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Abstract

Exceptionally preserved stromatolites have been found in the shallow marine carbonate facies of the Callovian-Oxfordian La Manga For-
mation, in the Neuquén Basin (Argentina). The stromatolites exhibit planar and crinkle lamination, often disrupted by sheet-cracks, mud-
cracks, and fenestral structures, which indicate periodic subaerial exposure. These and other evidences suggest that these stromatolites grew 
in low energy upper intertidal to lower supratidal environments. They consist of fine micrite/microsparite crystal fabrics (with a remarkable 
lack of allochems) that define submillimiter alternations of dense laminae.  Extensive SEM examinations of polished samples of the stroma-
tolites reveal exceptional preservation of  rod-shaped bacteria, coccoid like microorganisms, and abundant aggregates of framboidal pyrite. 

The rod-like bacteria consists of a network of irregular distributed filaments, which range from 150 nm to an uncommon 640 nm in leng-
th; diameters range from 54 nm to 90 nm. Subspherical bodies range in size between 70 and 89 nm. The presence of abundant framboidal 
pyrites is interpreted as the result of the metabolic activity of sulfate–reducing bacteria and decay of organic matter.
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Resumen
Se describen estromatolitos excepcionalmente preservados en facies carbonáticas marinas someras en la Formación La Manga, de edad 

Calloviense-Oxfordiense, en la Cuenca de Neuquén (Argentina). Los estromatolitos muestran una laminación tanto planar como ondulada, 
frecuentemente alterada por estructuras de tipo fenestral, y sheet y mud-crack, que indican etapas de exposición subaérea. Estas y otras 
características sugieren que estos estromatolitos crecieron en ambientes de baja energía, intermareales altos y supramareales. Están consti-
tuidos por una fábrica de micrita-microesparita (con una destacada ausencia de aloquímicos) que constituyen alternancias submilimétricas 
de laminación densa. Estudios detallados con SEM sobre muestras pulidas revelan una preservación excepcional con morfología alargada, 
microorganismos tipo cocoide, y abundantes agregados de pirita framboidal.

Las bacterias con morfologías alargadas están constituyendo una red irregularmente distribuida de filamentos que oscilan en tamaño des-
de 150 nm hasta, excepcionalmente, 640 nm en longitud; el diámetro oscila entre 50 nm y 90 nm. Las morfologías subesféricas oscilan entre 
70 nm y 89 nm. La presencia de abundantes piritas framboidales es interpretada como resultado de una actividad metabólica de bacterias 
sulfato-reductoras y la descomposición de materia orgánica.
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Journal of Iberian Geology 41 (3) 2015: 351-363
http://dx.doi.org/10.5209/rev_JIGE.2015.v41.n3.51568

www.ucm.es /info/estratig/journal.htm
ISSN (print): 1698-6180. ISSN (online): 1886-7995

1. Introduction

A renovated interest in the study of stromatolites rose from 
the new interdisciplinary approaches of geobiology dealing 
with biomineralization and microbe-mineral interactions 

(e.g., Reid et al., 2000; Weiner and Dove, 2003; Franke and 
Bazylinski, 2003; Visscher and Stolz, 2005; Dupraz et al., 
2009; Spadafora et al., 2010). These frontier studies, which 
are based in modern settings including open marine, freshwa-
ter, alkaline lake, hypersaline, and hot spring environments, 
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should give some keys for interpreting the past since the ori-
gins of life in Earth. In fact, these microbial carbonates are 
widespread throughout the geological record (e.g., Riding, 
2000; Flügel, 2004), and have been easily recognized both in 
the field and in thin sections by generations of geologists be-
cause their distinctive morphology and defining lamination. 
However, these fossil stromatolites rarely preserve evidences 
of the microbial communities responsible of their formation 
and growth, an aspect which hampered their genetic interpre-
tation and, in particular, the characterization of the microbial 
activity. In this paper, we present a case study of ancient per-
itidal stromatolites showing exceptional preservation of the 
forming microbial communities, which should help in build-
ing bridges between the new findings in modern stromatolites 
and their fossil counterparts. These have been found in the 
peritidal carbonates of the Callovian-Oxfordian La Manga 
Formation, in the Neuquén Basin (Argentina), which cor-
respond to the shallowest facies of a wide carbonate ramp 
(Palma et al., 2007, 2009, 2010, 2013). The remarkable stro-
matolite preservation observed in different sedimentary sec-
tions allows for the recognition of macro and microfeatures, 
as well as the reconstruction of growth fabrics, laminae varia-
tions, the exceptional preservation of microbial communities 
including rod-like bacteria.  

