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 

Abstract — Bayesian networks are regarded as one of the 

essential tools to analyze causal relationship between events from 

data. To learn the structure of highly-reliable Bayesian networks 

from data as quickly as possible is one of the important problems 

that several studies have been tried to achieve. In recent years, 

probability-based evolutionary algorithms have been proposed as 

a new efficient approach to learn Bayesian networks. In this 

paper, we target on one of the probability-based evolutionary 

algorithms called PBIL (Probability-Based Incremental 

Learning), and propose a new mutation operator. Through 

performance evaluation, we found that the proposed mutation 

operator has a good performance in learning Bayesian networks. 

 

Keywords — Bayesian Networks, PBIL, Evolutionary 

Algorithms 

I. INTRODUCTION 

AYESIAN network is a well-known probabilistic model 

that represents causal relationships among events, which 

has been applied to so many areas such as Bioinformatics, 

medical analyses, document classifications, information 

searches, decision support, etc. Recently, due to several useful 

tools to construct Bayesian networks, and also due to rapid 

growth of computer powers, Bayesian networks became 

regarded as one of the promising analytic tools that help 

detailed analyses of large data in variety of important study 

areas. 

To learn a near-optimal Bayesian network structure from a 

set of target data, efficient optimization algorithm is required 

that searches an exponentially large solution space for near-

optimal Bayesian network structure, as this problem was 

proved to be NP-hard [1]. To find better Bayesian network 

structures with less time, several efficient search algorithms 

have been proposed so far. Cooper et al., proposed a well-

known deterministic algorithm called K2 [2] that searches for 

near-optimal solutions by applying a constraint of the order of 

events. As for the general cases without the order constraint, 

although several approaches have been proposed so far, many 

of which uses genetic algorithms (GAs), which find good 

Bayesian network structures within a reasonable time 

 

 
 

[3][4][5]. However, because recently we are facing on large 

data, more efficient algorithms to find better Bayesian network 

models are expected. 

 To meet this requirement, recently, a new category of 

algorithms so called EDA (Estimation of Distribution 

Algorithm) has been reported to provide better performance in 

learning Bayesian Networks. EDA is a kind of genetic 

algorithms that evolves statistic distributions to produce 

individuals over generations. There are several types of EDA 

such as UMDA (Uni-variate Marginal Distribution Algorithm) 

[12], PBIL (Population-Based Incremental Learning) [7], 

MIMIC (Mutual Information Maximization for Input 

Clustering) [13], etc. According to the result of Kim et al. [11], 

PBIL-based algorithm would be the most suitable for learning 

Bayesian networks. 

The first PBIL-based algorithm for Bayesian networks was 

presented by Blanco et al. [9], which learns good Bayesian 

net- works within short time. However, because this algorithm 

does not include mutation, it easily falls into local minimum 

solution. To avoid converging at local minimum solutions, 

Handa et al. introduced a bitwise mutation into PBIL and 

showed that the mutation operator improved the quality of 

solutions in four-peaks problem, Fc4 function, and max-sat 

problem[10]. Although this operator was not applied to 

Bayesian networks, Kim et al. later proposed a new mutation 

operator transpose mutation specifically for Bayesian 

networks, and compares the performance of EDA-based 

Bayesian network learning with several mutation variations 

including bitwise mutation [11]. 

In this paper, we propose a new mutation operator called 

probability mutation for PBIL-based Bayesian Network 

learning. Through evaluation, we show that our new mutation 

operator is also efficient to find good Bayesian network 

structures. 

