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Abstract

This paper deals with small area estimation of poverty indicators. Small area estimators of

these quantities are derived from partitioned time-dependent area-level linear mixed models. The

introduced models are useful for modelling the different behaviour of the target variable by sex or

any other dichotomic characteristic. The mean squared errors are estimated by explicit formulas.

An application to data from the Spanish Living Conditions Survey is given.

MSC: 62D05, 62J05.

Keywords: Area-level models, small area estimation, time correlation, poverty indicators.

1. Introduction

In most European countries, the estimation of poverty is done by using the Living

Conditions Survey (LCS) data. The Spanish LCS (SLCS) uses a stratified two-stage

design within each Autonomous Community. As most provinces have a very small

sample size, the direct estimates at that level have a low accuracy. The problem is thus

that domain sample sizes are too small to carry out direct estimations. This situation

may be treated by using small area estimation techniques. Small Area Estimation (SAE)

is a part of the statistical science that combines survey sampling and finite population

inference with statistical models. See a description of this theory in the monograph of

Rao (2003), or in the reviews of Ghosh and Rao (1994), Rao (1999), Pfeffermann (2002,

2012) and more recently Jiang and Lahiri (2006).
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This paper deals with the estimation of poverty indicators by using area-level models.

For this sake, Esteban et al. (2012a,b) proposed several area-level time models. They

argue that employing data from past periods produce a significant improvement of the

estimation process. Marhuenda et al. (2013) introduced some more complex area-level

linear mixed models that take into account for temporal and spatial correlation. The first

two papers gave empirical best linear unbiased prediction (EBLUP) estimates of poverty

estimators for Spanish provinces crossed by sex. The third one did not give estimates

by sex. Many socio-economic indicators, such as those related with poverty and labour,

behave differently in the subpopulations of men and women. This is why, we adapt

some of the temporal models appearing in Esteban et al. (20121,b) and Marhuenda et

al. (2013) to this situation.

In this paper we use four time-dependent area-level linear mixed models to obtain

small area estimates of poverty indicators. Two of them are specified with a partition

of the population in two groups. This fact allows modelling, for example, a different

behaviour of the target variable by sex, as it was done by Herrador et al. (2011). This

is an important modelling tool as many socioeconomic indicators behave differently for

men and women. Following Esteban et al. (2012b), the first partitioned model assumes

that time dependency is explained by the auxiliary variables and the second one contains

a correlation parameter in the distribution of the random intercept. The estimates of

the model parameters are obtained by using the residual maximum likelihood (REML)

estimation method. These estimates are then used to construct empirical best linear

unbiased predictors of poverty indicators by sex of the Spanish provinces. Estimation of

the mean squared error (MSE) of model-based estimators is an important issue that has

no easy solution. In this paper we follow Prasad and Rao (1990) and Das, Jiang and Rao

(2004) to introduce an approximation of the MSE and the corresponding MSE estimator.

The rest of the paper is organized as follows. Section 2 introduces the considered

area-level time models and the corresponding model-based estimators of poverty indi-

cators. Section 3 describes the estimation problem of interest and presents an application

to data from the SLCS. The target is to estimate poverty indicators by sex in the Spanish

provinces. Finally, Section 4 gives a discussion on the findings of this paper.

2. The area-level partitioned time models

2.1. The models

Let us consider a population partitioned in D domains. Assume that domains are classi-

fied in two groups of sizes DA and DB (DA+DB =D) that behave differently with respect

to some socioeconomic characteristic. For example, let us consider a country divided in

provinces. Assume that a statistical agency is interested in estimating some poverty in-

dicators of regions by sex. In that situation, they can define the domains as regions

crossed by sex, so that they have DA = DB and D = 2DA = 2DB. Another example is a
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state partitioned in DA urban-type counties and DB rural-type counties, where the interest

is the estimation of some labour indicators at the county level. In what follows, we will

introduce some models adapted to these kind of situations.

Let us consider the model (model 3)

ydt = xT
dt β+udt + edt , d = 1, . . . ,D = DA +DB, t = 1, . . . ,md, (1)

where ydt is a direct estimator of the indicator of interest for area d and time instant

t, and xT
dt is a row vector containing the aggregated (population) values of p auxiliary

variables. The index d is used for domains and the index t for time instants. We assume

that the random vectors (ud1, . . . ,udmd
), d ≤ DA, follow independent and identically dis-

tributed (i.i.d.) first order auto-regressive processes with variance and auto-correlation

parameters σ2
A and ρA respectively; in short, (ud1, . . . ,udmd

)∼iid AR1(σ2
A,ρA), d ≤ DA.

