
Regular Issue

- 15 - DOI: 10.9781/ijimai.2016.372

Abstract — Today, Smartphones are very powerful, and many
of its applications use wireless multimedia communications.
Prevention from the external dangers (threats) has become a big
concern for the experts these days. Android security has become
a very important issue because of the free application it provides
and the feature which make it very easy for anyone to develop
and published it on Play store. Some work has already been done
on the android security model, including several analyses of the
model and frameworks aimed at enforcing security standards. In
this article, we introduce a tool called PermisSecure that is able to
perform both static and dynamic analysis on Android programs
to automatically detect suspicious applications that request
unnecessary or dangerous permissions.

Keywords — Android, Operating System Mobile, Privacy,
Issues, Hackers, Permission, Solution, Protection.

I.	 Introduction

Since the first Android powered phone named The HTC Dream
(also known as the T-Mobile G1 in the United States and parts of

Europe, and as the Era G1 in Poland) was delivered in October 2008
[1], Android smart phones have grown to the largest global market
share (76%) among all smartphones shipped in the 4th quarter of 2014
[2]. In 2014, Google announced that more than billion Android devices
had been activated [3]. This important popularity of Android and the
open nature of its application marketplace makes it a prime target for
attackers. Malware authors can be freely upload malicious applications
to the Android Play Store waiting for unsuspecting users to download
and install them.

 To alert users to the privacy and security ramifications of installing
an application, Android employs mandatory access control (MAC) in
the form of an install-time permission system [4]. At installation time,
an application must request permission to access system resources
such as location, Internet, or the cellular network, from the user.
Then the user is presented with a screen allowing him to either grant
all the permissions or cancel the installation. Since it is not possible
to selectively accept or deny access privileges. Thus, many users
simply accept such permission requests without considering their
implications, which put their private data in the zone of danger [5].
For example if an application granted some critical permissions such
as the INTERNET permission it can controls communication with
remote servers and if this application was also granted access to the
Android camera, nothing prevents it from sending the user’s pictures
to any server on the internet. May 2014, Google had done a Play Store
updates to simplify the display of the permissions and allow better
navigation user. They were re-grouped by categories. Therefore, from
more than 150 permissions, we went to a dozen groups, including
another category, which includes everything that does not fit elsewhere
[6]. With the old system, each update of the application, if developer
added a new permission, the Play Store posted it and the user must
then accept it. With the new system, developers can add for example
the permission ACCESS_SUPERUSER that allow him to take control
of all the features of the phone and storage if his application had
permissions in the group “another category” [7].

 The rest of the paper is organized as follows. In Section 2, we give
an overview on the background of our work. Section 3 describes the
details on the problem caused by permissions requested by android
applications and their updates. Section 4 gives an overview on related
work. We proceed in Section 5 with details of the design and user
interface of our tool. In Section 6, we demonstrate how our tool protects
the user from permissions and updates challenges by providing the
results of applying PermisSecure to 120 paid and 456 free applications
from the Google Play Store. In Section 7 we conclude and summarize
our results and contributions.

II.	 Background

To frame the problem, we describe the Android architecture,
permission system and explain how these permissions requested by an
application can play an important role in spring of malwares.

A.	 Application Package
An Android application package or apk file is an archive. It contains

a Dalvik executable (dex file), which is a compiled Android program
that runs on a Dalvik virtual machine, and a set of resources (non-
executable files like graphics, media files, user interface components,
etc.). Application packages also contain a manifest (AndroidManifest.
xml), which Android contains meta-information about the application
like package name, version, supported Android versions, and other
attributes. These components are digitally signed with the developer’s
signing key. The developer’s signing certificate can be self-signed and
is included in the application package [8].

