) |

where ;s = ¥(Yit, Tit, 8). The matrix of instruments can be written as

2P 0 0
0 Z:3 0
0
0 0 0 T
where z; = f(z!). Contrary to the case where the variables are strictly

exogenous, in this case there is no common set of valid instruments. Instead,
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the set increases with the number of periods.

Using this notation and transformation (30),

E[Zi(Bo)] = 0

(35)

Given the choice of instruments the GMM estimator, B, is obtained by

solving the expression

N " N ‘

where Wk is calculated as

) 1 Y R .
Wy = N Z Zii(Be)vi(Br) Z:

=1

and Bk is the k-th round estimator.

The asymptotic variance-covariance matrix of [;’ is estimated by

(8= [p@yad) @)
where
) 1 ]
D(B) = 5 2 4Vi()
Qp) = W(B)
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5. APPLICATIONS

Two empirical applications will be used to illustrate situations where the
procedures discussed in section 4 are suitable. One analyzes the determinants
of the number of licensing agreements signed yearly by Japanese firms. The
other is the relationship between patents and R&D expenditures in the U.S
at the firm level.

5.1 Application I: Technology Transfer to Japanese Firms

The motivation for this application is Montalvo and Yafeh’s (1994) anal-
ysis of technology transfer to Japan. We construct a model to explain the
number of licensing agreements signed by each Japanese firms in any given
year. The model postulates a positive relationship between licensing agree-
ments, sales and technological opportunity in the sector at which a particular
firms belongs and a negative relationship between any proxy for liquidity con-

straints and licensing agreements.

The sample contains 461 firms during the period 1977-81. All these firms
were listed in the Tokyo Stock Exchange (TSE). The financial variables have
been obtained using the information contained in firm reports to the TSE. We
are manufacturing firms in the chemicals, metals, machinery, electronics and
transportation equipment sectors. None of the firms in the sample was sub-
ject to major ownership changes (merger or takeover), or fiscal year changes
during the period of observation. No foreign-owned firms or subsidiaries are

included.
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Two data sources are used. The dependent variable, the number of li-
censing agreements signed in each fiscal year (LIC), is taken from the Annual
Report on Technology Imports, published by the Science and Technology
Agency (Gijutsu Donyu Nenji Hokoku). The explanatory financial variables
are taken from firm reports to the TSE. Firm size is measured by sales
(SALES). The unit of measure for this variable is hundred of billion yen.
The results of the estimation do not change if instead of an absolute measure
of size like sales we use a relative measure like market share at the level of
three digit industries. S2 defines the sales squared and represents a possible
economy or diseconomy of scale in the adoption of technologies. Cash flow
(CF) is measured in billions of yen and does not include royalty payments for
licensed technology. We use this variable as a proxy for liquidity constraints
[see Montalvo and Yafeh (1994) for a discussion on other possible proxies for
liquidity constraints]. The variable DDEBT measures the change in debt for

each firm.

In addition to the above variables they need to control for sector specific
technological opportunities. This variable reflects the availability of innova-
tions for adoption in a particular industry. For instance, in the computer
industry there are many more opportunities of adoption of new technologies
than in the steel sector. As a practical matter, technological opportunity
is defined as the number of agreements signed by other firms within the
same three digit industry (NOLI). Of course, in order to avoid simultaneity
problems, the number of licensing agreements of the firm itself has not been

included in the variable that represents technological opportunities. A similar
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approach to measure this variable was used by Bernstein and Nadiri (1989),
where the unweighted sum of R&D spending within the same industry was
treated as a measure of technological environment. An alternative approach
has been suggested by Jaffe (1986), who use an ”Euclidean distance” measure

to identify the distance between research activities of firms.

Montalvo and Yafeh (1994), using econometric techniques for pooled
count data (Poisson regression, the negative binomial model and the trun-
cated Poisson model), find the estimates to be consistent with their economic
model: sales, cash flow and ”technofggical opportunity”, as defined above,
have a positive effect on the number of licensing agreements. The variable
‘sales squared’ have a negative sign reflecting some diseconomies of scale in

the adoption of new technologies.

