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Perturbation Theorems for Maximal Lp-Regularity

PEER CHRISTIAN KUNSTMANN - LUTZ WEIS

Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)
Vol. XXX (2001),

Abstract. In this paper we prove perturbation theorems for R-sectorial operators.
Via the characterization of maximal Lp-regularity in terms of R-boundedness due
to the second author we obtain perturbation theorems for maximal Lp-regularity
in UMD -spaces. We prove that R-sectoriality of A is preserved by A-small per-
turbations and by perturbations that are bounded in a fractional scale and small
in a certain sense. Here, our method seems to give new results even for sectorial
operators.
We apply our results to uniformly elliptic systems with bounded uniformly contin-
uous coefficients, to Schr6dinger operators with bad potentials, to the perturbation
of boundary conditions, and to pseudo-differential operators with non-smooth
symbols. 

Mathematics Subject Classification (2000): 47A55, 47D06, 34G 10, 35K40.

1. - Introduction

Maximal regularity of type L p is an important tool when dealing with
quasi-linear and non-autonomous equations of parabolic type (see, e.g., [ 1 ],
[3]). If the closed linear operator -A is the generator of a bounded analytic
Co-semigroup in a Banach space X and p E (1, oo) then we say that
A has maximal Lp-regularity (which we denote by A E MRp(X)) if for any
f E L p ((0, oo), X) the solution u = T * f of the equation u’ + Au = f,
u(0) = 0, satisfies U’ E L p ((0, oo), X) and Au E L p ((0, oo), X). By the
closed graph theorem this is equivalent to the existence of a constant C &#x3E; 0
such that

If X is a UMD-space and the operator A has bounded imaginary powers or
- even stronger - an H°°-calculus of a suitable angle then A has maximal
Lp-regularity by the well-known Dore-Venni result.

Pervenuto alla Redazione il 4 dicembre 2000.
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Recently, the second named author obtained - in UMD-spaces - a char-
acterization of the maximal Lp-regularity property in terms of R-boundedness
of resolvents of A (see [22]). Using the quantities defined below, it says that
an operator A in a UMD-space X has maximal Lp-regularity if and only if
A is R-sectorial with angle  n/2 (recall that A generates a bounded
analytic semigroup in X if and only if A is sectorial with angle 8" (A)  x/2).
This characterization unifies the different approaches for checking maximal Lp-
regularity, and provides a new convenient tool to check maximal regularity for
concrete operators (see, e.g., [23]). As we will show in this paper, this is true
in particular for perturbation theorems.

There are perturbation theorems known for operators A having bounded
imaginary powers (cf. [19, Sect. 3]) or an H°°-calculus (cf. [2, Sect. 2]) but
they require further properties of the perturbation in addition to A-smallness.

In this paper we show perturbation theorems for R-sectorial operators. By
using the characterization of [22] this yields perturbation theorems for maximal
Lp-regularity in UMD-spaces.

The first main result of our paper (Theorem 1 in Section 2, announced
in [22], [23]) states that, in a general Banach space, R-sectoriality is preserved
under A-small perturbations. Hence, in UMD-spaces, maximal Lp-regularity is
preserved under A-small perturbations. We give an application of this result to
elliptic operators with non-smooth coefficients in Section 3. Another application
may be found in [13].

The second main result of our paper (Theorem 8 in Section 4) treats

perturbations that are bounded in the scale of domains of the fractional
powers of A (actually, Xa := D(A’) only for a &#x3E; 0 whereas the definition for
a  0 is somewhat different, see Section 4). Motivation comes from the form
method in Hilbert space: If the operator A is given by a symmetric closed
form q with form domain V in a Hilbert space H and r is another symmetric
form with form domain V which is a form-small perturbation of q then the
perturbation operator B associated with r is bounded V - V’. If we write
V = D(A 1/2) =: Hl /2 and V’ = (HI /2)’ =: H- 1/2 (where duality is taken with
respect to the scalar product in H) then, for a = 1/2, the perturbation B is a
bounded operator Ha --+ We generalize this method to general Banach
spaces (and general a E [0, 1]) by considering perturbations by operators which
are bounded Xa --~ and have small norm. The case a = 1 is of course

already covered by Theorem 1. Perturbations for the case a = 0 which is in
some sense dual to the case a = 1 have been considered before (we refer to
[10, Sect. III.3.a]) but for generation of semigroups not for R-boundedness or
maximal Lp-regularity.

We want to underline that, in the case 0  a  1, our arguments also prove
a perturbation result for sectorial operators, and in particular for generators of
analytic semigroups, which seems not to be stated explicitely in the literature
although it has implicitely been used in [24, p. 223], see Remark 17 below.