B.	 Deconstructing Application Installation
Any developer (even those who have not registered with Google)

can create and distribute applications through the official Google
Play Store, through third-party markets (e.g., Amazon Appstore) or
through developer websites (side-loading). The lack of control over
the application distribution process raises the importance of enforcing
security within the Android OS. During the installation of a new
application, permissions are approved prior to installation, but the rest
of the process remains the same. First, the application package validity
is verified: the system ensures that the Android application package has
not been modified or corrupted since being signed, and that it contains
a valid certificate for the signing key. Then, Android decides whether
the application is a new installation or should overwrite an existing
application. If the application being installed has the same package
attribute in the manifest (e.g., com.google.android.music) as another
currently installed application, then Android will treat the installation
as an update. So, the certificate (or set of certificates if signed by
multiple keys) is compared to the certificate(s) of the already installed
application. If both applications were signed with the same key(s), then
the currently installed binary is removed (preserving any user data)
and the new application is installed in its place. Otherwise, the new
application is installed as an initial installation. Next Android must
assign a UID to the application. In this case, the previous application’s
UID is used. In the case of an initial installation, Android checks if
the application’s manifest contains the sharedUserId directive. If so,

A New Protection for Android Applications
ER-RAJY Latifa, EL KIRAM My Ahmed

Faculty of Sciences Semlalia, University Cadi Ayyad, Marrakech, Morocco

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 3, Nº7

- 16 -

Android looks for any other installed applications that are signed with
the same key(s) and have sharedUserId specified in their manifest. If
such applications are found, the application is assigned the same UID;
otherwise a new UID is created.

Fig 1. Abstract model of the Android installation process for an application
package (apk).

Finally permissions must be assigned to the UID[9]. The user is
prompted to review and approve the permission assignments before
the application is installed. When UID sharing is not used, permissions
listed in the application’s manifest are assigned to the UID. When UID
sharing is used, the UID is assigned the union of all permissions in
the manifests of applications sharing the UID. If the application is
updating an already installed application, the permissions listed in the
updated application’s manifest are assigned to the UID [10].

III.	Problem Description

Permission System: Android controls access to system resources
with install-time permissions by using two-way process. Firstly,
developer defines the required permissions that are the first requisite
for performing the functionalities of an application. Secondly, during
installation time, user must have approved all the requested permissions
to use an application [11]. Permissions requested by each application
permissions fall into four levels:

(1) Normal – These permissions protect access to API calls that
cannot impart real harm to the user (e.g. SET_WALLPAPER controls
the ability to change the user’s background wallpaper) and, while
applications need to request them, they are automatically granted.

(2) Dangerous – These control access to potentially harmful API
calls, like those related to spending money or gathering private
information. For example, Dangerous permissions are required to send
text messages, read the list of contacts, call numbers, open Internet
connections, etc.

(3) Signature – These regulate access to the most dangerous
privileges, such as the ability to control the backup process or delete
application packages. They are automatically granted to a requesting
application if that application is signed by the same certificate (so,
developed by the same entity) as that which declared/created the
permission. This level is designed to allow applications that are part of
a suite, or otherwise related, to share data.

(4) Signature/System – Same as Signature, except that the system
image gets the permissions automatically as well. This is designed for
use by device manufacturers only.

Menace of Pileup: The security analysis of mobile updating,
focusing on Android Package Manager brings to light a new category
of unexpected and security-critical vulnerabilities within Android’s
update installation logic. Such vulnerabilities, called Pileup (privilege
escalation through updating), enable an unprivileged malicious
application to acquire system capabilities once the OS is upgraded,
without being noticed by the phone user. More specifically, through
the application running on a lower version Android, the adversary
can strategically claim a set of carefully selected privileges or
attributes only available on the higher OS version. For example, the
application can define a new system permission such as permission.
ADD_VOICEMAIL on Android 2.3.6, which is to be added on 4.0.4.
It can also use the shared user ID[12] (a string specified within an
application’s manifest file) of a new system application on 4.0.4, its
package name and other attributes. Since these privileges and attributes
do not exist in the old system (2.3.6 in the example), the malicious
application can silently acquire them (self-defined permission, shared
UID and package name, etc.). When the system is being updated to
the new one, the Pileup flaws within the new Package Manager will
be automatically exploited. Consequently, such an application can
stealthily obtain related system privileges, resources or capabilities. In
the above example, once the phone is upgraded to 4.0.4, the application
immediately gets permission.ADD_VOICEMAIL without the user’s
consent and even becomes its owner, capable of setting its protection
level and description. Also, the preempted shared UID enables the
malicious application to substitute for system applications such as
Google Calendar, and the package name trick was found to work on the
Android browser, allowing the malicious application to contaminate its
cookies, cache, security configurations and bookmarks, etc.