2. Geological setting 

Located at the west margin of the South American plat-
form, the Neuquén Basin is   limited by a magmatic arc to the 
west and a tectonic foreland to the east (Fig. 1). The foreland 
consists of the Sierra Pintada belt to the northeast and the 
North Patagonian massif to the south. It is a typical retro-arc 
basin developed to the east of the Cordillera Principal be-
tween 36ºS and 39ºS. Mitchum and Uliana (1985), Legarreta 
and Gulisano (1989), and Vergani et al. (1995) provide exten-
sive information on the geologic setting of the region. 

The carbonate platform of the La Manga Fm. constitutes 
most of the sedimentary record of the Callovian-Oxfordian 
in the Neuquén Basin. It represents the middle part of the Lo-
tena Mesosequence, which mainly consists of carbonates with 
interbedded shales, marls, and occasional sandstones (Fig. 2). 

Based on detailed stratigraphic work in the stratotype sec-
tion (La Manga Creek, Mendoza), the depositional environ-
ment of La Manga Fm led to identification of two informal 
units. Unit 1 was deposited in an outer ramp setting, while 
deposition of unit 2 took place in intertidal-supratidal envi-
ronments. 

The sharp contact between the outer ramp facies of unit 1 
and the overlying intertidal-supratidal facies of unit 2 can be 

Fig. 1.- a) Location map of the Neuquén basin with indication of the studied localities (1. Yeseras Grandes; 2. Arroyo La Manga; 3. Arroyo Los 
Blancos), b) Simplified lithological columns showing the section corresponding to the peritidal facies that contain the stromatolite levels in the 
La Manga Fm.  
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interpreted as the result of an abrupt fall (forced regression) 
of the relative sea level during the end of Middle Oxfordian 
or Upper Oxfordian.

 Detailed sedimentological and biostratigraphic studies 
(Palma et al., 2007, 2009, 2010, 2012, 2013) allow to in-
terpret facies and sedimentary environments not previously 
described for this unit. In the present study, the stromatolites 
were sampled from the upper part of the sequence, in the so-
called Unit 2 by Palma et al. (2010). They are best exposed 
and best preserved at the Arroyo Los Blancos, La Manga and 
Yeseras Grandes sections (Fig. 1a-b), where the Unit 2 has  
23m, 12m, and 12m in thickness respectively.

The age of the La Manga Fm. in the studied localities has 
been determined on the basis of ammonites and coccolitho-
phorids. The former include Mirosphinctes sp. that could 
appear in the Middle Oxfordian as well as in the Upper Ox-
fordian (Palma et al., 2012). The presence of the coccolitho-
phorid Cyclagelosphaera sp. indicates a Middle Oxfordian 
age (Concheyro, pers. comm.).

3. Methods  

Standard thin sections of the stromatolites for conventional 
microscopic analysis were taken from the indicated sections. 
In order to recognize the mineralogy, X-ray diffraction pat-
terns were carried out on a Philips 3020 goniometer (Ni-fil-
tered CuKα, 35 Kv, 40 Ma, without secondary monochroma-
tor). Focusing on carbonates mineral phases present in the 
samples, non-oriented step-scan data were taken from 20 to 
70° 2θ, with a step width of 0.04° and a counting time of 2s/
step. 

Carbonates mineral and other crystalline phases identified 
on the powder diffraction patterns were analyzed with the 
FULLPROF program, which is a multipurpose profile-fitting 

program including Rietveld refinement (Rodríguez Carava-
jal, 2001). The Rietveld method (Rietveld, 1969) was used for 
quantitative determination of the mineral phases present in 
the samples. The starting crystallographic data used for each 
mineral were extracted from the literature. 

Scanning electron microscope (SEM) investigations were 
performed on fresh broken surfaces and on polished car-
bon coated thin sections, using a Zeiss (Supra 40) scanning 
electronic microscope with an Oxford Instruments EDS en-
ergy dispersive spectroscopy detector (INCA) for elemental 
analysis. These instruments are housed at the Centro de Mi-
croscopía Electrónica in the Facultad de Ciencias Exactas y 
Naturales, Universidad de Buenos Aires, Argentina. 