In Section 5 we give a number of applications of the results in Section 4 that
demonstrate the usefulness of our extended perturbation result with a E [o, 1 ]. In
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particular we consider Schrodinger operators, elliptic operators of higher order,
and pseudodifferential operators on Lp (Q). Here Xa is usually a Sobolev space
or a Bessel potential space and norm estimates for (perturbation) operators
X a --~ 1 are available in the literature. We also show how our result may
be used to perturb the boundary conditions of a generator, and indicate that,
even in a Hilbert space, it may be helpful to be able to treat situations with
a ~ 1 /2.

In this paper, all Banach spaces are complex, and we use the following
notation.

Let be a sequence of independent symmetric { -1, 1 } -valued ran-
dom variables, defined on the probability space (~, A, P). If X is a Banach

space and r C L(X) then z is called R-bounded if there is a constant C
such that 

_

for all finite families (7)YLo in z and X. The infimum of all such
constants C is denoted by R(z) and called the R-bound of 7:. Clearly, R-
boundedness of i implies boundedness in operator norm. For more information
on this notion and workable criteria to check it in Lp-spaces we refer to [4],
[5], [22], [23].

For any 1/1 E [0, let Y1/f denote the path given by := 
t for

t ~ 0, and let "E1f¡ :_ [X E C B (0) : I arg(À) I  ~}. Recall that a closed linear
operator A in X is called sectorial if (-oo, 0) C p(A) and SUPt&#x3E;o IIt(t+A)-11l 
oo. Then MA(9) := + E  oo for some 9 E [0, x)
and the sectoriality angle o~ (A) is defined by

One may replace the constant in the definition by where

If, in these definitions, we replace uniform boundedness by R-boundedness
we are led to the concept of R-sectorial operators, i.e. sectorial operators A
such that + A)-1 : ~, &#x3E; 0})  oo. The R-sectoriality angle Or(A) is

defined by

Again, may be replaced by

Note that MA (9 )  RA (0) and RA (8 ) always.



418

2. - Perturbations that are A -small

The following is our first main result. It states that - just as sectoriality is
preserved by A-small perturbations - R-sectoriality is preserved as well. The
perturbation theorem for sectorial operators implies a perturbation theorem for
generators of analytic semigroups and the perturbation theorem for R-sectorial
operators implies a perturbation theorem for maximal Lp-regularity in UMD-
spaces.

THEOREM 1. Let A be an R-sectorial operator in the Banach space X and
0 &#x3E; Or (A). Let B be a linear operator satisfying D (B) D D(A) and

If a  then A -E- B is again R-sectorial and

In particular, we have Or (A + B)  0.
If X is a UMD-space, -A generates a bounded analytic semigroup and A

has maximal L p-regularity, and B satisfies the assumptions above then -(A -E- B)
generates a bounded analytic semigroup and A -i- B has maximal Lp-regularity.

PROOF. We prove the first assertion. Then the second follows by the char-
acterization result in [22].

For arg hj  7r - 0 we obtain that

Hence I + + A ) -1 is invertible by the assumption and

This representation implies

hence A + B is a sectorial operator and a (A + B) C Zo. From the definition of
R-boundedness and the assumption it is clear that, for any subset A of p (-A),
we have

Applying this to the series representation of (h -I- A + B ) -1 we obtain

as asserted.
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COROLLARY 2. Let A be an R-sectorial operator in X with 0 &#x3E; B,.(A). Let B
be a linear operator satisfying D(B) D D(A) and

for some a, b &#x3E; 0. If a  (kA (0),kA (0)) -’ then A + B -i- À is R-sectorial for any

Consequently, if X is a UMD-space, -A generates an analytic semigroup, A has
maximal Lp-regularity, and B satisfies the assumptions above, then A + B + JL has
maximal regularity for any A &#x3E; w(A + B).

PROOF. For any À &#x3E; 0 and x E X we have

This means that B satisfies the assumptions of Theorem 1 for A + h in place
of A if c(~,)  (note that RA+~, (8)  for h &#x3E; 0). Since

 1 by assumption, the condition  1 is equivalent
to (3). 0

REMARK 3. In [8, Thm. 6.1 ], a perturbation theorem for maximal regularity
is given via the operator sum method: Suppose that A has maximal regularity
in X. Define ,~1 on L p ( I , X) by (.A f ) (t ) : := A ( f (t ) ) and denote the inverse of
d /d t -I- A by M. Then A + B has maximal regularity if, in addition to (2),
we have bllMII  1 which holds in particular if b = 0 and a is

sufficiently small.
The smallness condition  1 should be compared with the as-

sumption  1 in Theorem 1. In principle, i.e. modulo an absolute
constant (for Lip(7, X) with p = 2 and X = Lq (Q) we may take 1 and we may
take 4 in the general case), the R-bound is smaller than the constant 
of maximal regularity (see [5]). It seems that in many cases the R-bound is
more accessible, and in general -~ oo for p - oo. Furthermore,
R-boundedness is useful in other situations besides maximal Lp-regularity, e.g.
in situations where 9r &#x3E; 7r/2.