We further assume that (ud1, . . . ,udmd
) ∼iid AR1(σ2

B,ρB), d > DA, and that the errors

edt’s are independent N(0,σ2
dt) with known variances σ2

dt’s. Finally we assume that the

(ud1, . . . ,udmd
)’s and the edt’s are mutually independent.

The introduction of the partitioned model (1) is motivated by the observed different

behaviour by sex of poverty indicators in Spanish data. Further, we also consider the

models restricted to ρA = ρB (model 2), restricted to ρA = ρB = 0 (model 1) and

restricted to ρA = ρB = 0 and σ2
A = σ2

B (model 0). For the sake of brevity, we only

present the theoretical developments for the partitioned model 3.

In matrix notation the model is

y = Xβ+Zu+ e,

where y can be decomposed in the form y = (yT
A,y

T
B)

T, with yA = col
d≤DA

(yd), yB =

col
d>DA

(yd) and yd = col
1≤t≤md

(ydt), and similarly for u and e, X can be decomposed in

the form X = (XT
A,X

T
B)

T, with XA = col
d≤DA

(Xd), XB = col
d>DA

(Xd) and Xd = col
1≤t≤md

(xT
dt),

β = βp×1, Z = IM and M = ∑
D
d=1 md . We use the notation col(· · ·) to denote a column

vector, or set of column vectors, composed of the elements of the argument, which can

be scalars or vectors. In this notation, u ∼ N(0,Vu) and e ∼ N(0,Ve) are independent

with covariance matrices

Vu = var(u) = diag(σ2
AΩA,σ

2
BΩB), Ve = var(e) = diag

1≤d≤D

(Ved),

where ΩA = diag
d≤DA

(Ωd), ΩB = diag
d>DA

(Ωd), Ved = diag
1≤t≤md

(σ2
dt) and

Ωd = Ωd(ρ) =
1

1−ρ2




1 ρ · · · ρmd−2 ρmd−1

ρ 1
. . . ρmd−2

...
. . .

. . .
. . .

...

ρmd−2 . . . 1 ρ

ρmd−1 ρmd−2 · · · ρ 1




md×md

, ρ = ρA,ρB.
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The covariance matrix of vector y is V = V(θ ) = var(y) = diag(VA,VB), where VA =

diag
d≤DA

(Vd), VB = diag
d>DA

(Vd), Vd = σ2
AΩd +Ved if d ≤ DA, Vd = σ2

BΩd +Ved if d > DA

and θ = (θ1,θ2,θ3,θ4) = (σ2
A,ρA,σ

2
B,ρB). The residual loglikelihood is

lreml = lreml(θ ) =−M− p

2
log2π+

1

2
log |XTX|− 1

2
log |VA|−

1

2
log |VB|

− 1

2
log |XT

AV−1
A XA +XT

BV−1
B XB|−

1

2
yTPy,

where P = V−1 − V−1X(XTV−1X)−1XTV−1. The scores and the Fisher information

matrix components are

Sa =
∂ lreml

∂θa

, Fab =−E

[
∂ l2

reml

∂θa∂θb

]
, a,b = 1,2,3,4.

To calculate the residual maximum likelihood (REML) estimate, θ̂ , we apply the Fisher-

scoring algorithm with the updating formula

θ
k+1 = θ k+F−1(θ k)s(θ k),

where s and F are the column vector of scores and the Fisher information matrix

respectively. As seeds we use ρ
(0)
A = ρ

(0)
B = 0, and σ

2(0)
A = σ

2(0)
B = σ̂2

uH , where σ̂2
uH

is the Henderson 3 estimator under model with ρA = ρB = 0 and σ2
A = σ2

B. The REML

estimator of β and the REML empirical best linear unbiased predictor (EBLUP) of u

are

β̂ = (XTV̂
−1

X)−1XTV̂
−1

y, û = V̂uZTV̂
−1
(y−Xβ̂),

where V̂ = V(θ̂ ) and V̂u = Vu(θ̂ ).

2.2. Statistical inference on the model parameters

The asymptotic distributions of of the REML estimators of θ and β are

θ̂ ∼ N4(θ ,F
−1(θ )), β̂ ∼ Np(β ,(X

TV−1X)−1).