The rest of this paper is organized as follows: In Section 2, 

we give the basic definitions on Bayesian networks and also 

describe related work in this area of study. In Section 3, we 

propose a new mutation operator called probability mutation to 

achieve better learning performance of Bayesian networks. In 

Section 4, we describe the evaluation results, and finally we 

conclude this paper in Section 5. 
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II. LEARNING BAYESIAN NETWORKS 

A. Bayesian Network Models 

A Bayesian network model visualizes the causal relationship  

 

among events through graph representation. In a Bayesian 

network model, events are represented by nodes while causal 

relationships are represented by edges. See Figure 1 for 

example. Nodes 
1,X 2 ,X and

3X represent distinct events 

where they take 1 if the corresponding events occur, and take 0 

if the events do not occur. Edges
1 3X X and 

2 3X X  

represent causal relationships, which mean that the probability 

of 
3 1X   depends on events 

1X  and 
2.X  If edge 

1 3X X  exists, we call that 
1X  is a parent of 

3X and 
3X is a 

child of 
1.X  Because nodes 

1X  and 
2X  do not have their 

parents, they have own prior probabilities  1P X and  2 .P X  

On the other hand, because node 
3X  has two parents 

1X  and 

2 ,X  it has a conditional probability  3 1 2| , .P X X X In this 

example, the probability that 
3X  occurs is 0.950 under the 

assumption that both 
1X  and 

2X  occur. Note that, from this 

model, Bayesian inference is possible: if 
3X  is known, then 

the posterior probability of 
1X  and 

2X  can be determined, 

which enables us to infer events that causes the child event. 

The Bayesian networks can be learned from the data 

obtained through the observation of events. Let 

 ,1jO o j S    be a set of observations, where S is the 

number of observations. Let  1 2, ,...,j j j jNo x x x  be a j -th 

observation, which is a set of observed values jix  on event 
iX  

for all  1i i N  , where N  is the number of events. We try 

to learn a good Bayesian network model   from the given set 

of observations. Note that the model   should be able to 

explain the observation O , i.e., O  should be likely to be 

observed under  . As an evaluation criterion to measure the 

level of fitting between   and O , we use AIC (Akaike’s 

Information Criterion) [6], which is one of the best known 

criterion used in Bayesian networks. Formally, the problem of 

learning Bayesian networks that we consider in this paper is 

defined as follows: 

Problem 1: From the given set of observations O , compute 

a Bayesian network model   that has the lowest AIC criterion 

value. 

 

B. K2 Algorithm 

K2 [2] is one of the best-used traditional algorithms to learn 

Bayesian network models. Note that searching good Bayesian 

network models is generally time consuming because the 

problem to learn Bayesian networks is NP-hard [1]. K2 avoids 

the problem of running time by limiting the search space 

through the constraint of totally order of events. Namely, for a 

given order of events
1 2 ... ,NX X X   causal relationship 

X
k
® X

l
,  where k > l  is not allowed. Note that this 

constraint is suitable for some cases: if events have their time 

of occurrence, an event 
kX  that occurred later than 

lX  cannot 

be a cause of 
lX . Several practical scenes would be the case. 

The process of K2 algorithm applied to a set of events 

1 2, ,..., NX X X with the constraint 
1 2, ,..., NX X X  is described 

as follows: 

(1) Select the best structure using two events 
NX  and

1NX 
. Here, 

the two structures, i.e., 
1NX 

→ 
NX  and the independent case, 

can be the candidates, and the one with better criterion value is 

selected. 

(2) Add 
2NX 

to the structure. Namely, select the best structure 

from every possible cases where 
2NX 

 has edges connected to 

1NX 
 and .NX Namely, from the cases (i) 

2 1N NX X   and 

X
N-2
® X

N
,  (ii) 

2 1N NX X  only, (iii) 
2N NX X  only, 

and (iv) where 
2NX 

has no edge. 

(3) Repeat step (2) to add events to the structure in the order 

3 2 1,..., , .NX X X
 

(4) Output the final structure composed of all events.Although 

K2 requires low computational time due to the constraint 

 
Fig. 2.  A Probability Vector 

 

 
Fig. 1.  A Bayesian Network Model 
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of event order, many problems do not allow the constraint. 

In such cases, we require to tackle the NP-hard problem 

using a heuristic algorithm for approximate solutions. 

 

C. Related Work for Un-ordered Bayesian Network Models 

Even for the cases where the constraint of order is not 

allowed, several approaches to learn Bayesian network models 

has been proposed. One of the most basic method is to use K2 

with random order, where randomly generated orders are 

applied repeatedly to K2 to search for good Bayesian network 

models. 