In UMD-spaces, Theorem 1 yields a perturbation theorem for maximal
Lp-regularity, but if the space X is not UMD, the results are not comparable.
For perturbations B : X a -+ X, 0  a  1, see Corollary 12 below and [8,
Thm. 6.2].

Finally we give a perturbation theorem in the style of Miyadera-Voigt (see,
e.g., [10, Sect. IH.3.c]). Since we consider analytic semigroups, we can even
weaken the usual assumptions.
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COROLLARY 4. Let A be a densely defined R-sectorial operator in a reflexive
space X, o,. (A)  0 :!~ 1f /2, and let (Tt) be the bounded analytic semigroup
generated by -A. Assume that B is a closed and densely defined linear operator in
X such that D(B*) norms X and

for some &#x3E; 0 where

Then D(A) and A -I- B R-sectorial with -E- B + ~) ~ o.

PROOF. Let M : := SUPt&#x3E;o I I Tr I I . For x E X and x * E D(B*) we have by
following estimate

Since X is reflexive and D(B*) norms X the closed operator + A)-’ is
bounded. Hence D(B) D D(A), and the estimate shows that the assumptions
of Theorem 1 hold for A + /t in place of A, note again RA (8). C1

3. - An application to elliptic operators

We consider in this section uniformly (M, 8)-elliptic systems in the sense
of [2], [9], and first recall this notion. Let n, m, N E N. Let M &#x3E; 1 and

9 E [0,.7r). The differential operator
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of order 2m with measurable coefficients aa : }Rn ~ is called uniformly
(M, B)-elliptic if

where ,,4,~ (x, ~ ) denotes the principle symbol of the operator A, i.e.

We assume that the highest order coefficients are bounded and uniformly contin-
uous, i.e. aa E BUC(RN, eNxN) if lal = 2m. For 1  p  oo, the (CN)-
realization Ap of A is a closed linear operator with domain W2 (Rn cCN). For
simplicity we assume here that aa - 0 if 2m - 1. Otherwise, one
may apply Corollary 12 below (for suitable conditions on the coefficients see,
e.g., [19], [2], [9], [13]). Under an additional assumption on the modulus
of continuity of the aa with lal I = 2m it was shown in [2] that, for any
9  6  x a suitable translate of A p has a bounded H°°-calculus of angle 0.
If 0  n/2 this implies in particular that the set {i t (i t -I- A -I- v)-l : t E I1g B {OJ}
is R-bounded and hence that A + v has maximal regularity of angle  Õ for
some v &#x3E; 0. The assumption on the modulus of continuity was removed in
[9, Thm. 6.1 ] .

We now show that R-boundedness and hence maximal Lp-regularity for
elliptic systems may be proved using Theorem 1. The crucial part in the proof
is the second step where the perturbation is of the same order of differentiation
as the unperturbed operator. The proof of [9, Thm. 6.1 ] uses the particular
form of the operators involved and relies heavily on Calderon-Zygmund theory
and the T ( 1 )-theorem for singular integral operators due to David and Joumé.
Theorem 1 is a much simpler device, but, on the other hand, R-boundedness
is a weaker property than having an H°°-calculus.

THEOREM 5. Let 1  p  00 and M &#x3E; 1, 0  9  c~  Tt be given. Then
there are constants v &#x3E; 0 and K &#x3E; 1 such that, for any (M, 9)-sectorial operator
Ap satisfying the assumptions above, the operator Ap + v is R-sectorial with

PROOF. We fix p and write A for Ap. As in [2] and [9] the proof is carried
out in three steps. In a first step one treats homogeneous constant coefficient
operators by Fourier multiplier arguments, e.g. the Mikhlin multiplier theorem.
One has RA (9’)  C for all (M, 0)-elliptic differential operators A with constant
coefficients where 1f &#x3E; 9’ &#x3E; 0 and C only depends on M and 8’.
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In a second step one treats homogeneous operators which are small per-
turbations of constant coefficient operators. Finally one uses a localization
and (lower order) perturbation procedure (cf. [19], [2], [13]) and the remark
below.