IV.	Related Work

Research related to this work can be classified into the following
categories:

Android Permissions: Previous studies of Android applications
have been limited in their understanding of permission usage. Enck et
al. apply Fortify’s Java static analysis tool to decompiled applications;
they analyze a large set of applications and study their API use [13].
However, they are limited to studying application’s use of a small
number of permissions and API calls. In a recent study, Felt et al.
manually classify a small set of Android applications as over privileged
or not [14]. They were unable to reliably differentiate between
necessary and unnecessary permissions because of limited Android
documentation.

Update behavior of Android: The first studies has been by done
Moeller et al. [15] by analyzing the updates of applications from
Google Play quantitatively. An attack of the android system called
Application Update Attack is studied by Tenenboim et al. [16].
Application updates might be a potential way to implant new security
vulnerability and privacy data leaks to the user’s phones. Chin et al.
[17] studied users’s confidence in security and privacy of Android.
They found that users reported various concerns because of some
misconceptions or misunderstandings. Android permissions provide
a mechanism for users to manage the access control of applications,
especially when fine-grained controls are granted.

Privilege escalation: XManDroid [18] was designed to prevent
privilege escalation and collusion attacks by enforcing policies
on the communications between applications, e.g., banning an
application that has access to the user’s location from interacting with
an application that is allowed to access the Internet. Aurasium [19]
repackages applications and introduces an intermediate layer between
the framework’s native code libraries and the operating system kernel
inside the application process. AppSealer [20] combines static- and

Regular Issue

- 17 -

dynamic-code analysis techniques to patch the applications’s bytecode
in order to mitigate component hijacking attacks. Xing et al.[7] Authors
introduce a scanner tool for detecting applications that are vulnerable
against the pileup threat.

V.	 PermisSecure Introduction

In this section, we present PermisSecure, a tool sandbox based on
dynamic and static analysis for Android smartphones, which increases
user awareness about potentially harmful applications in install-time on
his phone. The concept is based on the assumption that users are willing
to take security increasing actions (such as canceling the installation of
a potentially harmful application) once they gain knowledge about a
potential dangerous or unnecessary permissions requested.

A.	 Interface User
The design and implementation of the PermisSecure user interface

follows the basic principle of warning, to provide the user with only
as many pieces of information as necessary to avoid suspicious
applications. Further, we designed the application to integrate
seamlessly in the Android system.

When the user wants to install a new application, the software
involved to perform an analysis on two levels (See Fig. 5(a)) , the
first level it analyzes the permissions requested by the application, if
they are dangerous it displays a warning to the user who can choose
between contain or cancel the installation (See Fig. 5(b)). Otherwise,
it goes to the second level of analysis and verifies the code. Therefore,
if the code is suspicious, it shows to the user a warning same to that
of the first level, otherwise it allows the installation of the application.
PermisSecure repeat the process when an application update is
available (See Fig. 5(c)).

(a) PermisSecure
preform an analysis
in install-time of new
application.

(b) PermisSecure
analyzes permissions and
displays a warning to
the user who can choose
between contain or
cancel the installation.

(c) Once an
application is
available,
PermisSecure analyzes
it.

VI.	Results

We applied PermisSecure to 120 paid and 456 free applications from
the Google Play Store. For the applications to identify the dangerous
or unnecessary permissions. PermisSecure calculates the maximum
set of Android permissions that an application may need. We compare
that set to the permissions actually requested by the application. If the
application requests more permissions, then it is over privileged.