4. Oxfordian microbial laminites  

4.1. Macro and mesostructure   

For examining the stromatolitic microbial fabric at differ-
ent scales (macro-meso- and microstructural) we followed 
Shapiro (2000). The stromatolitic beds are 2 to 80 cm thick 
and have been recognized in all the studied sections, how-
ever, they are particularly abundant in Los Blancos section. 
The typical macrostructure is tabular, while the mesostruc-
ture ranges from planar to crinkle laminated (Fig. 3a-c). It is 
important to have in mind that remarkable domal forms are 
absent and that no preferred orientation of the stromatolites 
were observed.

Two main facies have been defined in the stromatolites: 
light grey microbial stromatolite with generally planar 
lamination, and crinkle laminated stromatolite beds (Fig. 
3a-c). The stromatolites are closely related to mudstone and 
wackestones facies, as well as to flat-pebbles conglomer-
ates and intraclastic breccias (Palma et al., 2012, 2013). 

Fig. 2.- Jurassic lithostratigraphy of the Neuquén Basin in the Atuel depocenter, south of the Mendoza province (modified from 
Giambigi et al., 2008).
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In both types of stromatolite facies, laminae appear to have 
been partially turn-up, while still in a soft nonlithified state. 
Similar characteristics were observed on modern cyanobac-
terial flats in the intertidal to supatidal zone (Friedman et 
al., 1985). 

Planar types (Fig. 3a-b): They are well represented in all 
the studied sections. They occur as 2 to 80 cm thick beds 
separated by 8 to 15 cm thick mudstone-wackestones or flat-
pebble conglomerates. On top of the stromatolites, bedding 
planes with some irregular crinkled relieve are present, as 
well as some bioturbation assigned to Scolicia isp? and fre-
quent fenestrae and desiccation cracks (Fig. 3b). 

Crinkle type (Fig. 3c): This type of stromatolite is also 
well represented in all sedimentary sections. They occur as 
approximately 7 to 12 cm thick beds. Mud-cracks, sheet-
cracks, fenestrae and tepee structures are common (Fig. 
3c). Tepees are characterized by small antiform deformation 
structures and reach 5 to 10 cm in thickness. They are asso-
ciated with planar stromatolites, flat-pebble conglomerates 
and/or intraclastic breccia associated facies.

Flat-pebble conglomerates are the most common associ-
ated facies. It consists of rip-up clasts derived from underly-
ing planar to crinkle stromatolite beds. Textures range from 
clast- to matrix-supported, and its thickness varies between 
4 and 30 cm. They are commonly associated with desicca-
tion mud-cracks and tepees. Subangular to angular planar 
stromatolite intraclasts associated facies appear parallel, dis-
continuous or continuous to bedding. Nevertheless, in many 
cases, these intraclasts are randomly distributed or may have 
a slight imbrication. 

4.2. Microstructure

The internal architecture of the stromatolites is rather sim-
ple. In terms of lamination patterns the stromatolites are clas-
sified into two groups: stromatolites with dominant planar 
lamination (“planar laminites”) (Fig. 3b), and stromatolites 
with crinkle lamination (“crinkle laminites”) (Fig. 3d). 

Planar laminites (Fig. 3b) are composed of sheets of con-
tinuous laminae characterized by the alternation of dark 
submillimeter to up to 2 mm in thickness micritic laminae, 
with intercalated millimeter microsparitic laminae ranging 
in thickness between 3 to 13 mm. Micrite appears as clot-
ted or peloidal or as homogenous micrite. Occasionally, 
the laminae built up into millimeter convex-up dome (up to 
15 mm high) growing on the planar or wavy surface (Fig. 
3e). Changes in thickness from lamina to lamina are evident; 
nevertheless, no specific trend in internal architecture of the 
stromatolites was distinguished. EDS and X-ray data showed 
that the microbial laminae are constituted of low-Mg calcite 
crystals ranging in sizes from 5 to 30 μm (Figs. 4, 5, 6a-b). 
Changes in the laminae composition are not evident, except 
for the stromatolites from the Yeseras Grandes where thin 
gypsum laminae were observed. Subhorizontal to cylindri-
cal fenestrae, horizontal sheet-cracks (Fig. 3b) as well as 

polygonal cracks were observed. Fenestral voids are filled 
with small crystals of granular calcite. Small gastropods and 
coccolithophorids have been found among the laminae. Ad-
ditionally, a relatively small proportion of quartz and feld-
spar grains has been observed.