We concentrate on the second part of the proof which consists in showing
the following perturbation result (cf. [9, Thm. 4.2]) because it is here that our
method introduces a simplification of the argument. Here A is the Lp-realization
of an operator of the form (4) with aa constant (aa = 0 for 2m - 1), and
B is an operator of the form (4) with coefficients ba instead of aa where ba
is assumed to be measurable and bounded (ba = 0 for 2m - 1).

PROPOSITION 6. Let x &#x3E; w &#x3E; 0 be given. Then there are constants 8 &#x3E; 0 and

K &#x3E; 1 such that A + B is an R-sectorial operator satisfying

for all (M, 0)-elliptic operators A with constant coefficients and all differential
operators B with  8 where

PROOF. We can apply Theorem 1 directly since we have

for (CN) and £ L where the constant L only depends
on M and p (the operator has symbol ~ H ~",An (~ ) -1 which is

homogeneous of degree 0 and one can apply Mikhlin’s theorem).
Finally one uses a localization and (lower order) perturbation procedure

(cf. [2, Sect. 3], [9, Sect. 6]). D

REMARK 7. The constant v in Theorem 5 stems from the fact that the
localization procedure brings in lower order perturbations (cf. [2]).

By arguing in the third step of the proof as in [13] (a combination of the
ideas from [19] and [2]) one can show that sectoriality and bounded invertibility
of Ap-I-v implies R-sectoriality with optimal angle in the sense that 
9,. (A p -I- v) . In particular Ap is R-sectorial whenever it is sectorial and boundedly
invertible, and the respective angles coincide.

We want to remark that maximal Lp-regularity of Ap . can also be achieved
using [8, Thm. 6.1 ]. By considering suitable rotations e’l/J Ap of Ap this also
holds for the optimality of Or (which may be alternatively defined in terms of
the maximal regularity constants of such rotations).



423

4. - Perturbations in the fractional scale

Our next perturbation result is formulated in terms of the fractional powers
of the sectorial operator A with  x. We assume from now on that A
is densely defined. Fix x &#x3E; 0 &#x3E; O(1(A). Then for a &#x3E; 0 and h E £,-o the
(bounded) operator (h + A)-’ is given by

where the curve r E, ý¡ is parametrized by

and &#x3E;~&#x3E;7r-0,0~ Ikl.
The operator (X + A)’ is defined as the inverse of the operator (À + A ) -" .

It is a closed operator whose domain is independent of X. The operator A"
is defined as the limit + A)". It is again a closed operator and has
domain D (A" ) = -f- A)" ) where 3 &#x3E; 0. In case 0 E p (A) one may take
s = 0 in (6), and the operator A" is the inverse of the bounded operator A-"
which is given by (5) for X = 0 (we could have used this as a definition if
0 E p (A)).

The fractional powers give rise to a scale 1 of Banach spaces in
the following way (where x &#x3E; 0 &#x3E; 0, (A) is fixed):

For a &#x3E; 0, the space Xa is D (A" ) equipped with the graph norm (one
could use any norm 11 (X + A)’ - 11, À E instead), and the space X-a is
the completion of X for the norm x H where one may take any
h E all giving rise to equivalent norms.

Then Xo = X and, for a &#x3E; 0 and k E (X +A)-" is an isomorphism
Xo - Xa and extends to an isomorphism JÀ,a : X-c~ 2013~ Xo whose inverse J~~a
is an extension of (h + A)" from D(A") - Xa to X = Xo. In each of the

spaces Xa we have an operator Aa similar to the operator A in X, given by
the part of A in Xa if a &#x3E; 0, and by Aa := if a &#x3E; 0 (the definition
does not depend on X E £,-o). 

’

Then JÀ,a = (~. + A _" ) -" for a &#x3E; 0, À E We refer to [10, Ch. II,
Sect. 5] and [1, Ch. V] for constructions of this type.

We first assume 0 E p(A) for simplicity. Then the above assertions
also hold for the case h = 0. In particular D«Aa)a) - Xo - X and
(À + A.) -0’(A.)" = A" (X + A)-" is an isomorphism of X. Our second main
result now reads as follows.

THEOREM 8. Let A be a densely defined R-sectorial operator in X with 0 E p (A)
and x &#x3E; 0 &#x3E; Or (A). Let a E [0, 1] and assume that B : X,,,, -+ is a linear

operator satisfying
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where 1]  (i?A (0, 1 - a)RA«(), and ~B) is defined in the following
lemma. Then C := (Aa-l 1 -~- B) I x, the part of A,,, - 1 -f- B in X, is R-sectorial and

in particular Or (C)  8.