Unnecessary permission: PermisSecure identified that 45% of free
and 22% of paid applications have unnecessary permissions. In some

cases, we were able to determine why developers asked for unnecessary
permissions.
•	 Permission Name: Developers sometimes request permissions

with names that sound related to their application’s functionality,
even if the permissions are not required.

•	 RelatedMethods: Some classes contain a mix of permission-
protected and unprotected methods. We have observed applications
using unprotected methods but requesting permissions that are
required for other methods in the same class. For example, android.
provider.Settings.Secure includes both setters and getters. Setters
require the WRITE_SETTINGS permission, and the getters do not.
Two applications use the getters and not the setters, but request the
WRITE_SETTINGS permission.

•	 Copy and Paste: Popular message boards contain Android code
snippets and advice about permission requirements. Sometimes
this information is inaccurate, and developers who copy it will
over privilege their applications. For example, one application
in our data sets registers to receive the android.net.wifi.STATE_
CHANGE Intent and requests the ACCESS_WIFI_STATE
permission. As of May 2011, the third-highest Google search result
for that Intent contains the incorrect assertion that it requires that
permission [21].

•	 Deputies: An application can send an Intent to another deputy
application, asking the deputy to perform an operation. If the
deputy makes a permission-protected API call, then the deputy
needs the permission. The sender of the Intent, however, does not.
We noticed instances of applications requesting permissions for
actions that they asked deputies to do. For example, one application
asks the Android Market to install another application. The sender
asks for INSTALL_PACKAGES, which it does not need because
the Market application does the installation. Another application
asks the built-in camera application to take photos, yet requests the
CAMERA permission for itself.

•	 Testing Artifacts: A developer might add a permission during
testing and then forget to remove it when the test code is removed.
For example, ACCESS_MOCK_LOCATION is typically used
only for testing but can be seen in released applications.

Confusion over permission names, related methods, and Intents
could be addressed with improved API documentation. We recommend
listing permission requirements on a per-method (rather than per-class)
basis. Confusion over deputies could be reduced by clarifying the
relationship between permissions and pre-installed system applications.

Permission
Types

Permission level
Paid Free

ACCESS_NETWORK_STATE 10% 15% Normal

READ_PHONE_STATE 9% 15% Dangerous
ACCESS_WIFI_STATE 6% 8% Normal

WAKE_LOCK 3% 5% Dangerous

WRITE_EXTERNAL_STORAGE 5% 7% Dangerous

ACCESS_MOCK_LOCATION 4% 6% Dangerous
CALL_PHONE 4% 5% Dangerous

ACCESS_COARSE_LOCATION 3% 5% Dangerous

CAMERA 2% 5% Dangerous

INTERNET 3% 5% Dangerous

This table shows that almost all unnecessary requested by
applications (paid and free) are dangerous.

Dangerous permissions: We are concerned with the prevalence
of dangerous permissions. Dangerous permissions are displayed as

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 3, Nº7

- 18 -

a warning to users during installation and can have serious security
ramifications if abused. We find that 93% of free and 82% of paid
applications have at least one dangerous permission, e.g., generate at
least one warning. Android permissions are grouped into functionality
categories. This provides a relative measure of which parts of the
protected API are used by applications. A small number of permissions
are requested very frequently. In particular, the INTERNET permission
is heavily used. We find that 14% of free and 4% of paid applications
request INTERNET as their only dangerous permission. Barrera
et al. hypothesize that free applications often need the INTERNET
permission only to load advertisements [22]. The disparity in
INTERNET use between free and paid applications supports this
hypothesis, although it is still the most popular permission for paid
applications. Enck et al. found that some free applications leak
personal data [23][24], this may explain the difference in ACCESS
COARSE LOCATION requests. The prevalence of the INTERNET
permission means that most applications with access to personal
information also have the ability to leak it. For example, 97% of the
225 applications that ask for ACCESS FINE LOCATION also request
the INTERNET permission. Similarly, we find that 99%, 94%,
and 78% of the 306, 149, and 14 respectively applications that
request ACCESS COARSE LOCATION, READ CONTACTS,
and READ CALENDAR have the INTERNET permission.
Although many applications ask for at least one Dangerous
permission, the total number of permission requests is typically
low. Even the most highly privileged application in our set asks
for less than half of the available 56 dangerous permissions. Fig.
3 shows the distribution of dangerous permission requests.