A natural extension of the pooled data procedures used by Montalvo and
Yafeh (1994) consists in using a count panel data method, given the fact that
the sample contains many firms over several periods of time. Table 1 shows

the results of the conditional ML estimator presented in section 2.

The numbers between parentheses are the asymptotic standard deviations

calculated using the estimated information matrix.
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pa 0 ... 0

N N 0 piz ... O
VeV(B) = |> nVepl | . T | Veba (41)

i=1 : : .. :

0 0 ... pir

The figures between squared brackets are robust estimates of the standard

deviation of the coefficients calculated as

A= ;V 14" (42)
where
. 1 R
A= L Vebd) (43)
R 1 & .
= N;w(ﬂ)%(ﬁ)’ (44)

and 1;(f) is defined as in equation (8).

The estimates in table 2 are essentially consistent with the model outline
by Montalvo and Yafeh (1994). The only puzzle refers to the effect of cash
flow on the number of licenses. Montalvo and Yafeh (1994) finds that any
variable that controls for possible liquidity constraints, reflecting a lower cost
of capital, has a positive effect on the number of licenses. However, the sign

of the variable cash flow in Table 1 contradicts this result: it is negative
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and significantly different from 0, at least according to the estimates of the

standard deviation derived from the information matrix

In order to explain why these results are different form the ones obtained
using pooled count data procedures we need to analyze the conditions that
justify the use of these alternative estimates. The consistency of the pooled
data estimator depends on two conditions: the distributional assumptions
and the fact that E(a;|z;) = E(ai). The fixed effect estimator is not nec-
essarily more robust than the pooled estimator unless the strict exogeneity
assumption holds. Therefore any sigﬂiﬁcant difference between the estimates
using the pooled data and the fixed panel data can be regarded as a violation
of the strict exogeneity assumption and/or the distributional assumptions

underlying the individual effects.

In fact, in the context of technology transfer it is difficult to maintain the
strict exogeneity assumption for SALES when the variable to be explained
is the number of licensing agreements. The reason is that when a firm buys
a license is because it expects to increase sales in the future using this new
technology. Therefore, the variable SALES is not strictly exogenous but
predetermined: the history of licenses obtained in the past affects sales in

the present and the future.

The GMM estimator proposed in section 4 is appropriate to deal with
the issue of predetermined variables in the context of count panel data. In
addition, that estimator relies on a conditional expectation condition and,

therefore, there is no need to specify any strong distributional assumption.
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Table 2 shows the results of using the GMM estimator derived from trans-
formation (32). The initial values were taken from the CMLE parameter
estimates. The weight matrix was iterated until the probability of the min-
imum chi-squared statistic between two rounds was reasonably small. The

initial weight matrix was taken to be the identity matrix.

In columns IV1 the GMM estimator uses as Z matrix the past values of
SALES, z! = [z, it—1, ..., Tio), and the values of 52, NOLI and CF. Column
IV2 is constructed assuming that all variables should be taken as predeter-
mined and, therefore, the past valueéj:)f all the variables are included. Col-
umn IV3 presents the results when the matrix Z includes only the first valid
instrument for all the variables. In this case the number of instruments does
not increases with t (2! = [z]). Finally, IV4 includes the results when past,
present and future values of all the variables are included in Z. The proba-
bility associated with the chi-squared tests for the overidentifing restrictions
are shown in the last row of the table. This statistic can detect misspecified
funcional forms and instruments that are not appropriately orthogonal to the

residuals.

The results in table 2 are essentially compatible with Montalvo and Yafeh
(1994). The variable SALES has a positive effect on the number of licensing
agreements signed by a firm and the value of this parameter, in general, is
closer to the pooled count data models than the CMLE estimates. S2 has
a negative effect and technological opportunity has a positive effect. With

respect to cash flow, CF, it is positive and significantly different from 0




only in IV2. Therefore, there is no clear evidence of a significant effect of
CF over licensing agreements. However, in this case the coefficient of CF
is not negative and significantly different from 0 like it was in the CML
estimation. The reason could be that cash flow is not a good proxy for
actual liquidity constraints. Montalvo and Yafeh (1994) use the absence of
bank in the financial group as a better proxy for liquidity constraints. As
no firm changes group during the period, this variable cannot be used in the

panel data context.