Crinkle laminites (Fig. 3c) are composed of sheets of con-
tinuous to discontinuous small crinkles (Fig. 3d) pronounced 
by the alternation of dark submillimeter to millimeter mic-
rite laminae up to 2 mm in thickness, with millimetric mi-
crosparitic laminae between 3 to 33 mm in thickness. These 
laminae have a heterogeneous fabric composed of cloudy 
microsparitic calcite crystals and irregular masses of homog-
enous micrite. Although at macroscopic scale the laminae 
exhibit an apparent lateral continuity, when observed under 
the microscope it becomes clear that the laminae are discon-
tinuous showing frequent disruption of the lamina couplets 
(Fig. 3d). A complex internal microfabric has been observed, 
where evidence of erosion and irregularly distributed micrit-
ic rip-up intraclasts appear (Fig. 3f). Desiccation features of 
the crinkle laminate facies included micro-tepees, fenestrae, 
mud-cracks, and sheet-cracks. Tepees are very small, 10 to 20 
cm in size. They appear commonly associated with a suite of 
features related to subaerial exposure. 

4.3. SEM and xRD analysis 

Extensive SEM examinations of polished and etched stro-
matolite samples were carried out. SEM observations revealed 
the presence of sub-μm scale filaments and nanoglobules in 
the studied samples. The size and shape of the microfossils 
are determined by bacterial morphology, which includes rod-
like bacteria, and isolated subspherical structures. Rod-shape 
bacterium is sometimes called bacillus meanwhile the spheri-
cal to subspherical shapes are called coccoids.

The rod-like bacteria and shaped-like filaments consist of 
a dense meshwork of small irregular distributed filaments, 
which range from 150 nm and 640 nm in length.  (Fig.5a-b) 
whereas diameters ranging from 54 nm and 105 nm show 
much smaller variability flattened ends and smooths sur-
faces. Although many rods occur isolated, sometime others 
show and incipient branching. Filaments appear straight or 
smoothly curved. In figure 5e, these filaments would seem to 
wrap micritic crystals. The result of the EDS analysis reveals 
that the mineralogical composition of the rod-like bacteria is 
mostly calcite as well as for the matrix (Fig. 5c-d). 

Subspherical bodies (coccoid forms) range in size between 
70 and 89 nm approximately (Fig.5f). These structures could 
represent the relicts of nanobacterial cells. The Oxfordian na-
nobacteria reported in this paper are comparable in size with 
published examples of nanobacteria bodies mentioned by 
Schrieber and Arnott (2003). 

Scanning electron microscopy reveals that the stromato-
lites are micritic characterized by abundant subhedral crys-
tals and measure from 2 and 4 µm in size. However, the dis-
tribution of crystal grain sizes is heterogeneous and locally 
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microspar crystals (>4 mm) with dominant anhedral or sub-
hedral crystals are also common. Among network rod-shaped 
nanobacteria is very common the presence of framboidal py-
rite. Based on SEM observations of the micro-textures, dis-
seminated spheroidal to sub-spheroidal aggregates, 4µm in 
diameter composed of individual euhedral crystallites of size 
less than 0.5 micron have been identified (Fig. 6c-e). EDS 
spectrum analyzes of these bodies are showing in figure 6d-f. 

Their presence seems to be a quite common feature in mod-
ern and ancient microbialites (Ezaki et al. 2008; Spadafora 
et al., 2010). 

4.4. Mineralogy

Four microbialite samples were selected and prepared for 
X-ray diffraction (XRD) analysis (Fig. 4). In each one, three 

Fig. 3.- a) Field view of planar stromatolite; b) Thin section of planar stromatolite showing  planar laminae composed of alternating microspar 
laminae and thin micrite laminae. Note fenestra vug and sheet-cracks; c) Field view of crinkle stromatolite. Note micro-tepee and mud-
cracks; d) Crinkle and discontinuous laminae composed of microsparitic and thin micrite laminae. Crinkle laminate showing irregular and 
interrupted lamination; e) Planar stromatolite composed of continuous microsparitic laminae and discontinuos thin micrite laminae. Note 
the presence of local increases in lamination convexity. Small dome are covered by upward flattering laminae; f) Crinkle laminae composed 
of alternating microsparitic laminae and thin micrite laminae. Note peloidal to dense micrite and small rip-up clasts.
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5. Discussion 

Stromatolites are the result of a combination of processes 
that can include sediment trapping, binding, microbial cal-
cification and carbonate precipitation induced by cyanobac-
teria and also associated bacteria (Riding, 2000). Microbial 
processes, such as photosynthesis, cyanobacterial calcifica-
tion, and decomposition of organic matter, directly or indi-
rectly influenced and controlled the carbonate precipitation 
by repeatedly accretive growth of microbial communities 
(Flügel, 2004; Kazmierczak et al., 2004).