Fig 3. Dangerous permissions per application

Analysis of updates: The success of a privilege escalation attack
on an update process depends not only on the presence of Pileup
vulnerabilities, but also on the new system resources and capabilities
the update adds that can be acquired by the adversary through the
attack. Here we present a measurement study in which we ran our
PermisSecure against a large number of applications for updates
(183 Apps) to understand the exploit opportunities (new exploitable
attributes and properties) they bring in.

 We first looked at the overall impacts of the Pileup vulnerabilities
to the Android ecosystem, in terms of update instance, which refers
to the upgrade of a specific OS (from a specific manufacturer, on a
specific device model and for a specific carrier) to a higher one under

the same set of constraints. For each update instance, we measured
the quantity of exploiting opportunities it can offer, with regards to
all the Pileup flaws found in our research, such as the numbers of new
permissions, packages and shared UIDs an update instance introduces
to the new system. From the 383 we downloaded, we identified 241
update instances. The Statistics on their total exploit opportunities in
each instance are illustrated in Fig. 4. Particularly, we found that 50%
of those instances have more than 71 opportunities.

Fig 4. Cumulative Distribution of Total Exploit Opportunities in Each Update
Instance.

VII.	 Conclusion and Future work

In this paper, we present the design and implementation of
PermisSecure that analyzes permissions requested by Android
applications in installing-time and after their updates. Our reference
implementation is very efficient and induces a small performance
overhead. Therefore, we have developed this tool especially for users
without a technical and security background. Our aim was to put
permission based systems on a stable footing by informing users about
dubious permission sets. There are several ways to extend the concept
of creating awareness after applications are installed. First, it would be
beneficial if the user would be informed before installation for suspicious
applications. Preferably, the user should be given alternatives, such as
this torch light app needs 124 permissions, including 15 dangerous ones.
Alternatively, we have found a torch light application, that only needs 2
permissions, none of them being dangerous.

References

[1]	 M. Amir, “Energy-Aware Location Provider for the Android Platform,”
University of Alexandria, 2010.

[2]	 Scientiamobile, “Mobile Overview Report October - December 2014,”
Reston, 2014.

[3]	 L. Li, A. Bartel, J. Klein, Y. Le Traon, S. Arzt, S. Rasthofer, E. Bodden, D.
Octeau, and P. McDaniel, “I know what leaked in your pocket: uncovering
privacy leaks on Android Apps with Static Taint Analysis,” CoRR, 2014.

[4]	 A. P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and D. Wagner, “Android
Permissions : User Attention , Comprehension , and Behavior,” 2012.

[5]	 M. Lange, S. Liebergeld, A. Lackorzynski, A. Warg, and M. Peter,
“L4Android: A Generic Operating System Framework for Secure
Smartphones,” Proc. 1st ACM Work. Secur. Priv. Smartphones Mob.
Devices, pp. 39–50, 2011.

[6]	 N. Viennot, E. Garcia, and J. Nieh, “A measurement study of google play,”
2014 ACM Int. Conf. Meas. Model. Comput. Syst. - SIGMETRICS ’14,
pp. 221–233, 2014.

[7]	 L. Xing, X. Pan, R. Wang, K. Yuan, and X. Wang, “Upgrading Your
Android, Elevating My Malware: Privilege Escalation Through Mobile
OS Updating,” IEEE Symp. Secur. Priv., 2014.

[8]	 T. Report, “Analysis of Dalvik Virtual Machine and Class Path Library,”

Regular Issue

- 19 -

Management, pp. 1 – 42, 2009.
[9]	 E. Struse, J. Seifert, S. Ullenbeck, E. Rukzio, and C. Wolf,

“PermissionWatcher: Creating user awareness of application permissions
in mobile systems,” Third Int. Jt. Conf. Ambient Intell., pp. 65–80, 2012.

