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Counterexamples to the Gleason Problem

ULF BACKLUND - ANDERS FÄLLSTRÖM

Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)
Vol. XXVI (1998), pp. 595-603

Abstract. For a domain Q in C" we consider the Gleason Problem for the Banach

algebras and A (Q). We prove that pseudoconvex counterexamples can
be constructed and that such domains may have the additional property of being
H °° -domains of holomorphy. A sufficient condition for a domain in Cn to have
the Gleason property is also presented.

Mathematics Subject Classification (1991): 32A17, 46J15.

1. - Introduction

Let Q be a bounded domain in By we denote the ring
of bounded holomorphic functions on Q and by the ring consisting of
functions holomorphic on Q and continuous on the closure of Q. Throughout
this paper 9i(Q) will denote either or A(Q).

We study a problem which in the literature is known as the Gleason Prob-
lem. The problem is to decide whether the maximal ideal in 9l(Q) consisting
of functions vanishing at a point z° E Q is algebraically finitely generated by
the coordinate functions (zl - z°), ... , (zn - z°). We say that a domain Q has
the Gleason ~-property if the problem has an affirmative solution for all points
in Q.

The problem arose in connection with the search for multidimensional

analytic structure in spectra of commutative complex Banach algebras. One
of the first results was found by A. M. Gleason [Gle] who proved that near
the complex homomorphism corresponding to an algebraically finitely generated
maximal ideal, the spectrum can be endowed with an analytic structure, in terms
of which the Gelfand transforms of the elements in the Banach algebra are
holomorphic functions. However, in most situations it turns out to be difficult
to determine whether a maximal ideal is finitely generated. Even in the case

when Q is the unit ball in it is not at all obvious how to decide whether
the maximal ideal in ~(S2) consisting of functions vanishing at the origin is
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generated by the coordinate functions, although analytic structure near such an
ideal is trivially present. The difficulty of answering this question was mentioned
by A. M. Gleason in [Gle] and subsequently solved by Z. L. Leibenzon [Hen].
The method of proof that Leibenzon used yields in fact that all convex domains
in C" with C2-boundary have the Gleason %-property.

A number of authors, using different methods, have contributed to settle the
strictly pseudoconvex case. The result that has been obtained is that every strictly
pseudoconvex domain has the Gleason %-property. Sheaf-theoretic methods were
used by N. Kerzman and A. Nagel [KN] to prove that strictly pseudoconvex
domains in e2 with C4-boundary have the Gleason A-property. I. Lieb [Lie]
and G. M. Henkin [Hen] independently proved the same result in CCn, for
C5 and C3-boundary respectively, using integral representation formulas and
precise estimates for a. The general case with C2-boundary was treated by
N. 0vrelid [0vr].

F. Beatrous Jr [Bea] showed that weakly pseudoconvex domains in C~2
with Coo -boundary and with the additional property that there is a complex
line through the base point z° which intersects the boundary only in strictly
pseudoconvex points, have the Gleason A-property at z°. Studying the struc-
ture of the weakly pseudoconvex boundary points and using F. Beatrous Jr’s

result, J. E. Fomaess and N. 0vrelid [F0] proved that pseudoconvex domains
in (C2 with real analytic boundary have the Gleason A-property. A. Noell [Noe]
used information on the weakly pseudoconvex boundary points obtained by
D. Catlin [Cat] and methods from [F0] to show that pseudoconvex domains in
(~2 with boundary of finite type have the Gleason A-property.

The authors proved in [BF] that bounded pseudoconvex complete Reinhardt
domains in e2 with C2-boundary have the Gleason A-property.

In this paper we prove that pseudoconvex counterexamples can be con-
structed and that such domains may have the additional property of being Hoo-
domains of holomorphy. A sufficient condition for a domain in Cn to have the
Gleason ~-property is also presented.

2. - Counterexamples

In this section we give counterexamples to the Gleason Problem.

DEFINITION 2.1. A bounded domain S2 in C’ is said to have the Gleason

91-property at if the maximal ideal in ~(S2), consisting of functions
vanishing at z° is algebraically generated by the coordinate functions zi -

Z?l ..., zn - .z° . If Q has the Gleason 9i-property at every point z E S2, then Q
is said to have the Gleason 91-property.

Every domain in the complex plane C has the Gleason %-property. In

higher dimension it is easy to construct domains without this property. In fact,
in every domain with nonschlicht 91-envelope of holomorphy one can find points
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where the domain fail to have the Gleason %-property. As an example, consider
the following domain S2:

Let Di 1 and D2 be the following Reinhardt domains in (C2 :

To get the domain Q, connect Dl and D2 by a small open connected neigh-
bourhood U of a curve outside Di U D2 joining a point in the boundary of Di 1
to a point in the boundary of D2, so that Q = Dl U U U D2. It is easy to see
that the ~-envelope of holomorphy of Q is nonschlicht over D2. It follows
from Proposition 2.1 below that Q cannot have the Gleason ~-property. The
domain Q is not a domain of holomorphy.