Asymptotic confidence intervals at the level 1−α for θa and β j are

θ̂a ± zα/2ν
1/2
aa , a = 1,2,3,4, β̂ j ± zα/2 q

1/2
j j , j = 1, . . . , p,
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where θ̂ = θ κ, F−1(θ κ) = (νab)a,b=1,2,3,4, (XTV−1(θ κ)X)−1 = (qi j)i, j=1,...,p, κ is the

final iteration of the Fisher-scoring algorithm and zα is the α-quantile of the standard

normal distribution N(0,1). Observed β̂ j = β0, the p-value for testing the hypothesis

H0 : β j = 0 is

p = 2PH0
(β̂ j > |β0|) = 2P(N(0,1)> β0/

√
q j j ).

Let σ̂2
A, σ̂2

B, ρ̂A and ρ̂B be the unrestricted REML estimators of σ2
A and σ2

B, ρA and

ρB respectively. Let σ̃2
A, σ̃2

B and ρ̃ be the REML estimator ofσ2
A,σ2

B and of the common

value ρA = ρB under H0 (model 2). Under model 3, the REML likelihood ratio statistic

(LRS) for testing H0 : ρA = ρB is

λ=−2[lREML(σ̃
2
A, σ̃

2
B, ρ̃)− lREML(σ̂

2
A, σ̂

2
B, ρ̂A, ρ̂B)].

The asymptotic distribution of λ under H0 is χ2
1 . The null hypothesis is rejected at the

level α if λ> χ2
1,α.

Under model 2, the REML LRS for testing H0 : ρ = 0 is

λ=−2[lREML(σ̃
2
A, σ̃

2
B)− lREML(σ̂

2
A, σ̂

2
B, ρ̂)],

where σ̂2
A, σ̂2

B and ρ̂ are the unrestricted REML estimators ofσ2
A,σ2

B and ρ respectively,

σ̃2
A and σ̃2

B are the REML estimator of σ2
A and σ2

B under H0 (model 1). The asymptotic

distribution of λ under H0 is χ2
1 , so the null hypothesis is rejected at the level α if

λ> χ2
1,α.

2.3. The EBLUP and its mean squared error

We are interested in predicting the value of µdt = xT
dt β+udt by using the EBLUP

µ̂dt = xT
dtβ̂+ ûdt . If we do not take into account the error, edt , this is equivalent to predict

ydt = aTy, where a = col
1≤ℓ≤D

( col
1≤k≤mℓ

(δdℓδtk)) is a vector having one 1 in the position

t+∑
d−1
ℓ=1 mℓ and 0’s in the remaining cells. To estimate Y dt we use Ŷ

eblup

dt = µ̂dt . The mean

squared error of Ŷ
eblup

dt can be approximated by considering the formula established

by Prasad and Rao (1980) for moment-based estimators of model parameters in the

Fay-Herriot model. This formula was later extended by Datta and Lahiri (2000) and

Das, Jiang and Rao (2004) to a wide variety of linear mixed models when the model

parameters are estimated by the ML and REML method. By adapting the mean squared

error formula to model 3, we get

MSE(Ŷ
eblup

dt ) = g1dt(θ )+g2dt(θ )+g3dt(θ ),
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where θ = (σ2
A,ρA,σ

2
B,ρB),

g1dt(θ ) = aTZTZTa,

g2dt(θ ) = [aTX−aTZTZTV−1
e X]Q[XTa−XTV−1

e ZTZTa],

g3dt(θ )≈ tr
{

∇bTV∇bE
[
(θ̂ −θ )(θ̂ −θ )T

]}
.

T=Vu−VuZTV−1ZVu, Q=(XTV−1X)−1, bT = aTZVuZTV−1, ∇bT =( ∂bT

∂σ2
A

, ∂bT

∂σ2
B

, ∂bT

∂ρA
, ∂bT

∂ρB
).

The estimator of MSE(Ŷ
eblup

dt ) is

msedt(Ŷ
eblup

dt ) = g1dt(θ̂ )+g2dt(θ̂ )+2g3dt(θ̂ ).

3. Estimation of poverty indicators

3.1. The indicators and the data

Let zdt j be an income variable measured in all the units j of the population and let zt

be the poverty line, so that units from domain d with zdt j < zt are considered as poor

at time period t. Let Nt and Ndt , d = 1, . . . ,D, be the population size at time t and the

population size of each domain d at time t respectively. Foster et al. (1984) introduced

the family of poverty indicators

Yα,dt =
1

Ndt

Ndt

∑
j=1

yα,dt j, where yα,dt j =

(
zt − zdt j

zt

)α
I(zdt j < zt), (2)

I(zdt j < zt) = 1 if zdt j < zt and I(zdt j < zt) = 0 otherwise. The proportion of units under

poverty in the domain d and period t is thus Y 0,dt and the poverty gap is Y 1,dt .