In La Manga Formation, planar to crinkle stromatolites 
with continuous to discontinuous laminae are regarded as 
stromatolites in which microbial influences were dominant. 
Stromatolitic laminae, either planar or crinkle, show micro-
scopic features such as micritic laminae, clotted to peloidal 
micrite and fenestrae which are similar to examples de-

to four sets of laminae were recognized, but a no substan-
tial mineralogical variation between successive stromatolite 
laminae has been determined.

X-ray diffraction analysis shows calcite as the predomi-
nant carbonate phase (up to 98.11%). All samples contain 
detrital quartz and feldspar grains with percentages being 
low as < 1% to 5% and <1% to 4.91% respectively. Detrital 
grains probably occur between or among stromatolitic lami-
nae. Two samples show low percentages of siderite (<1%). 
The origin of siderite may be considered authigenic. In fact, 
it may be originated in a variety of sedimentary environ-
ments (Huggett et al., 2000), but its formation in very shal-
low intertidal settings is related to large amounts of decay-
ing organic matter and high bacterial activity, like sulphate 
reduction (Pye, 1984). XRD analysis demonstrates that all 
types of stromatolitic laminae have the same mineralogical 
composition (Table 1).

Fig. 4.- a,b,c,d) Results from X-ray diffraction analysis taken from stromatolite laminae.

Sample
A-1 A-2 A-3 B-1 B-2 B-3 B-4 C-1 C-2 C-3 C-4 D-1 D-2 D-3

Calcite 98.54
0.38

98.39
0.54

98.21
0.48

93.98
0.35

97.41
0.33

97.45
0.35

94.21
0.34

94.99
0.34

96.89
0.48

93.83
0.71

94.62
0.32

95.92
0.36

98.82
0.35

98.91
0.41

Siderite < 1 < 1 < 1 < 1 < 1 < 1

Quartz < 1 < 1 < 1 2.37
0.03

1.22
0.03

1.37
0.03 < 1 3.32

0.06
1.92
0.04

2.70
0.05

5.38
0.04

2.32
0.03

1.18
0.03

1.09
0.03

Feldspar < 1 < 1 1.13
0.06

3.64
0.07

1.38
0.05

1.17
0.05

4.91
0.11

1.33
0.14 < 1 3.19

0.18
1.76
0.08

The modal proportions, with standard errors, are quoted in wt%. 
Table 1.- Results from X-ray diffraction analysis. Quantitative mineral-phase-analysis of study samples, based in the Rietvetd method.
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scribed from Proterozoic and Early Phanerozoic nearshore 
settings (e.g., Pratt and James, 1982; Batten et al., 2004) to 
Recent in age (Friedman et al., 1985; Riding, 2000).

The lacking of significant changes in the thickness of 
laminae suggests that the influence of wave action or tidal 
currents regime was probably minimal, with the sediment 
input as limiting factor. The presence of convex-up laminae 
growing on planar or wavy laminae could be related to the 
sediment cohesion; nonetheless this kind of growth could be 
suggestive of changes in the style of calcification (Reid et 
al., 2000). Furthermore the frequent microspar laminae are 
related to recrystallized original micritic laminae. 

Only at the Yeseras Grandes locality (Fig. 1a) stromato-
lites show alternations of submillimeter- to millimeter-thick 
beds of gypsum and calcite. This could be indicating more 
restricted conditions and active evaporation as well as differ-
ent chemical conditions of the water caused by salinity fluc-
tuations in the upper intertidal to supratidal setting. Similar 
facies have been previously described in modern microbial 
mats in the coastal sabkha at Abu Dhabi, United Arab Emir-
ates (Handford et al., 1982).

Planar and crinkle laminations are often vertical- and hori-
zontally disrupted by subaereal exposition processes (sheet-
cracks, mud-cracks, and fenestral pores). The crinkle irregu-

Fig. 5.- a,b) Scanning electron micrograph of dense meshwork of  straight to slightly rod-like bacteria; c) Close view of rod-like bacteria. Note 
their smooth surface; d) EDS spectrum on filaments in figure 5c. Area in box was scanned for elements; f) Close view of small filaments be-
tween micrite crystals; f) Spheroidal bodies surrounded by micrite crystals and interpreted as nanobacteria.
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with sparry calcite, which is attributed to early diagenesis 
(Flügel, 2004).

