
BeTTy: Benchmarking and Testing on the Automated
Analysis of Feature Models

Sergio Segura, José A. Galindo, David Benavides, José A. Parejo and Antonio
Ruiz-Cortés

Department of Computer Languages and Systems
University of Seville, Spain

{sergiosegura, jagalindo, benavides, japarejo, aruiz}@us.es

ABSTRACT

The automated analysis of feature models is a flourishing re-
search topic that has called the attention of both researchers 
and practitioners during the last two decades. During this 
time, the number of tools and techniques enabling the analy-
sis of feature models has increased and also their complexity. 
In this scenario, the lack of specific testing mechanisms to 
assess the correctness and good performance of analysis tools 
is becoming a major obstacle hindering the development of 
tools and affecting their quality and reliability. In this pa-per, 
we present BeTTy, a framework for BEnchmarking and T 
esT ing on the analY sis of feature models. Among other 
features, BeTTy enables the automated detection of faults in 
feature model analysis tools. Also, it supports the gen-eration 
of motivating test data to evaluate the performance of 
analysis tools in both average and pessimistic cases. Part of 
the functionality of the framework is provided through a 
web-based interface facilitating the random generation of 
both classic and attributed feature models.

Keywords

Testing, feature models, benchmarking, automated analysis, 
validation

1. INTRODUCTION

Software product line engineering is an approach to de-
velop families of related software products by reusing a com-
mon set of features instead of building each product from 
scratch. Feature models play a key role in this paradigm by 
providing a high-level representation of all the products of 
the product line. The automated extraction of information 
from feature models is a thriving topic that has called the 
attention of researchers for the last twenty years [1]. Dur-
ing this time, numerous operations, techniques and tools to 
get information from feature models have proliferated and a 
whole community has been built around the automated anal-
ysis of feature models [1]. Currently, the rapid progress of

this discipline is naturally leading to an increasing concern
about the quality of feature model analysis tools. The goal
now is not simply developing basic research prototypes but
solid and high quality analysis tools in terms of absence of
bugs and good performance. In this context, current testing
methods are mainly random and guided by intuition rather
than by well-studied testing techniques. This makes test-
ing conclusions rarely rigorous and verifiable, weakening the
value and scope of research contributions and reducing the
user’s confidence in the correctness of analysis tools.

To address the problem of testing on the analysis of fea-
ture models, we have presented a number of techniques, al-
gorithms and tools. These contributions are the results of
the application of several classical and innovative testing
techniques to the context of the analysis of feature models.
Regarding functional testing, we have presented a test suite
[10] and automated test data generator [11, 12] enabling
the efficient detection of faults in analysis tools. Regard-
ing performance testing, we have presented an evolutionary
algorithm for the generation of computationally–hard fea-
ture models to reveal the deficiencies of tools in pessimistic
cases [9, 13]. These contributions have been evaluated us-
ing extensive and rigorous experiments that reveal the ef-
ficacy and efficiency of our approaches. Among other re-
sults, we detected two faults in FaMa [3] and another two
in SPLOT [17], two popular analysis tools widely used in
the community of automated analysis of feature models. In
order to make our contributions accessible to the feature
modeling community and encourage other researchers and
practitioners to use, evaluate and extend our work, we have
integrated all these techniques in a framework called BeTTy.
BeTTy is an extensible and highly configurable tool support-
ing BEnchmarking and TesTing on the AnalYsis of feature
models. BeTTy features can be summarized as follows:

• Random generation of feature models. BeTTy enables
the random generation of highly-customized feature
models. These may be used to evaluate the perfor-
mance of analysis tools in average cases.

• Random generation of attributed feature models.
BeTTy also supports the random generation of at-
tributed feature models (a.k.a. extended feature mod-
els) [1]. These models are commonly used to add non-
functional attributes to the features. To the best of
our knowledge, we are the first authors providing a
random generator for this type of models.

• Automated generation of test data for functional test-
ing. BeTTy supports the generation of inputs and ex-



pected outputs for a number of analysis operations on
feature models making the detection of faults straight-
forward.

• Evolutionary feature model generator. BeTTy includes
an evolutionary algorithm supporting the generation
of feature models maximizing user-defined optimiza-
tion criteria. This feature can be used to generate
computationally–hard feature models that reveal the
performance of tools in pessimistic cases.

• Benchmarking. The BeTTy framework integrates sev-
eral components to facilitate the performance compar-
ison of feature model analysis tools.