The Spanish Statistical Office fixes the Poverty Threshold zt at the 60% of the median

of the normalized incomes in Spanish households. The aim of normalizing the household

income is to adjust for the varying size and composition of households. The definition

of the total number of normalized household members uses a scale giving a weight 1.0

to the first adult, 0.5 to the second and each subsequent person aged 14 and over and 0.3

to each child aged under 14 in the household. The normalized size of a household is the

sum of the weights assigned to each person. So for each household h in domain d and

time t, the total number of normalized members is

Hdth = 1+0.5(Hdth≥14 −1)+0.3Hdth<14,
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where Hdth≥14 is the number of people aged 14 and over and Hdth<14 is the number of

children aged under 14. The normalized net annual income of a household is obtained by

dividing its net annual income by its normalized size. The Spanish poverty thresholds (in

euros) in 2004-06 are z2004 = 6098.57, z2005 = 6160.00 and z2006 = 6556.60 respectively.

These are the zt-values used in the calculation of the direct estimates of the poverty

incidence and gap.

We use data from the Spanish Living Conditions Survey (SLCS) corresponding

to years 2004-2006. The SLCS started in 2004 with an annual periodicity and is the

Spanish version of the European Statistics on Income and Living Conditions (EU-SILC),

which is one of the statistical operations that have been harmonized for EU countries.

We consider D = 104 domains obtained by crossing 52 provinces with 2 sexes.

The direct estimator of the total, Ydt = ∑
Ndt
j=1 ydt j, is

Ŷ dir
dt = ∑

j∈Sdt

wdt j ydt j.

where Sdt is the domain sample at time period t and the wdt j’s are the official calibrated

sampling weights which take into account for non response. The estimated domain size

N̂dir
dt = ∑

j∈Sdt

wdt j.

Using these quantities, a direct estimator of the domain mean, Ȳdt , is ȳdt = Ŷ dir
dt /N̂dir

dt .

The design-based variances of these estimators can be approximated by

V̂π(Ŷ
dir
dt ) = ∑

j∈Sdt

wdt j(wdt j −1)(ydt j − ȳdt)
2

and V̂π(ȳdt) = V̂
(
Ŷ dir

dt

)
/N̂2

dt . (3)

The last formulas are obtained from Särndal et al. (1992), pp. 43, 185 and 391, with the

simplifications wdt j = 1/πdt j, πdt j,dt j = πdt j and πdti,dt j = πdtiπdt j, i 6= j in the second

order inclusion probabilities.

As we are interested in the cases ydt j = yα,dt j, α= 0,1, we select the direct estimates

of the poverty incidence and poverty gap at domain d and time period t (i.e. ȳ0,dt and

ȳ1,dt respectively) as target variables for the time dependent area-level models.

The considered auxiliary variables are the known domain means of the category

indicators of the following variables. INTERCEPT: constant equal to 1. AGE: Age

groups are age1-age5 for the intervals ≤ 15, 16 − 24, 25 − 49, 50 − 64 and ≥ 65.

EDUCATION: Highest level of education completed, with 4 categories denoted by

edu0 for Less than primary education level, edu1 for Primary education level, edu2 for

Secondary education level and edu3 for University level. LABOUR: Labour situation

with 4 categories taking the values lab0 for Below 16 years, lab1 for Employed, lab2

for Unemployed and lab3 for Inactive.
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3.2. The application

In this section we present an application to real data of model 3 defined in (1).

We compare the obtained results with the corresponding ones under the same model

restricted to H0 : ρA = ρB (model 2), H0 : ρA = ρB = 0 (model 1) and H0 : ρA =

ρB = 0, σ2
A = σ2

B (model 0). Finally the main goal is to estimate the poverty incidence

(proportion of individuals under poverty) and the poverty gap in Spanish domains for

the three models.

The final selected models include only the auxiliary variables appearing in Table 1.

We have included three statistically significant variables that have a relevant meaning

in the socio-economic sense. We have selected the variables age4 (age group 50-65),

edu2 (secondary education completed) and lab2 (unemployed). Regression parameters

and their corresponding p-values are also presented in Table 1 for α= 0 and α= 1.