As more sophisticated approaches, several ideas have been 

proposed so far. Hsu, et al. proposed a method to use K2 

algorithm to which the orders evolved by genetic algorithms 

are applied [3]. Barrière, et al. proposed an algorithm to 

evolve Bayesian network models based on a variation of 

genetic algorithms called co-evolving processes [4]. Tonda, et 

al. proposed another variation of genetic algorithms that 

applies a graph-based evolution process [5]. However, with 

these approaches, the performance seems to be limited, and a 

new paradigm of the algorithm that learn Bayesian networks 

more efficiently is strongly required. 

 

D. Population-Based Incremental Learning 

Recently, a category of the evolutionary algorithms called 

EDA (Estimation Distribution Algorithm) appears and 

reported to be efficient to learn Bayesian network models. As 

one of EDAs, PBIL [7] is proposed by Baluja et al. in 1994, 

which is based on genetic algorithm, but is designed to evolve 

a probability vector. Later, Blanco et al. applied PBIL to the 

Bayesian network learning, and showed that PBIL efficiently 

works in this problem [9]. 

In PBIL, an individual creature s is defined as a vector 

 1 2, ,..., Ls v v v  , where  1iv s L   is the i -th element 

that takes a value 0 or 1, and L  is the number of elements that 

consist of an individual. Let  1 2, ,..., LP p p p  be a 

probability vector where  1ip i L   represents the 

probability to be 1iv  . Then, the algorithm of PBIL is 

described as follows: 

 

(1) As initialization, we let 0.5ip   for all 1,2,...,i L . 

(2) Generate a set S  that consists of C  individuals according 

to .P  Namely, element 
iv  of each individual is 

determined according to the corresponding probability 

ip . 

(3) Compute the evaluation value for each individual .s S   

(4) Select a set of individuals S   whose members have 

evaluation values within top C  in S  , and update the 

probability vector according to the following formula: 

 p
i

new = ratio(i)´a+ p
i
´ (1.0-a)   (1) 

where new

ip  is the updated value of the new probability 

vector newP  ( P  is soon replaced with newP  ), ( )ratio i is 

the function that represents the ratio of individuals in S   

that include link i  (i.e., 1iv  ), and α is the parameter 

called learning ratio. 

(5) Repeat steps (2)-(4). 

By merging top- C  individuals, PBIL evolves the 

probability vector such that the good individuals are more 

likely to be generated. Different from other genetic 

algorithms, PBIL does not include “crossover” between 

individuals. Instead, it evolves the probability vector as a 

“parent” of the generated individuals. 

III. PBIL-BASED BAYESIAN NETWORK LEARNING 

In this section, we present a PBIL-based algorithm to learn 

Bayesian network models to which we apply a new mutation 

operator. Since our problem (i.e., Problem 1) to learn Bayesian 

networks is a little different from the general description of 

PBIL shown in the previous section, a little adjustment is 

required.  

In our algorithm, individual creatures correspond to each 

Bayesian network model. Namely, with the number of events 

,N  an individual model is represented as 

 11 12 1 21 22 1 2, ,..., , , ,..., , ,..., ,N N N NNs v v v v v v v v  where 
ijv  

corresponds to the edge from events 
iX  to jX , i.e., if 1ijv   

the edge from
iX  to jX  exists in s , and if 0ijv   it does not 

exist. Similarly, we have  the probability vector P  to 

generate individual models  as 

 11 12 1 21 22 1, ,..., , , ,..., ,N NP p p p p p p  2 ,...,N NNp p  where 

 
 

Fig. 3.  Step (2): Generating Individuals 
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ijp is the probability that the edge from 
iX  to 

jX  exists. A 

probability vector can be regarded as a table as illustrated in 

Fig. 2. Note that, because Bayesian networks do not allow self-

edges, 
ijp is always 0 if i j . 

The process of the proposed algorithm is basically obtained 

from the steps of PBIL. Namely, the basic steps are described 

as follows: 

(1) Initialize the probability vector P  as 0ijp   if i j  and 

0.5ijp  otherwise. 

(2) Generate S  as a set of C  individual models according to P . 

(This step is illustrated in Fig. 3.) 