REMARK 9. The assumption (7) can be restated as a relative boundedness
condition in 

but it is not clear, if the application of Theorem 1 would give a suitable
operator in X. The following proof will avoid this difficulty. In Section 5 we

give applications where the Xa are mostly Sobolev spaces and (8) becomes a
natural estimate. For a non-negative selfadjoint operator A in a Hilbert space and
a = 1/2 the theorem is closely related to the well known KLMN perturbation
theorem (see Remark 16 below).

In the proof we shall make use of the following lemma. Note that we do
not assume 0 E p (A) here.

LEMMA 10. Suppose that A is R-sectorial and that 7r &#x3E; o &#x3E; 0, (A). Let
a E (0, 1 ). Then the following subsets of L (X)

and

are R-bounded. The R-bounds of these sets are denoted RA (9, a) and RA (9, a),
respectively.

PROOF. We fix 7r - 0, (A) &#x3E; 1/1 &#x3E; 1( - 0 and use the representation formula
(5) for (~, -I- A) -01, À E with 8 = IÀI/2. By [4, Lemma 3.2] (the absolute
convex hull of an R-bounded set is R-bounded), the first set in the assertion is
R-bounded if we have proved that

where C does not depend on X E 
Using the parametrization y we have to estimate the integrals

for 8 = I.XI/2. Then IX - IXI/2 and we can estimate the integral
f--’ c... by
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For the integral J800 ... we observe that

Indeed, we have cl (1/1, 0) for all JL E with = 1 and

s &#x3E; 0. On the other s e ~‘ ~ ~ &#x3E; s - 1 for the same range of it and s.
Multiplying with I yields (10) with c(1f¡, 0) := 0)/(2+ci(~, 9)). Hence
we can estimate the integral Jeoo ... by

which means that (9) holds with C := 2C(~, ~ a) + 1f¡2a+l.
For the second set in the assertion we write

and use the representation

This yields

Noting a fo s"-1 ds = 1 and using [4, Lemma 3.2] again we obtain

which proves the second assertion.

PROOF OF THEOREM 8. If h E then

which yields



426

By the assumption on 17 the operator I + (h + + A)-’ is invertible
in L (X) for k E and the series in

converges. By the preceding it is clear that

We have

with domain the set of all x E D (A" ) such that y := (À + A )"x + (X +
Aa-l)a-l Bx E D(A 1-"), i.e. the set of all x E D(A") such that z := (~. +

E X. But z = and, on the other hand, z = S(À)-lx.
Hence = {x E D(Al) : Aa-IX + Bx E X} and S¡l 1 = ~, + + B)lx
which finishes the proof. D

REMARK 11. As in Section 2, the assertion of Theorem 8 yields a pertur-
bation theorem for maximal Lp-regularity if X is a UMD-space.

We can allow for perturbations B which are arbitrarily large in norm if
they are bounded 1 for some 0  a  p  1. For fl = 1 and
a  1, this corresponds to a well known perturbation theorem for generators of
analytic semigroups and extends it to maximal regularity in UMD-spaces (for
this special case see also [8, Thm. 6.2]).

COROLLARY 12. Let A be an R-sectorial operator in X &#x3E; 0 &#x3E; Or(A).
Let 0  a  1 and assume that B : is a bounded linear operator.

the operator (Ay_1 + B)lx + À is R-sectorial with angle  0

ifh &#x3E; 0 is sufficiently large.
PROOF. Without loss of generality we assume that 0 E p (A). y s fl,

then B is bounded Xy - Xy-i. We write, for X &#x3E; 0,

and observe (A + A~_ 1 )-~1-~~ (A,~_ 1 ) 1-~ = A 1-~ (~, + A) 1-~ . If we denote, for
cr E [0, 1 ], the norm bounds of the (by Lemma 10 bounded) sets 
X &#x3E; 0} and h &#x3E; 0} by M(or) and respectively, this implies
the estimate

Choosing X &#x3E; 0 sufficiently large we can apply Theorem 8 for h + A in place
of A.
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We now want an analogue of Corollary 2, and we want to get rid of the
assumption 0 E p(A). It is well known and easy to see that, for a = 0 the
assumption (7) can be reformulated in terms of the dual operators A’ and B’
in X’, in a way that avoids the assumption 0 E p (A) and is similar to the

assumption in Theorem 1. The case a E (0, 1) is more complicated and we
shall make use of the following remark, assuming from now on in addition that
X is reflexive. Since our main interest are perturbation theorems for maximal
Lp-regularity and our method thus requires X to be a UMD-space which is
always reflexive, this restriction is not essential.