By observing the signs of the regression parameters for α= 0 (poverty proportion),

we interpret that there is an inverse relation between poverty proportion and the cate-

gories age4 and edu2 of explanatory variables. That is, poverty incidence tends to be

smaller in those domains with larger proportion of population in the subset defined by

age between 50 and 64, and by secondary education level completed. On the other hand,

poverty incidence tends to be larger in those domains with larger proportion of popu-

lation in the subset defined by lab2, i.e. in the category of unemployed people. All the

p-values are lower than 0.05 for all the considered auxiliary variables, except for lab2 in

model 3. By doing the same exercise with the signs of the regression parameters in the

case α = 1 (poverty gap), we can give the same interpretations as before. Again all the

p-values are lower than 0.05.

The asymptotic confidence intervals (CIs) for the β’s at the 90% confidence level

are presented in Table 2 (top) for α = 0 and in Table 2 (bottom) for α = 1. The

columns with labels INF and SUP contains the low and upper limits respectively. By

Table 1: β-parameters and p-values for α= 0 (left) and α= 1 (right).

α= 0 α= 1

model 3 constant age4 edu2 lab2 constant age4 edu2 lab2

β 0.622 −1.881 −0.272 0.260 0.215 −0.741 −0.100 0.320

p-value 0.000 0.000 0.000 0.284 0.000 0.000 0.002 0.004

model 2 constant age4 edu2 lab2 constant age4 edu2 lab2

β 0.778 −2.603 −0.425 0.772 0.237 −0.874 −0.115 0.413

p-value 0.000 0.000 0.000 0.026 0.000 0.000 0.002 0.002

model 1 constant age4 edu2 lab2 constant age4 edu2 lab2

β 0.713 −2.284 −0.445 1.264 0.232 −0.827 −0.123 0.472

p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

model 0 constant age4 edu2 lab2 constant age4 edu2 lab2

β 0.730 −2.632 −0.411 1.829 0.198 −0.719 −0.107 0.667

p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.000
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Table 2: 90% confidence intervals for α= 0 (top) and for α= 1 (bottom).

model 3 model 2 model 1 model 0

ITEMS INF SUP INF SUP INF SUP INF SUP

constant 0.527 0.717 0.646 0.911 0.632 0.794 0.618 0.842

age4 −2.344 −1.418 −3.224 −1.982 −2.657 −1.912 −3.219 −2.045

edu2 −0.385 −0.159 −0.589 −0.262 −0.547 −0.342 −0.562 −0.260

lab2 −0.140 0.661 0.200 1.344 0.879 1.649 1.309 2.349

constant 0.173 0.257 0.188 0.286 0.199 0.264 0.154 0.242

age4 −0.941 −0.542 −1.102 −0.646 −0.978 −0.676 −0.952 −0.486

edu2 −0.152 −0.048 −0.177 −0.054 −0.166 −0.081 −0.169 −0.046

lab2 0.136 0.505 0.198 0.628 0.316 0.629 0.459 0.874

observing these confidence intervals, we conclude that all the regression parameters are

significantly different from zero in both cases. The only exception is lab2 in model 3 for

α= 0.

Table 3 presents the CIs for the variance components at the 90% confidence level,

under models 3-0, for α= 0 and α= 1. The columns with labels INF and SUP contains

the low and upper limits respectively. The column with label 0 ∈CI contains T (true) if 0

belongs to the CI and F (false) otherwise. Concerning model 3, we observe that the CIs

for ρA −ρB and σ2
A −σ2

B contain the 0. In the case of α = 0, the observed value of the

likelihood ratio statistics for testing H0 : ρA =ρB is λ= 0.5738 and the corresponding p-

value is 0.4487. In the case of α= 1, the observed value of the likelihood ratio statistics

for testing H0 : ρA = ρB is λ= 3.8195 and the corresponding p-value is 0.0506. These

facts suggest that model 3 is not the model fitting best to data.

Table 3: 90% confidence intervals for variances.

α= 0 α= 1

Model Parameter INF SUP 0 ∈CI INF SUP 0 ∈CI

3 σ2
A 0.0002 0.0008 F 0.0003 0.0005 F

σ2
B 0.0005 0.0014 F 0.0002 0.0004 F

σ2
A −σ2

B −0.0010 0.0001 T −0.0000 0.0003 T

ρA 0.8662 0.9957 F 0.5416 0.7484 F

ρB 0.8598 0.9344 F 0.6017 0.8843 F

ρA −ρB −0.0409 0.1087 T −0.2734 0.0774 T

2 σ2
A 0.0101 0.0154 F 0.0014 0.0019 F

σ2
B 0.0023 0.0038 F 0.0004 0.0005 F

σ2
A −σ2

B 0.0070 0.0124 F 0.0009 0.0015 F

ρ 0.4050 0.6108 F 0.3528 0.5756 F

1 σ2
A 0.0025 0.0040 F 0.0004 0.0004 F

σ2
B 0.0028 0.0045 F 0.0006 0.0007 F

0 σ2
u 0.0025 0.0040 F 0.0004 0.0006 F
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Table 4: Normalized Euclidean distances for α= 0,1.