Before the statements and proofs of the theorems, we need some definitions
and a proposition. Recall that the set of nonzero multiplicative complex homo-
morphisms on (S2) is called the spectrum of the Banach algebra 9B(Q), when
it is equipped with the weak*-topology. We denote by M9’(’2) the spectrum of
9i(Q) and by 7r the projection from M9’(Q) to C" defined by

for every m E If zo E Q, then the set

is called the fibre over zo. Observe that if z E Q, then the point evaluation mz,
defined by mz(f) = f (z ) for f E 91(Q), is an element in the fibre over z.

DEFINITION 2.2 A domain Q in C’ is said to be 91-spectrumschlicht at

z0 E Q if the fibre over zo contains exactly one element, i.e. if

If Q is 9B-spectrumschlicht at every point z E Q, then Q is said to be 9B-

spectrumschlicht.

PROPOSITION 2.1. If a domain Q in en has the Gleason 9B-property at z° E Q,
then Q is 9B-spectrumschlicht at ZO.

PROOF. Suppose that zo E S2 and that Q is not 9B-spectrumschlicht at z°.
This means that apart from the point evaluation mzo there is at least one element,
m’ ~ mzo, in the spectrum .~1~~~~ such that
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Let f be a function in the kernel of mzo such that 0. Since SZ has

the Gleason 9B-property at z° there exist fj E 9B(Q), such that

We get

since = n(m’) implies that m o (zj) = 
This shows that (z°) cannot contain more than one element. 0

We now describe how one can construct a domain of holomorphy with
nonschlicht 91-envelope of holomorphy:

THEOREM 2.2. There exists a domain of holomorphy in C2 with nonschlicht
~-envelope of holomorphy.

PROOF. Let S be the domain constructed by N. Sibony in [Sil]. It is a

pseudoconvex subdomain of the unit polydisk 02 in (~2 such 0 and
such that all bounded holomorphic functions on S extend to ð 2. The domain
is constructed in the following way: Choose a discrete sequence in the

unit disk A C C such that every boundary point of the disk is a non-tangential
limit of a subsequence and define I by

where 8v B 0 rapidly so that ~, ~ -oo and is subharmonic on A. S is defined
as

and is pseudoconvex since p is plurisubharmonic on A x C. Hartogs series and
Fatou’s lemma yield that every bounded holomorphic function on S extends to
02 and by computing the Levi form for p one gets that there are lots of strictly
pseudoconvex points in the boundary of S.

Let po be a strictly pseudoconvex point in the boundary of S and let Bo
be an open ball centred at po such that S n Bo is connected and p is strictly
plurisubharmonic in Bo. Furthermore, let B1 C C Bo be an open ball also
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centred at po and 0 an open connected neighbourhood of po such that 0 c Bo,
(C~B,131)BS~~ and aSnOcc8Sn8l.

Choose a function w E and a number 8 &#x3E; 0 so that 0 s w s 1,
w - 1 near po, ps = is strictly plurisubharmonic in 0, V = f z : p£ (z)  01
is a pseudoconvex domain, (V B S) B Bi # 0 and so that (V B S) B Bi consists
of one connected component. Moreover, choose a point p = (P, P2) E a,L31 B S
such that p, (p)  0, a point q = q2) in A 2 ( S U Bo) and a ball B in ~2
such that q E 9B and B n (S U Bo) = 0.

Let s E C with s ~ I &#x3E; 1 and let L : [0, 1] ] ~ C be the curve defined by
L (t ) = Choose a C °° simple curve y in CC2 going from p to q so
that y is transversal to aB, and to y does not intersect (S U BI U B) B ip, q },
the image of the closed curve r = yPrZI -f- L does not contain s and so that the
winding number s ) ~ 0. 1 

is the projection curve of y from p 1 to q 1
in the z 1-plane.) 