Remark 13. If the space X is reflexive we may obtain the spaces X-a for
a E (0, 1] also via the following approach: Denoting the dual space of (X, 11.11)
by (X’, I ~ I ) and the dual operator of A by A’ (which is again sectorial) we
let (X’)a := D((A’)") with the graph norm (again, one may take any norm
I (X + A)- - 1, X E instead). Then it is not hard to see that = ((X’)")’
for the duality pairing (X’, X) (we again refer to [1, Ch. V]).

A bounded linear operator B : X~ 2013~ then corresponds to the bounded
bilinear form [D(A")] x [D((A’) 1-")] - C, (x, x’) H (Bx, x’) where both
spaces are equipped with the graph norm.

We thus are led to the following version of Theorem 8.

THEOREM 14. Let A be a densely defined R-sectorial operator in a reflexive
space X with 1C &#x3E; 0 &#x3E; Or (A). Let A be injective with dense range and a E [0, 1 ].
Assume that B : X" -~ linear operator satisfying

where TJ  (i?A (0, 1 - a) f?A (0, a)) - 1. Then C = B) I x is R-sectorial and

0.

PROOF. We have to work with bilinear forms. For any X E :E1r-O, the
bilinear form (x, x’) (~, -I- A’)"-1 x’ ~ which corresponds to the
operator := (X + + A ) -" : X - X is bounded on X x X’
with norm ~ a)MA«(), 1 - a)  1 (observe MA~ (- - - ) = MA (- - - )).

Next we observe that the assumptions imply that A-1 is a densely de-
fined R-sectorial operator which has, together with its dual, fractional powers
satisfying A"(A-1)"x = x for x E D({A-1)") and (A’)1-a«A-1)’)1-ax’ =
x’ for x’ E D«(A-1)’)I-a). We write A-" and for (A-1)" and

((A-1)’)1-«, respectively. The assumption then yields that the bilinear form
(x, x’) H (BA-ax, (A,)a-lx’) which is originally defined on the dense subset

x is bounded on X x X’ with norm  1]. We denote the

corresponding operator X - X" = X by K.
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Now K (,X) = since we have for x E X and
x’ E that

Hence 7?({~(~.) : ~ E We now proceed as in
the proof of Theorem 8 letting

and observing S¡l 1 = Å + (Aa-l -I- B) I x . 0

This formulation allows for the following corollary of Theorem 8 which is
an analogue of Corollary 2. By MA (0, a) and l~fA (0, a) we denote the uniform
norm-bounds of the sets in Lemma 10.

COROLLARY 15. Let A be a densely defined R-sectorial operator in a reflexive
space X with Tc/2 &#x3E; 0 &#x3E; Or(A). Let a E [0, 1]. Assume that B : is a
linear operator satisfying

for some a, b &#x3E; 0 satisfying a  (MA (0, ot) RA (0, Ot) MA (0, 1 - ot) RA (0, 1- 0153»-l.
Then + + À is R-sectorial with R-sectoriality angle  0 for À &#x3E; 0

sufficiently large.
PROOF. If À &#x3E; 0 the assumption (12) implies for all x E X, x’ E X’

Here we used that MA’(...) = MA (~ ~ ~ ). By the assumption on a we find À
large such that

Now we apply Theorem 8 with À + A in place of A and 1] := (observe
that (- .. )  RA (... ) and RA+À ( ... ) ::!~- RA (... )). 13
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We now show that our perturbation method extends the KLMN perturbation
theorem for forms in Hilbert spaces.

REMARK 16. If A is a non-negative selfadjoint operator in a Hilbert space H,
then A = A’, and MA(¡r/2, a) = MA(¡r/2, a) = RA(¡r/2, a) = RA(¡r/2, a) = 1
for all a E [0, 1 ]. A symmetric quadratic form fi in H with form domain

D D (A 1 ~2 ) =: corresponds to a symmetric operator B : N1/2 -
N-i/2 (symmetric in the sense that (N±i/2/ = and the adjoint B’ :
Hi /2 - H-112 equals B). The assumption of the KLMN theorem ([20, Thm.
X.17]) then reads

for some a’  1. By the argument that proved Corollary 15 we obtain

for some 1]  1. Since the bounded operator (h + A)-1/2 B(À + A ) -1 /2 is

symmetric the assumption of Theorem 8 holds for k + A in place of A and A
large. Thus we obtain that C := generates an analytic semigroup
of angle  x/2. By the symmetry of and B it is easy to see that
C is symmetric. Hence C is selfadjoint. The KLMN theorem also gives
D((C -I- b’) 1/2) = D(A1~2) which is more than one can hope for in the general
situation, even in Hilbert space (cf. [24, Sect. 4]).