According to Riding (2000), the clotted to peloidal mi-
crofabrics in stromatolite beds are typical of microbial 
carbonates in which sulphate reducing bacteria degrade or-
ganic matter within the microbial mats, promoting calcifica-
tion (Riding and Tomás, 2006). These processes may have 
built stromatolites since the Early Archean (Hofmann, 2000; 
Schopf, 2006).

lar surfaces on top of the stromatolites beds were interpreted 
as redeposited fragments of desiccated mats (e.g. Schieber, 
1998). 

The origin of fenestrae is attributed to dessication and 
shrinkage as well as to gas bubbles, which were produced 
by the degradation of organic matter. The abundance of 
fenestral structures suggests a shallow water realm rang-
ing from intertidal to supratidal depositional facies (e.g. 
Beukes, 1987; Altermann, 2008). The cavities are filled 

Fig. 6.- a) Representative scanning electron photomicrograph of micrite crystals. Note the presence of rod-like bacteria; b) EDS spectrum analysis 
of micrite crystals in figure 6a; c) Scanning electron photomicrograph of a typical framboidal pyrite found with rod-like bacteria; d) EDS spec-
trum of framboid. Area in box was scanned for elements; e) Pyrite framboid cluster showing spheroidal assemblage of submicron-size crystals 
of pyrite; f) EDS spectrum of submicron-size crystals of pyrite area in box (Fig. 6e) was scanned for elements.
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Peloids, frequent within the stromatolitic laminae, are ir-
regularly spherical. Chafetz (1986) and Riding (2002) pro-
posed that peloids could be attributed to calcified bacteria. It 
has been reported that CaCO3 precipitation takes place as a 
result of degradation of organic matter by heterotrophic bac-
teria, which plays a significant role in the lithification process 
of microbial mats (Riding and Tomás, 2006). 

Studies made on modern microbial mats suggest that the 
formation of peloidal carbonate precipitates is associated 
with bacterial metabolic activities (Dupraz et al., 2004). 
Nonetheless, the peloidal microfabrics can be formed in situ 
during very early diagenesis, closely linked with the degra-
dation and calcification of organic matter (EPS) driven by 
heterotrophic bacteria, mainly sulfate-reducing bacteria (Rid-
ing and Tomás, 2006; Dupraz et al., 2009).  Actually, from 
a sedimentological point of view, cyanobacteria are particu-
larly important because of their ability to precipitate minerals 
and also for trapping and binding existing sediments. On the 
other hand, cyanobacteria can also be regarded as almost ex-
clusively responsible for the micritization of carbonate grains 
in shallow tropical seas (Golubic et al., 2000). Actually, mic-
ritization of allochems particles is a common feature in the La 
Manga Formation.

The origin of the flat-pebble conglomerates (FPB) facies is 
related to rework from lithified or partially lithified microbial 
mats and re-deposition by storms during the marine flooding 
on top of the microbial laminated facies. In fact, the high pro-
fusion of FPC levels is a direct expression of the frequency of 
storm events (Palma et al., 2013). 

Although storm activity probably fluctuated significantly 
(eventually becoming enhanced), the microbial communities 
recovered soon after the storm had ceased. In fact, planar to 
crinkle stromatolites evidence the trapping by microbial mats 
of fine scarce grained sediments settled down from the water 
after a storm in upper intertidal to lower supratidal environ-
ments. The uncommon detrital materials suggest that stroma-
tolites may have formed mostly by in situ precipitation of car-
bonate rather than by trapping and bidding the sediments (cf. 
Riding, 1999). Studies in recent stromatolites show that planar 
to crinkle microbial mats grow frequently above mean low 
water level or tidal flats that are periodically flooded and ex-
posed (Reid et al., 2011).The presence of abundant ammonites 
such as Mirosphynctes sp., regular echinoids and reworked in-
traclasts on the top of stromatolite beds is straight evidence of 
storm action (Palma et al., 2012, 2013) as well as the presence 
of coccolithophorids within the microbial laminae. 