(3) Compute values of the evaluation criterion for all individual 

models s S . 

(4) Select a set of individuals S whose members have top- C  

evaluation values in S , and update the probability vector 

according to the formula (1). (These steps (3) and (4) are 

illustrated in Fig. 4.) 

(5) Repeat steps (2)-(4). 

Same as PBIL, the proposed algorithm evolves the  

 

probability vector to be likely to generate better individual 

models. However, there is a point specific to Bayesian 

networks, that is, a Bayesian network model is not allowed to 

have cycles in it. To consider this point in our algorithm, step 

2 is detailed as follows: 

(2a) Create a random order of pairs ( , ),i j where 

1 ,i j N  and .i j  

(2b) Determine the values of ijv according to P , with the 

ordercreated in step (2a); every time 
ijv is determined, if 

ijv is determined as 1, we check whether this edge from 

iX  to 
jX  creates a cycle with all the edges determined to 

exist so far. If it creates a cycle, let 
ijv be 0. 

(2c) Repeat steps (2a) and (2b) until all pairs ( , )i j  in the order 

are processed.These steps enable us to treat the problem 

of learning good Bayesian network models within the 

framework of PBIL. Note that checking the cycle creation 

in step (2b) can be done efficiently using a simple table 

that manages the taboo edges that create cycles when they 

are added to the model. 

A. Mutation Operators 

Note that the algorithm introduced in the previous section 

does not include mutation operator. Thus, naturally, it is easy 

to converge to a local minimum solution. Actually, PBIL-

based algorithm to learn Bayesian networks proposed by 

 
Fig. 4.  Step (3)(4): Updating the Probability Vector 

 

 
Fig. 5.  Probability Mutation (PM) 

 

 

 
Fig. 6.  The Alarm Network 
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Blanco et al. [9] stops when the solution converges to a 

minimal solution, i.e., when score does not improve for recent 

k  generations. However, local minimum solutions prevent us 

to search for better solutions, thus it should be avoided. 

To avoid converging to the local minimum solution and to 

improve the performance of the algorithm, typically several 

mutation operations are inserted between steps (2) and (3). 

The most popular mutation operator is called bitwise mutation 

(BM) introduced by Handa [10], which apply mutations to 

each link in each individual, as described in the following step: 

BM: For each individual in S  generated in step (2), we flip 

each edge with probability 
mutp . Namely, for each pair of 

nodes i  and (1 , )j i j N  , 1ijv   if 0ijv  , and 0ijv   

otherwise, with probability
mutp . 

The other mutation operator we try in this paper is called 

transpose mutation (TM) introduced by [11]. This operation is 

proposed based on the observation that that reverse-edges 

frequently appear in the solutions. To avoid this, transpose 

mutation changes the direction of edges in the individuals 

produced in each generation. The specific operation inserted 

between steps (2) and (3) is in the following. 

 

TM: For each individual in S  generated in step (2), with 

probability
mutp , we do the following operation: we reverse all 

edges in the individual with probability
mutp , namely, 

ij jiv v  

for all i  and .j  

In contrast to these conventional mutations shown above, 

our new mutation operator called probability mutation (PM) 

does not manipulate individuals produced in each generations. 

Instead, we manipulate the probability vector P to generate 

better individuals in the next generation, which is inserted 

between steps (4) and (5). The specific operation of this 

mutation is shown and in the following (See also Fig. 5): 

PM: Apply mutations on the new probability vector P  : For 

all pairs of events ( , )i jX X , ,i j   we apply the following 

formula with probability ,mutp  where the function 

()rand generates a random value from range [0,1]. 

 
p

i

new = rand()´b+p
i
´ (1-b)  (2) 