REMARK 17. We want to emphasize that the results of this section also hold
if we require A merely to be sectorial, take x &#x3E; 0 &#x3E; 9~ (A), replace RA (... ),
RA (... ) by MA (- - - ), respectively, in the assumptions, the conclusion
being sectoriality of the perturbed operator (instead of R-sectoriality) of angle
9a j 9 (we get an estimate for Mc(9) if we replace the R*(... )-constants in
the estimate for by the corresponding M*(... )-constants).

We could not find those results in the literature although an argument of
this kind had implicitely been used in [24, p. 223].

5. - Applications to partial differential equations

5.1. - Schrodinger operators

There is an extensive literature on operators of the form A : = H = - 0 -I- V
where V is a potential. Usually, H is defined in L2(1RN) by a form perturba-
tion of the form q(u, v) with form domain W21 (R N) , associated
with - A.

For certain potentials V one may check by the Beurling-Deny criteria that
e-tH is a positive semigroup of contractions in each 1  p j oo,
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(w*-continuous for p = oo). If we denote its generator by AP, then Ap has
maximal regularity in 1  p  oo, by a result due to Lamberton
([14]). For a larger class of potentials V it is known that the operators e-tH
are integral operators satisfying Gaussian type bounds. Then, for 0,
A + it has maximal regularity in 1  p  oo, by a result due to
Hieber and Pruss ( [ 11 ], see also [23]).

These results cannot be applied for bad potentials V for which the semi-
group e-t H acts boundedly in Lp(R N) only for po  p  p’ 0 where po E ( 1, 2)
(see, e.g., [16]). Theorem 8 enables us to treat those situations directly in the
corresponding Lp-spaces. We give a simple concrete example.

EXAMPLE. Let N &#x3E; 3. The operator A := -A has domain D(A) =
and D(A1/2) = W’(R N). Moreover A’ = -A in D(A’) =p p

W2p, (R N), and D ( ( A’ ) 1 A2 ) = We consider the potential V (x ) : :=
p p

(cf. [ 16] )..
By Hardy’s inequality we know

for 1  q  oo. If N/(N - 1)  p  N then B {OJ) is dense in

Wp’(R N) and W11, (R N) , and by (13) for q = p, p’, Hölder’s inequality and the
boundedness of Riesz transforms we obtain for f E W’(R N), g E 

which means that Ixl-2 defines a bounded multiplication operator from 
to Hence, if ICI is small enough, we obtain maximal

regularity for the operator i. e. Depending
on the size of C  0 and the dimension N the corresponding semigroup only
acts in for p in a (small) symmetric interval around 2 (cf. [16], p. 181).
If C is not real we cannot apply the result in [23, Sect. 4 d)] which requires
the semigroup to be positive and contractive in 

The situation is similar for more general second order operators in diver-
gence form when the lower order terms satisfy form bounds and the correspond-
ing semigroups do not act in all Lp-spaces, 1  p  oo, see [15], [16], [17].
The semigroups are positive for real potentials but may not be quasi-contractive
for certain p-intervals.



431

5.2. - Higher order elliptic operators

Elliptic operators of order 2m with m &#x3E; 1 defined on R N by the form
method (as studied, e.g., in [6]) do not give rise to positive semigroups nor to
contraction semigroups.

If N &#x3E; 2m and the highest order coefficients do not satisfy further regularity
properties then the corresponding semigroup does not act in all 1 

p  oo, see [7]. As pointed out for Schrodinger semigroups in the previous
subsection, this may also be achieved by ’bad’ lower order perturbations. We
give a concrete example of a fourth order operator and a perturbation which
cannot be treated as a form perturbation on the form domain.

EXAMPLE. Consider the operator A := OZ which has domain in

X : := We obtain Xa - The form associated with A in

2 (R is q ( f, g) := f Af Ag with form domain Now consider the
lower order perturbation B : := CIXI-2(A + 1) where C is a constant As before,
the function acts boundedly W’(R 3) -* for 3/2  p  3, and

A +1 : -~ is an isomorphism. Hence, for ICI small enough,
we can apply Theorem 8 with a = 3/4 and obtain maximal regularity for the
operator For p = 2 this cannot be obtained by a perturbation
on the form domain since B : is not bounded. Indeed, if

acts boundedly W;,(]R3) ~ (which by duality is equivalent to a
bounded action - W p 2 (IR3 ) ) then p’  3 / 2 since does not belong
to for other values of p’. Since we are now in a Hilbert space the
main assertion is, of course, that the perturbed operator generates an analytic
semigroup.