The remarkable preservation of nanobacteria in the stro-
matolites from the peritidal deposits from the La Manga 
Fm. suggests that diagenesis did not destroy any rod-like 
bacteria, so that they probably maintained their primary 
carbonate mineralogy. This is extremely surprising because 
stromatolites from peritidal settings are usually very prone 
to dolomitization (Mancini and Parcell, 2001). In the case 
herein presented, rod-like bacteria were not affected by 
dolomitization.

Studies carried out by Visscher et al. (2005) show that 
modern stromatolites from the Bahamas Islands are the re-
sult of different microbial communities. Although cyanobac-
teria are always associated to stromatolites, they are not the 
only microbes. Recent studies in stromatolites from Shark 
Bay, Australia, show that diversity is represented mainly by 
bacteria and archeas (Burns et al., 2004). The co-existence 
of rod-like bacteria and nanobacteria has been recognized in 
modern stromatolites from Exuma Island, Bahamas by Reid 
et al. (2011). 

Astonishingly, putative nanobacteria observed in the stro-
matolites from the La Manga Fm. exhibit rod-like or filamen-
tous morphology contrasting with the usually described sphe-
roidal morphology of nanobacteria (e.g. Folk, 1993; Folk and 
Chafetz, 2000). Nanometer-scale objects (20-200 nm wide) 
were described as “nanobacteria” by Folk (1993). These are 
basically objects found in sedimentary rocks that have typi-
cal morphology of bacteria by much smaller size, usually an 
order of magnitude below typical bacteria, as suggested by 
Schieber and Arnott (2003). The existence of nanobacteria 
has been challenged by the geological and microbiological 
communities because it has been difficult to extract genetic 
material due to their microscopic size. Nevertheless, Berner 
(1998) suggested that “if microorganisms use a catalytic bi-
opolymer instead of a genetic biopolymer in the construction 
of cell walls, it may be possible to obtain smaller structures”.

Modern bacteria (1-2 µm) display morphologies ranging 
from spherical (coccoid), rod-shaped (bacillus), curved (vi-
briod), to spiral (spirochete or spirilli). Those of certain bio-
genicity have filamentous or rod-shaped morphology have 
been described from the Early Archean (Brock and Madigan, 
1991). Extremes include nanobacteria which can be as small 
as 0.1-0.2 µm (Brock and Madigan, 1991). Of all the above 
mentioned morphologies, the rod- and worm-like calcified 
bacterial cells are those which may best serve to identify 
bacterially induced carbonate precipitation (Castanier et al., 
1999; Warren et al., 2001). 

The mineralogical and environmental implications of bac-
terially induced carbonate precipitation have been mentioned 
by several authors such as Folk (1993), Vasconcelos et al. 
(1995), Riding (2000), and Braissant et al. (2003, and refer-
ences therein). Nanobacteria take place in different environ-
ments ranging from rocks to present-day sediments and liv-
ing organisms, where they play a key role in precipitation in 
bacteria (e.g. Bontognali et al., 2008). In addition, nanoform 
microorganisms have been observed in modern natural envi-
ronments as well as in laboratory culture experiments (van 
Lith et al., 2013). They have been considered as extremely 
small bacteria by Pacton and Gorin (2011).

Kazmierczak et al. (1996, 2004) and Dupraz et al. (2004) 
studied fossil and modern cyanobacterial mats finding similar 
coccoid shapes which they were interpreted as result of the 
selective degradation and mineralization of an organic EPS 
matrix. Riding (2000) suggested that in spite of bacterial type 
(autotrophic or heterotrophic; marine or non-marine), most 
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morphologies of carbonates formed in the presence of bacte-
ria are distinctive and could offer insights into this biominer-
alization process.

Experiments carried out by Schieber and Arnott (2003) 
showed spheroidal objects analogous to the nanobacteria size 
range (minor 50 nm). These structures could be considered as 
product of decay and mineralization of organic tissues (e.g. 
Kirkland et al., 1999; Schieber and Arnott, 2003; Perri and 
Tucker, 2007). A biological origin is proposed for spherulitic 
structures for the Mesoproterozoic Gaoyuzhuang Fm., China 
(1.4–1.5 Ga) (Lee and Golubic, 1999).

There are many reports on the presence of nanometer-scale 
spheroids, 30-150 nm wide, which appear associated with or-
ganic debris in samples from the Holocene Tunisian micro-
bial mat, and the Miocene Monterey Formation (California, 
USA) (in Pacton et al., 2010). Likewise Fratesi et al. (2004) 
recognized aggregations of bacteria together with micro-
spheres (nanobacteria) in samples associated with biofilms 
from the Carter Sandstone of Alabama USA. 