Model 3 Model 2 Model 1 Model 0

α Men Women Men Women Men Women Men Women

0 0.0194 0.0255 0.0083 0.0421 0.0285 0.0486 0.0648 0.0673

1 0.0115 0.0116 0.0121 0.0221 0.0188 0.0229 0.0290 0.0303

For models 2-0 Table 3 shows that the CIs forσ2
A,σ2

B andσ2
u do not contain the origin

0 in any case, so the variances are significatively positive. Table 3 also presents the CIs

for the difference of variances σ2
A −σ2

B and the CIs for ρ under model 2. The variances

σ2
A andσ2

B can be considered as different at the 90% confidence level and the correlation

parameter ρ is significantly greater than zero in both cases (α = 0 and α = 1). In the

case α= 0 the REML likelihood ratio statistic (LRS) for testing H0 : σ2
A = σ2

B takes the

value 1210.06 and its corresponding p-value is 0.00. In the case of α = 1 the value of

the REML LRS for testing H0 : σ2
A = σ2

B is 1599.96 and the corresponding p-value is

0.00. In both cases we reject the null hypothesis of equality of variances. Therefore we

can recommend model 2 for both poverty indicators.

Table 4 presents the normalized Euclidean distances between the direct and the

EBLUPs estimates in both cases α= 0 and α= 1. We use the formula

D(y1,y2) =

(
1

M

D

∑
d=1

md

∑
t=1

(y1dt − y2dt)
2

)1/2

.

The obtained results are somehow expected. The models with more parameters present

the lower normalized Euclidean distances. The extreme case would be a saturated model

with as many parameters as observations, which has a perfect fit to data. As our target

is explaining the data relationships, instead of looking for the best way of predicting the

observed y-values, we do not modify our decision about model 3.

For being more confident about our decision of selecting model 2 as true generating

model, we still give some diagnostics for models 0-2. At this stage, we drop out Model

3 from the selection procedure because of the hypotheses tested in Table 3.

Residuals êdt = ȳdt − x̄T
dtβ̂ − ûdt of fitted models 2, 1 and 0 are plotted against the

observed values ȳdt in the Figure 1 for α = 0 (left) and α = 1 (right). The dispersion

graph shows a great difference in the pattern of the plots, passing from the basic model 0

to the more complex model 2. In particular, residuals of model 2 present a more flattened

shape than the ones of the other two models. Figure 2 presents the boxplots of residuals

of models 0-2 and also shows that partitioned models 1 and 2 fit much better to the data

than model 0. This conclusion coincides with the results appearing in Table 4, where

Euclidean distances decrease as moving from model 0 to model 2. So we conclude that

model 2 fits better to the direct estimates and therefore we can recommend it.
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Figure 1: Residuals versus direct estimates.
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Figure 2: Boxplots of residuals of models 0-2.
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Figure 3: Estimates of poverty proportion (top) and squared root of their estimated MSEs (bottom)

respectively for men (on the left) and women (on the right) in 2006.

The poverty proportion estimates, direct and EBLUP under model 2, are plotted in

the Figure 3 with respect to the partition of the domains in men (left) and women (right).

Figure 4 presents the same plots for the poverty gap. Concerning the root MSEs, these

figures show that the EBLUPs under model 2 have lower MSE than the direct estimator.

Therefore it is worthwhile using model-based estimators instead of the direct ones. As

the estimated root MSE of the direct estimate of domain 42 is too large, Figure 3 does

not plot the estimates of this domain and renumbers domains 43 to 52 as 42 to 51.

In the Figure 5 the Spanish provinces are plotted in 4 colored categories depending

on the values of the EBLUP2 estimates in % of the poverty proportions and the gaps, i.e.

pd = 100 · Ŷ
eblup2

0;d,2006 and gd = 100 · Ŷ
eblup2

1;d,2006. We observe that the Spanish regions where

the proportion of the population under the poverty line is smallest are those situated in

the north and east, like Cataluña, Aragón, Navarra, Paı́s Vasco, Cantabria and Baleares.