The fact that the specification IVZis clearly rejected points out that the
strict exogeneity of the explanatory variables does not seem to be a reasonable
assumption for this application. A formal test of the null of strict exogene-
ity versus the alternative of predetermined instruments can be constructed
following Schmidt, Ahn and Wyhowsky (1992). The difference between the
GMM estimator in column IV4 and the one in column IV2 is the fact that
the instruments in IV2 are a subset of the instruments in IV4. Therefore,
the Hausman test that compares both estimators will be asymptotically chi-
squared with k degrees of freedom, where k is the dimension of the vector 3.
The only condition is that the number of additional instruments under the
null, T(T — 1)k/2, is larger than k, where h is the number of instruments.
For both cases, with and without the estimation of the parameter associ-
ated with CF, this test rejects the null of strict exogeneity (x*(4)=9.66 and

x2(3)=6.60 respectively).

5.2 Application II: The Relationship Between Patents and R&D
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Technical change is one of the driving forces of economic growth. Much of
technical change is the product of investment in research and development.
One of the few measurable indicators of the success of this activity is the
number and kind of patents granted to each firms. For these reasons there
has been a lot of research on the relationship between R&D investment at the
firm level and patents. A different question is to what extent patent counts

are good indicators of R&D output.

Pakes and Griliches (1984) analyze this issue using a distributed lags
model of patents on past R&D. In tﬁéir panel data model the contempora-
neous and the fifth lag of R&D have significant effect on patents, but only
for the research intense firms. In the case of less research intense firms only

contemporaneous R&D has a significant effect on patents.

Hall, et al. (1984) and Hall, et al. (1986) consider the same question
but they use econometric techniques appropriate for count data in order to
deal with the discrete and nonnegative nature of the number of patents, the

dependent variable.

Hall, et al. (1986) work with two samples that are larger than the one
used by Hall et al. (1984). The criterion selection for both of them is based
on the absence of jumps in the data on sales, gross capital and market value
and on R&D being available for all the years. The first sample (S1) contains
642 firms with R&D data between 1972 and 1979. The second sample (S2)
has less firms, 346, but a longer history of R&D data than the first one,
covering the period 1970-1979.
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Table 3 shows the results of different estimation procedures. Following
most of this literature, the especification of the relationship between patents
and R&D is taken to be a distributed lags model in all the cases. The first
column, HHG, replicates the results of the conditional maximum likelihood

estimator for the sample of 128 firms used in Hall et al. (1984).

In order to make the results comparable to ours column CMLE presents
the conditional maximum likelihood estimator based on the second sample
(S2). Based also on this sample, column PMLC presents the results for the
pseudo quasi maximum likelihood estilr;lator with correlated effects (Gourier-

oux et al. 1984a; Hall et al. 1986).

The consistency of the above described panel data estimators relies on the
strict exogeneity of the expenditure in R&D with respect to patents. Cur-
rent and past R&D expenditures produce patents. However, once a patent
is granted, or even applied for, there is an implicit forthcoming need for
additional R&D expenditures that transform patent into benefits or finance
research of the new technological opportunities opened by the new patented
procedures. Therefore, R&D investment should be considered a predeter-
mined variable instead of a strictly exogenous one. For this reason, column
GMM shows the result obtained using the GMM estimator presented in sec-

tion 4. The conditional expectation is specified as

5
E(patii | ai,2t) = exp(oi + »  Bilog(R&D)ie—;) (45)

3=0

where pat is the number of patents and R&D is the size of research and
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development expenditures.

As we see in column HHG for the fixed effects conditional maximum
likelihood estimator only contemporaneous R&D has a significant effect on
patents. The increase in the sample size from 128 firms to 346 makes the first
lag significantly different from 0 but negative. It also reduces the total effect
of past R&D on patents with respect to the pooled Poisson regression and

the conditional maximum likelihood estimator applied to the small sample.