[10]	 D. Barrera, “Securing Decentralized Software Installation and Updates,”
2014.

[11]	 T. Vidas, N. Christin, and L. F. Cranor, “Curbing Android Permission
Creep,” IEEE Web 2.0 Secur. Priv. Work., 2011.

[12]	 L. Davi, A. Dmitrienko, A. R. Sadeghi, and M. Winandy, “Privilege
escalation attacks on android,” Lect. Notes Comput. Sci. (including
Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 6531
LNCS, pp. 346–360, 2011.

[13]	 W. Enck, D. Octeau, P. Mcdaniel, and S. Chaudhuri, “A Study of Android
Application Security.”

[14]	 A. Felt, K. Greenwood, and D. Wagner, “The effectiveness of application
permissions,” WebApps ’11 2nd USENIX Conf. Web Appl. Dev., pp.
75–86, 2011.

[15]	 A. Möller, F. Michahelles, S. Diewald, L. Roalter, and M. Kranz, “Update
Behavior in App Markets and Security Implications : A Case Study in
Google Play,” Proc. 3rd Int. Work. Res. Large. Held Conjunction with
Mob. HCI, pp. 3–6, 2012.

[16]	 O. Barad, a Shabtai, D. Mimran, L. Rokach, B. Shapira, and Y. Elovici,
“Detecting Application Update Attack on Mobile Devices through
Network Features,” pp. 2465–2466, 2013.

[17]	 E. Chin, A. P. Felt, V. Sekar, and D. Wagner, “Measuring user confidence
in smartphone security and privacy,” Proc. Eighth Symp. Usable Priv.
Secur. - SOUPS ’12, no. 1, p. 1, 2012.

[18]	 S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, and A. Sadeghi,
“XManDroid: A New Android Evolution to Mitigate Privilege Escalation
Attacks,” System, pp. 4–7, 2011.

[19]	 R. Xu, H. Saïdi, R. Anderson, and H. Saıdi, “Aurasium: Practical Policy
Enforcement for Android Applications,” Proc. 21st USENIX Conf. …, p.
27, 2012.

[20]	 M. Zhang and H. Yin, “AppSealer: Automatic Generation of Vulnerability-
Specific Patches for Preventing Component Hijacking Attacks in Android
Applications,” Symp. Netw. Distrib. Syst. Secur., no. February, pp. 23–26,
2014.

[21]	 Jacob West, “Software Security Goes Mobile,” AppSecAsiaPac2012,
2012.

[22]	 D. Barrera, P. C. Van Oorschot, and A. Somayaji, “A Methodology
for Empirical Analysis of Permission-Based Security Models and its
Application to Android,” Security, no. 1, pp. 73–84, 2010.

[23]	 W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel, and A.
N. Sheth, “TaintDroid: TaintDroid: An Information-Flow Tracking System
for Realtime Privacy Monitoring on Smartphones.,” Osdi ’10, vol. 49, pp.
1–6, 2010.

[24]	 J. Pascual-Espada et al., “Using extended web technologies to develop
Bluetooth multi-platform mobile applications for interact with smart
things”, Information Fusion, vol. 21, pp. 30-41, 2015

ER-RAJY Latifa received the B. S. in administration of
computer systems from faculty of Sciences, University
Mohamed V at Rabat in 2011. She obtained her master in
the field of networks and computer system from faculty of
sciences and techniques, University 1st Hassan at Settat in
2013. She is currently a Ph.D student in the University Cadi
Ayyad, Marrakech, Morocco. Her main field of research
interest is the security of android application.

Moulay Ahmed El Kiram is research professor at the
Faculty of Science Semlalia, Cadi Ayyad University of
Marrakech. He received his DES in Computer Science
in 1997 at Mohammed V University of Rabat. El Kiram
specializes in Security and network communication. His
areas of interest include Authentication, particularly in
multicast environment.