On the other hand the Spanish regions with higher poverty proportion are those situated

in the centre-south, like Andalucı́a, Extremadura, Murcia, Castilla La Mancha, Canarias,

Ceuta and Melilla. In an intermediate position we can find regions that are in the centre-

north of Spain, like Galicia, La Rioja, Castilla León, Asturias, Comunidad Valenciana

and Madrid. If we investigate how far the annual net incomes of population under the



Domingo Morales, Maria Chiara Pagliarella and Renato Salvatore 31

0
.0

0
0

.0
5

0
.1

0
0

.1
5

0
.2

0

Estimated poverty gap − MEN

Domains
1 6 10 15 19 24 28 33 37 42 46 51

0
.0

0
0

.0
5

0
.1

0
0

.1
5

0
.2

0

Dir
EBLUP 2

0
.0

0
0

.0
1

0
.0

2
0

.0
3

0
.0

4

Root mean squared error of poverty gap − MEN

Domains
1 6 10 15 19 24 28 33 37 42 46 51

0
.0

0
0

.0
1

0
.0

2
0

.0
3

0
.0

4

Root MSE Dir
Root MSE EBLUP 2

0
.0

0
0

.0
5

0
.1

0
0

.1
5

0
.2

0

Estimated poverty gap − WOMEN

Domains
1 6 10 15 19 24 28 33 37 42 46 51

0
.0

0
0

.0
5

0
.1

0
0

.1
5

0
.2

0

Dir
EBLUP 2

0
.0

0
0

.0
1

0
.0

2
0

.0
3

0
.0

4

Root mean squared error of poverty gap − WOMEN

Domains
1 6 10 15 19 24 28 33 37 42 46 51

0
.0

0
0

.0
1

0
.0

2
0

.0
3

0
.0

4

Root MSE Dir
Root MSE EBLUP 2

Figure 4: Estimates of poverty gap (top) and squared root of their estimated MSEs (bottom) respectively

for men (on the left) and women (on the right) in 2006.

Table 5: Estimated poverty proportions (α= 0) and RMSE’s in 2006.

Men Women

Province nd DIR EB2 RMSE⋆ RMSE2 nd DIR EB2 RMSE⋆ RMSE2

Soria 24 0.247 0.231 0.107 0.080 18 0.604 0.351 0.126 0.057

Segovia 60 0.234 0.231 0.061 0.055 60 0.438 0.360 0.071 0.046

Palencia 73 0.228 0.210 0.054 0.049 72 0.280 0.246 0.058 0.041

Álava 98 0.083 0.079 0.034 0.033 100 0.079 0.085 0.032 0.028

Zamora 109 0.332 0.317 0.048 0.045 100 0.268 0.259 0.046 0.037

Huelva 124 0.192 0.191 0.036 0.035 124 0.253 0.235 0.040 0.033

Burgos 169 0.127 0.127 0.029 0.028 167 0.124 0.129 0.028 0.025

Albacete 173 0.237 0.239 0.035 0.034 193 0.285 0.283 0.037 0.031

Granada 189 0.301 0.297 0.036 0.035 229 0.342 0.326 0.034 0.030

Crdoba 221 0.312 0.311 0.034 0.032 233 0.307 0.303 0.033 0.029

Cáceres 261 0.252 0.252 0.030 0.029 303 0.332 0.328 0.031 0.027

Tenerife 373 0.263 0.262 0.027 0.027 397 0.286 0.283 0.026 0.024

Sevilla 473 0.209 0.209 0.020 0.020 492 0.228 0.227 0.020 0.019

Zaragoza 556 0.101 0.101 0.014 0.014 577 0.136 0.139 0.017 0.016

Barcelona 1367 0.083 0.084 0.008 0.008 1494 0.108 0.109 0.008 0.008



32 Small area estimation of poverty indicators under partitioned area-level time models

Table 6: Estimated poverty gapss (α= 1) and RMSE’s for men in 2006.