1 

_

Furthermore, let Ll be an open neighbourhood of BU y such that 81 nLl c V.
In order to get the domain So we now choose 1N to be a sufficiently small
pseudoconvex domain containing B U y U ,131 so that

is pseudoconvex and so that the closure of the projection of W on the zi -plane
does not intersect is 1. This can be done since B U y U BI has a Stein neighbour-
hood basis ([FZ]; Theorem 4), V is pseudoconvex and since pseudoconvexity
is a local concept.
We complete the proof by showing that the 9B-envelope of holomorphy of So
is nonschlicht.
For every function f in the restriction of f to S extends to a function
in and the extended values may differ from the given values of f on
(So n ð2) B S. For example, there is a branch such that the function fo defined
by fo = belongs The values of fo differ on parts of
(So n 02) B S from the extended values from S. Hence the 9B-envelope of
holomorphy of So is nonschlicht. 0

Since a domain with nonschlicht 9B-envelope of holomorphy is not 9B-

spectrumschlicht, we get the following corollary:

COROLLARY 2.3. There exists a domain of holomorphy which does not have the
Gleason 9B-property.

PROOF. It follows from Proposition 2.1 that the domain So constructed in
the proof of Theorem 2.2 does not have the Gleason 9B-property. 0

We now prove that there exists an H°°-domain of holomorphy which does
not have the Gleason 9B-property. If S2 is a domain in (~n and V a plurisubhar-
monic function on Q, then we define V I to be the plurisubharmonic function

= c &#x3E; 0, f E such that V on 
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where the asterisk as usual denotes upper semicontinuous regularization.
We define to be the convex cone of plurisubharmonic functions V on Q
satisfying V 1 = V, i.e.

The domain obtained in the proof of Theorem 2.2 will now be used to
construct an Hoo -domain of holomorphy which is not 91-spectrumschlicht.

THEOREM 2.4. There exists an Hoo -domain of holomorphy in (C3 which is not
91-spectrumschlicht.

PROOF. Let S and So be the domains described in the proof of Theorem 2.2
and let

where So denotes the complement of So and d is the Euclidean distance.
Since So is pseudoconvex the function - log 8so is plurisubharmonic. It follows
from [Si3] that -log 8so belongs to the class P(So).

We now define the Hartogs domain to be

Since -log 8so (z) belongs to peso), it follows from a result due to N. Si-

bony [Si2] that M(So, 8so) is an H°°-domain of holomorphy. For every function
f in 8so)) the restriction of f to ( (z, w) E M(So, 8so) : z E S, w = 0)
extends to a function in ~ ({(z, w) E (C2 x C : z E O2, w = 0} ) and the extended
values may differ from the given values of f on fez, w ) E 
(so n 02) B S, w = 0}. For example, there is a branch such that the function

fo defined by fo - belongs to The values of

the restriction of fo to {(z, w ) E M (so, = 0} differ on parts of
{(z, w) E M(So, 8so) : z E (so n 02) B s, w = 0} from the extended values from
fez, w ) E M(So, s, w = 0} .

This means that there is a point p E (z, w) E M (So, 8so) : Z E (so n A2)
BS, w = 0) and an element M E such that 7r(m) = p ~

M(So,8so) and mp(fo) = fo(p). D

The following corollary is now obvious:

COROLLARY 2.5. There exists an H’-domain of holomorphy which does not
have the Gleason 

PROOF. It follows from Proposition 2.1 that the domain constructed in the

proof of Theorem 2.4 does not have the Gleason %-property. D

It is not known whether there exist H°°-domains of holomorphy in ~2
which does not have the Gleason 9i-property.
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3. - A sufficient condition

In this section we prove a sufficient condition for a domain Q in C’ to

have the Gleason ~-property. We also give an example of a domain which has
the Gleason ~-property but for which there are no other known general tools
than the condition given in this paper to decide that.

THEOREM 3.1. Suppose that S2 is a bounded domain in ZO E S2 and that the
following holds:

i) There is a domain ween and a biholomorphic mapping

such that there are functions gj E 9B(Q), 1  k  n, 1  j  n, with

ii) The domain to has the Gleason SJt-property at 0 = D (zo).
Then S2 has the Gleason SJt-property at ,z°.

PROOF. Let f be an arbitrary function in such that f(z°) = 0 and
let ~ denote (D(z) for ,z E Q. Since (D is biholomorphic, the function f o (D-1
belongs to Moreover, the fact that w has the Gleason SJt-property at o
implies that there are functions hk E 1  k  n, such that

Since hk 0 (D E (S2) and E (S2) it follows that there are functions fk E
9~), 1  k  n, such that

This shows that Q has the Gleason 9B-property at zo. E-1
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We give an example in order to illustrate how the theorem can be applied.
EXAMPLE 1. Consider the bounded domain Q = f z E cC2 : p (z)  0} where

Then Q is a weakly pseudoconvex domain and the boundary of Q is not of
class C 1. Define the mapping 4$ by

This is a biholomorphic mapping from S2 to the unit bidisk in (C2. Since the
unit bidisk has the Gleason ~-property it follows from Theorem 3.1 that Q
also has the Gleason %-property.
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