5.3. - Perturbation of boundary conditions

For a = 0 in Theorem 8 we have B : X - X-1 1 and it is known that

operators of this kind may be used to perturb the boundary conditions of a
generator (cf. [10, Sect. IIL3.a] on Desch-Schappacher perturbations). We
show by a simple example that the consideration of a E (0, 1) in Theorem 8
allows for more general perturbations of boundary conditions.

EXAMPLE. Let 1  p  oo and 1 &#x3E; ~ &#x3E; 1 - 1 /p. We want to show that
a suitable translate of - A on L p (-1, 1) with boundary conditions /(±1) =

f 1 where _ (x 2 - 1) -8 has maximal Lp-regularity.
To this end let -A be the Laplace operator in X = 1) with Dirichlet

boundary conditions, i.e. D(A) = JU E Wp (- l, 1) : u (~ 1 ) = 01. Then A has
bounded imaginary powers, the domains of the fractional powers of A can be
obtained by complex interpolation, and due to a result of Seeley ([21]) we have
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Hence in particular 1 E Xa for a  (2 p) -1 and 10 Xa for a &#x3E; (2/?)"~ Now
choose P, s, r such that 2fl &#x3E; s &#x3E; IIp+llr-l &#x3E; Then the
function = (x 2 - 1 ) -s belongs to Lr (- 1, 1 ) but not to 1 ) = X’.
By Sobolev embedding we have Wp (-1, 1 ) ~ L,.~ (-1, 1 ), hence 1) ~

(Wps (- 1, 1))’. This means that the operator f H B f = - (-Os, is
bounded 1 ) - Letting a := s /2 and recalling s  1 / p we see
that B : is bounded. Since 0  a  fl Corollary 12 applies and
we obtain maximal regularity for a suitable translate of the operator AB :=

+ B)Ix which has domain

For f E D (AB ) we have

Hence with domain D(AB). Note that the perturbation B is not
bounded X - X-i I since f H (~~, f ) is not bounded on 1).

Of course, we may take any other function 0 E 1) instead of l/J8
and argue in the same way with 1 / p &#x3E; 2~8 &#x3E; s &#x3E; Moreover, if
~, ~/n E L,. (-1, 1 ), the same argument applies to

the resulting domain being D (AB ) _ { f E W§(- I , I) : f ( 1 ) = (1/1, f ~ , f (-1 ) _
(*, f)1.

5.4. - Pseudodifferential operators with non-smooth symbols

Our perturbation theorem may be applied to pseudo-differential operators
with non-smooth and unbounded symbols.

EXAMPLE. Again, let us take A := -A in with domain 
for simplicity. Then, the domains of the fractional powers A" of A are the
Bessel potential spaces a E R (cf. [ 1 ] ), and A’ = -A in 

If T is a classical pseudo-differential operator of order m E [0, 2] (e.g.
with COO-symbol in the class then T acts bounded ~ 

for all s E cf. [12]. We combine such an operator T with multiplication
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operators My := y. : -~ Lq (R N) where k E [0, oo) and q E { p, p’),
i.e. we consider operators T o My : Hp m or My o T : Hp k
(recall that, by duality, the multiplication operator My is bounded Hp - LP~
if and only if it is bounded Hik; for boundedness criteria for My see
the remark below).

Now let S E { T o My , My o T } .  2 then is R-sectorial
for some then A + S - v is R-sectorial for some v &#x3E; 0 if
the norm of the operator S is sufficiently small Hkp ----&#x3E; Him or H§/ - Hp-k,p P p P

respectively.
We remark that we could in the same way consider operators of the form

S = My2 o T o My, : where T is a pseudo-differential operator of
order 0 and My, : Lp, My2 : Hp - LP~ are bounded multiplication
operators.

REMARK 18. The multipliers Hq --~ Lq have been characterized in [18] in
terms of certain capacities (cf. [18, p. 59]):

where the supremum is taken over all compact subsets E of R N with positive
capacity, d(E) denotes the diameter of the set E, and the capacity is defined
by (cf. [18, p. 52]):

Recall that lIullHk := where Ak := (1 - = F-1(1 + |03BE|2)k/2F
q 

and F denotes the Fourier transform.

There are several sufficient conditions implying boundedness of My : 7~ 2013~
Lq for a given measurable function y: [18, Prop. 2 on p. 52] implies that we
have for kq  N

[18, Prop. 1 (ii) on p. 73] states that y E LN/k,unif is sufficient if kq  N;
and [18, Thm. 2.3.3 (ii), p. 79] states that y E sufficient if r &#x3E; q,

kq  N and ~ := N. We also want to mention that, for kq &#x3E; N, the

space of multipliers My : 7~ -&#x3E; Lq coincides with Lq,"nif, cf. [18, Remark 3
on p. 56.
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