Men Women

Province nd DIR EB2 RMSE⋆ RMSE2 nd DIR EB2 RMSE⋆ RMSE2

Soria 24 0.153 0.074 0.088 0.038 18 0.235 0.091 0.111 0.023

Segovia 60 0.070 0.069 0.021 0.019 61 0.123 0.102 0.025 0.017

Palencia 73 0.056 0.053 0.017 0.016 78 0.052 0.053 0.020 0.015

lava 98 0.025 0.024 0.010 0.010 87 0.107 0.101 0.018 0.014

Zamora 109 0.126 0.112 0.024 0.021 100 0.099 0.087 0.022 0.016

Huelva 124 0.105 0.091 0.027 0.023 124 0.091 0.077 0.021 0.015

Burgos 169 0.042 0.042 0.015 0.014 165 0.089 0.085 0.014 0.012

Albacete 173 0.096 0.095 0.017 0.016 181 0.053 0.051 0.012 0.010

Granada 189 0.135 0.124 0.020 0.018 194 0.112 0.109 0.017 0.014

Crdoba 221 0.082 0.083 0.011 0.011 230 0.114 0.106 0.015 0.012

Cceres 261 0.075 0.076 0.011 0.011 247 0.207 0.171 0.023 0.016

Tenerife 373 0.081 0.081 0.010 0.010 397 0.093 0.092 0.011 0.010

Sevilla 473 0.034 0.034 0.004 0.004 501 0.043 0.044 0.005 0.005

Zaragoza 556 0.043 0.043 0.009 0.009 605 0.027 0.028 0.005 0.005

Barcelona 1367 0.031 0.031 0.003 0.003 1494 0.036 0.036 0.004 0.004
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Figure 5: EBLUP2 estimates of poverty proportions (top) and gaps (bottom) for men (left) and women

(right) in 2006.
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poverty line z2006 are from z2006, we observe that in the Spanish regions situated in the

centre-north there exist a distance that is generally lower than the 6% of z2006. However,

the cited distance is in general greater than 6% of z2006 in the centre-south.

Tables 5-6 present the direct and EBLUP estimates under model 2 of poverty

proportions (α= 0) and poverty gaps (α= 1) for some Spanish provinces. The provinces

were selected accordingly with the quantiles of the set of domain sample sizes nd . The

EBLUP estimates under the model 2 are labelled by EB2 and the direct estimates by

DIR. The squared root of MSEs are labelled by RMSE⋆ for the direct estimator and by

RMSE2 for the EBLUP under the model 2 respectively. Numerical results are sorted by

sex. Regarding the reduction of the MSE when passing from direct to EBLUP estimates,

we observe that model 2 performs better in domains with small sample size.

4. Discussion

As poverty indicators are nonlinear, unit-level model-based estimation approaches can-

not always be used. However, their direct estimators are weighted sums that can be

modelled by area-level models. Area-level models thus provide an easy-to-apply solu-

tion. These idea motivates the introduction of partitioned temporal models that borrow

strength from time. The use of information from past time instants, the greater avail-

ability of auxiliary variables at the domain level and the possibility of introducing mod-

elling differences by sex might compensate the loss of information when passing from

unit-level models to area-level models. We thus considered four area-level linear mixed

models and we applied the methodology to Spanish EU-SILC data.

We would also like to point out that model (1) and its particularizations have some

features of interest, from a methodological point of view. It is somewhat different from

the Rao-Yu model (Rao and Yu, 1994, and Rao, 2003), viewed as an extension of the

Fay-Herriot area-level model in the case of time-correlated data. As we can note, the

covariance matrix of the model does not contain the variance component connected with

the random-effect at the domains, as clusters of time-correlated data. This fact permits

to the random time-area effect to absorb completely the variation of the EBLUP due

to the correlated observation, without considering any cluster-oriented random-effect

components.

Another characteristic of main interest of the model (1), is that is a “partitioned”

model. This means that different variance components in the covariance matrix of the

random-area effects can accommodate different inputs of information, due to some

relevant issues related to the specific levels of auxiliary variables. In the case of the

application on the poverty indicators in Spain, the partitioning of the variance of the

random-effect is significative for the gender-based class of survey domains. In fact,

relevant differences in terms of the data in these classes of domains, as inputs in the

fixed-effects regression, seems to drive at the same time to different variations in the

related class of random-area effects.



34 Small area estimation of poverty indicators under partitioned area-level time models

The R programming language has been employed for doing all the computations

in this paper. The deliverable D22 on software for small area estimation of the Euro-

pean SAMPLE project (http://www.sample-project.eu/) gives a primary version of the

employed R codes.

References

Das, K., Jiang, J. and Rao, J. N. K. (2004). Mean squared error of empirical predictor. Mean squared error

of empirical predictor. The Annals of Statistics, 32, 818–840.

Datta, G. S. and Lahiri, P. (2000). A unified measure of uncertainty of estimated best linear unbiased

predictors in small area estimation problems. Statistica Sinica, 10, 613–627.
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