The use of the pseudo maximum’likelihood estimator with correlated
effect recovers the results of the small sample CMLE estimates: only con-
temporaneous R&D has effect on patents. In addition the effect of the sum

of coefficients on past R&D is reduced.

Finally, column GMM tells a somehow different story about the influ-
ence of past R&D on patents. Contemporaneous R&D is barely significantly
different from 0 while the first lag of R&D is now positive. In addition, the
total effect of R&D on patents is larger than using the alternative fixed effect
panel data estimators, although is not as large as the one derived from the

pooled Poisson regression.
6. Concluding remarks

The "traditional” approach to estimate count panel data models is the
conditional maximum-likelihood estimator. Under the Poisson assumption,
the conditional distribution of the dependent variable with respect to the

total number of events over the whole period of analysis is a multinomial
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distribution. In the panel data context this approach is particularly useful
because that conditional distribution does not depend on the unobservable

effects.

However, the conditional maximum-likelihood estimator requires strong
requirements in order to be consistent. In particular, the strict exogeneity
of the explanatory variables may be an strong assumption in the context
of many economic applications. We develop a GMM estimator, based on a
transformation proposed by Chamberlain (1992), to estimate a count panel
data model without imposing strict ):egkogeneity or any particular distribu-
tional assumption. This method is applied to the explanation of technology
transfer to Japanese firms and the relationship between patents and R&D
expenditures at the firm level. In both cases the explanatory variables seem

to be predetermined instead of strictly exogenous.
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Table 1. Conditional ML FEstimator for the Panel

1 2 3

SALES 0.102  0.121  0.094
(0.026)  (0.023)  (0.020)

[0.078]  [0.087]  [0.080]

52 -0.003  -0.003  -0.003
(0.0008) (0.0006) (0.0006)

[0.002] _ [0.002]  [0.002]

NOLI 0.008  0.008  0.009
(0.001)  (0.001)  (0.001)

[0.006]  [0.006]  [0.006]

CF - -0.003 -
(0.001)
[0.007]
DDEBT . - 0.002
(0.001)
[0.006]
MLL -3.8818 -3.8813 -3.8815
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Table 2. GMM FEstimation

IVl IVl Iv2 V2 V3 IV3 IV4 V4

SALES 0.325 0.138 0.377  0.269 0.341 0.137 0.209 0.231

s.e. (0.117) (0.131) (0.118) (0.123) (0.125) (0.136) (0.079) (0.080)
$2 0.008 -0.008 -0.008 -0.010 -0.008 -0.007 -0.006 -0.007
s.e. (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
NOLI ~ 0012 0012 0009 0.006 0011 0012 0017 0011
s.e. (0.004) (0.004) (0.003) (0.002) (0.004) (0.004) (0.003) (0.002)
CF - 0.015 -~ 0.012 . 0015 ~0.003
s.e. (0.013) (0.005) (0.014) (0.005)
Prob 0.09 021 021 015 014 032 058 064

NOTE: Standard errors are shown in parentheses below parameter estimates.
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Table 3. Comparison of Alternative Estimators

HHG CMLE PMLC GMM

R&D; 031 032 030 041
s.e. (0.04) (0.02)  (0.10) (0.26)
R&Dy s 002 -0.09 -0.10 0.3
se. (0.05)  (0.02)  (0.08) (0.10)
R&D;_s 003 003 006 -0.11
se. (0.06) (0.02) (0.06) (0.11)
R&D:_s 007 005 -0.0005 -0.03
se. (0.06)  (0.02)  (0.06) (0.08)
R&Dy_4 0.06 -0.003  0.06 -0.04
se. (0.07)  (0.02)  (0.07) (0.08)
R&Dy_s 0.03 -0.005  0.04  0.09
s.e. (0.05)  (0.02)  (0.07) (0.14)
S R&D.; 043 031 036  0.56
se. (0.12) (0.23)
Trend -0.03 -0.05 -0.06 -0.09
se. (0.003)  (0.01) (0.01) (0.02)

NOTE: Standard errors are shown in parentheses below parameter estimates.
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