IV. EVALUATION 

A. Methods 

In order to reveal the effectiveness of PBIL-based 

algorithms, we first evaluate the PBIL-based algorithm with 

probability mutation in comparison with K2 with its constraint 

(i.e., the order of events) evolved with genetic algorithms, 

which is a representative method among traditional approaches 

to learn Bayesian networks. In this conventional algorithm, we 

repeat creating Bayesian network models, in which its 

constraints (i.e., order of nodes) are continuously evolved with 

a typical genetic algorithm over generations, and output the 

best score among those computed ever. The results are 

described in Sec. IV-B. We next compare the performance of 

three mutation operators BM, TM, and PM applied to the 

PBIL-based algorithm. With this evaluation, we show that the 

new mutation operator PM proposed in this paper has good 

performance. The results are described in Sec. IV-C. In our 

experiment, we use Alarm Network [8] shown in Fig. 6, which 

is a Bayesian network model frequently used as a benchmark 

problem in this area of study. We create a set of 1000 

observations according to the structure and the conditional 

probability of Alarm Network, and then learn Bayesian 

network models from the observations using those two 

algorithms. As the evaluation criterion, we use AIC, one of the 

representative criterion in this area. Namely, we compare the 

AIC values in order to evaluate how good is the Bayesian 

 
Fig. 8.  AIC Scores under Variation of Learning Ratio 

 

 
Fig. 9.  AIC Scores under Variation of Mutation Probability 

 
Fig. 7.  Performance of the PBIL-based Algorithm 
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network models obtained by these two algorithms. As for 

parameters, we use 1000C  , 1C   ,α =0. 2 ,β =0. 5 , and 

0.002mutp  . 

 

B. Result 1: Performance of PBIL-based Algorithms 

The first result is shown in Fig. 7, which indicates the AIC 

score of the best Bayesian network model found with the 

growth of generations. In this figure, the AIC score of the 

original Alarm Network, which is the optimal score, is denoted 

by “BASE MODEL.” The proposed algorithm with 

probability mutation (represented as PBIL in the figure) 

converges to the optimal score as time passes, whereas K2-GA 

stops improving in the early stage. We can conclude that the 

performance of the PBIL-based algorithm is better than the 

conventional algorithm in that the PBIL-based algorithm 

computes better Bayesian network models according to time 

taken in execution. Note that the running time per generation 

in the proposed method is far shorter than K2-GA; the 

difference is more than 250 times in our implementation. 

Fig. 8 and 9 show the performance of the proposed 

algorithm with variation of learning ratio α and mutation 

probability 
mutp in 10,000 generations. These results show that 

the performance of the proposed method depends on α 

and
mutp , which indicates that we should care for these values 

to improve the performance of the proposed algorithm. Note 

that, from these results, we have the best-performance values 

α =0. 2  and 0.002mutp  , which are used as the default 

values in our experiment. 

C. Result 2: Comparison of Mutation Variations 

We further compared the performance of the PBIL-based 

algorithm with three mutations, bitwise mutation (BM), 

transpose mutation (TM), and probability mutation (PM). 

Facing on this experiment, we carefully choose the mutation 

probability of each method through preliminary experiments. 

For BM, we examined the performance of the mutation 

probability in range [0.001:0.2], and chose the value of the 

best performance, 0.005. For TM, we similarly tried the 

performance of the mutation probability in range [0.05:0.5], 

and chose 0.1 as the best value. For PM, from the result shown 

in Fig. 9, we chose the mutation probability 0.002, which is the 

same value as our first result shown in Fig. 7. 

The result is shown in Fig. 10. We see that BM and PM 

continue improving as generation passes, whereas TM stops 

improving at the early stage of generation. Also, we see that 

the curve of BM and PM are slightly different where BM reach 

better scores in the early stage while PM outperforms BM in 

the late stage. This result shows that the newly proposed 

mutation operator PM is also useful especially in long-term 

learning of Bayesian network models under PBIL-based 

algorithms. 

V. CONCLUSION 

In this paper, we introduced the literature of PBIL-based 

learning of Bayesian network models, and proposed a new 

mutation operator called probability mutation that manipulates 

probability vector of PBIL. Through evaluation of these 

algorithms, we found that (i) the PBIL-based algorithm 

outperforms K2-based traditional algorithms with the long-

term continuous improvement, and (ii) probability mutation 

works well under PBIL-based algorithms especially in long- 

term computation to obtain high-quality Bayesian network 

models. Designing more efficient search algorithms based on 

EDA is one of the most attractive future tasks. 
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