Schopf et al. (1965) have mentioned the presence of well-
preserved rod-shaped and coccoid bacteria in the cherts of the 
Precambrian Gunflint Iron Formation (1.9 x 109 years old) 
and consider that these organisms are morphologically com-
parable to certain modern iron bacteria. In fact, new research 
carried out by Sánchez-Román et al. (2014) demonstrated the 
presence of rod-shaped bacteria embedded in the surface of 
siderite nanocrystals in samples from Rio Tinto (Spain). They 
suggest that precipitation of carbonates could be related to 
the microbial reduction of ferric iron coupled with the oxida-
tion of organic compounds.

In order to explore their potential role in degradation and 
preservation of organic matter (OM) in rocks, Pacton et al. 
(2010) have investigated the presence of microbial recent 
activity and in the fossil record showing nanometer-scale 
spheroids with extracellular polymeric substances (EPS) and 
bacterial cell walls.

Numerous articles have addressed to the problem of the 
microbial diversity and their mineralogy and the role of 
some microorganisms on mineral precipitation (Reid et al., 
2000; López García et al., 2005). In our case, we suggest 
that intertidal to supratidal settings could have been super-
saturated with carbonates minerals so that accretion, lamina-
tion and lithification of stromatolites occurred, similarly to 
the process occurring in modern stromatolites (Reid et al., 
2000). Peritidal environments from the La Manga Formation 
were affected by regular seawater inundation and subaerial 
exposure (including episodic dessication) and episodic storm 
influences (Palma et al., 2013).

Microbes, including cyanobacteria, fungi, microalgae and 
others have a significant influence on stromatolite formation 
(Nealson, 1997; Riding, 2000; Riding and Awramik, 2000) 
which together contribute to the biostabilization of the sedi-
mentary peritidal areas. Although photosynthesis facilitates 
the precipitation of calcium carbonates such as aragonite 
(Dupraz and Visscher, 2005; Kremer et al., 2008), decom-

position of cyanobacterial extracelular organic matter by mi-
croheterotrophs could also participate in the precipitation of 
calcium carbonate (Paerl et al., 2001). It is noteworthy that 
during SEM observations of the analyzed samples of the La 
Manga Fm., the presence of cyanobacteria was not observed, 
which could probably be related to decaying colonies by bac-
terial activity and physicochemical degradation as suggested 
Dupraz and Visscher (2005) and Braissant et al. (2007). 

The occurrence of framboidal pyrites is often related to the 
metabolic activity of sulfate-reducing bacteria and the decay 
of organic matter. In fact, some authors consider the presence 
of framboidal pyrite as an indicator of the involvement of 
sulfate-reducing bacteria in the precipitation of the microbi-
alites (Westphal et al., 2010). The formation of pyrite fram-
boids in sediments requires an anaerobic environment, either 
within the sediment or inside a local microenvironment. It is 
worth mentioning that sulfate reduction occurs in Bahamian 
stromatolites in an anoxic layer several millimeters below the 
photosynthetic zone (Visscher et al., 1998). Isolated fram-
boidal aggregates of pyrite also indicate microbial activity 
meanwhile framboidal shape is also considered a morpho-
logical biomarker (Popa et al., 2004). Likewise, Raiswell et 
al. (1993) and Taylor and Macquarker (2000) suggested that 
framboidal pyrites formed during early diagenesis from iron-
rich porewaters at sites of sulfide presence (i.e., near organic 
matter, due to bacterial sulfate reduction). 

6. Conclusions

Oxfordian stromatolites from the La Manga Fm have pla-
nar and crinkle forms with internally similar textures. The 
laminations are interpreted as the periodical response of the 
microbial community to the microbial growth and its sur-
rounded environment. Extensive SEM examinations show a 
network of rod-shaped nanobacteria and small subspherical 
aggregates that strongly resemble coccoid bacteria. Because 
of their abundance, they probably play a critical role in the 
precipitation of carbonate minerals. The Oxfordian stro-
matolites from the La Manga Formation can be consider as 
biologically induced formations, where chemical variations 
(pH, alkalinity) and metabolic activity induced by microbes 
or sulphate-reducing bacteria could have increased the alka-
linity and stimulate carbonate precipitation.  
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