BeTTy is written in Java, released under LGPL3 license
and distributed as a jar file facilitating its integration in ex-
ternal projects. Also, part of the functionality of the frame-
work is offered through a web-based application enabling the
generation of random feature models within a few clicks.

The rest of the paper is structured as follows: Section
2 presents the challenges addressed by BeTTy. Sections 3
and 4 ilustrate how BeTTy can be used for functional and
performance testing of feature model analysis tools. The
architecture and the web-based interface of the framework
are presented in Sections 5 and 6, respectively. The related
works found in the literature are presented in Section 7.
Finally, we summarize our conclusions and plans for future
work in Section 8.

2. CHALLENGES
As an illustrative example, suppose that we developed a

tool for the automated analysis of feature models called Va-
MoSAnalizer. The tool implements some of the analysis
operations on feature models reported in the literature such
as the one that determines whether an input feature mod-
els is consistent or whether it contains dead features [1]. In
the next sections, we introduce some of the challenges that
should be addressed to assess the correctness and perfor-
mance of the tool.

2.1 Challenge 1: Functional Testing
Functional testing is intended to check whether a pro-

gram satisfies its functional requirements, i.e. whether the
program does what the user expects it to do. In the context
of our example, this means to assess whether the analysis
operations implemented in VaMoSAnalizer are working as
expected or whether they include faults. Figure 1 illustrates
this challenge.

The key point when performing functional testing is to
design test data (i.e. inputs and expected outputs) that
help us to gain confidence in the correctness of the tool. Test
data must fulfil certain requirements such as being complex
enough, covering the input domain as much as possible and
keeping the number of test cases manageable.

In order to gain confidence in the correctness of VaMoSAnal-
izer, we should therefore design effective test data to assess
its functionality. More specifically, we must design specific
test cases for each analysis operation under test. Consider,
as an example, the operation that returns the dead features
of a feature model (i.e. features that can never be selected
due to a modelling error). To test this operation, we should
run the tool with a number of input feature models and check

whether the returned features correspond to the actual set
of dead features of each model.

Figure 1: The challenge of functional testing

A first attempt to solve this challenge would be to man-
ually build a set of test cases (i.e. test suite) as we did in
the past [10]. We learnt, however, that the feasibility of this
approach is only partial since it suffers from several practi-
cal limitations. First, the manual design of test cases relies
on the ability of the tester to decide whether the output of
an analysis is correct. This is time-consuming, error-prone
and in most cases infeasible due to the combinatorial com-
plexity of the analyses. As a result, manual test cases tend
to use small and in most cases over-simplistic input models
whose output can be calculated by hand. This limitation,
also found in many other software testing domains, is known
as the oracle problem [20], i.e. impossibility to determine the
correctness of a test output. Another limitation of manual
test data is that it is not a generic solution and therefore
new test cases must be designed for each analysis operation
which is tedious and time-consuming. The development of
tool support for the automated detection of faults in feature
model analysis tools overcoming these limitations remains
as an open challenge.

2.2 Challenge 2: Performance Testing
Feature model analysis tool is also a complex software sys-

tem in terms of computational complexity. It is well known
in the literature that there are several analysis operations
that are computationally–hard to perform in some cases.
For instance, finding the set of products represented by a
feature model is an operation with exponential complexity
[1]. Benchmarking and performance testing has been recog-
nized as a challenge in the domain of feature model analysis
[1, 14, 16].

In order to evaluate the performance of VaMoSAnalizer,
we should again design specific test data, i.e., a set of input
feature models that show the behavior of tools in different
situations. For an exhaustive evaluation of the performance,
however, test data should include not only average feature
models but also computationally–hard feature models that
exploit the vulnerabilities of analysis tools in extreme situ-
ations. This would allow users and developers to know the
behavior of tools in pessimistic cases providing a better idea
of their real power. Figure 2 illustrates this challenge.

There are different complementary approaches for perfor-



Figure 2: The challenge of performance testing

mance analysis of feature models. A first attempt would be
to use real feature models but it is well known that compa-
nies are reluctant to show their feature models since those
very often include strategic information. There are some au-
thors that have inferred variability models from open source
software [4, 15]. Another approach is to generate feature
models using random mechanisms. There are several works
in the literature that follows this direction [2, 6, 8, 21]. An
open challenge in the literature and existing tools is to ran-
domly generate feature models including attributes.

Real and randomly generated feature models are a good
option for gathering average results in terms of performance.
However, there is a lack of testing mechanisms to assess
the performance of analysis tools in extreme situations, i.e.
check the performance with inputs that maximize the exe-
cution time or the memory consumed by the tool during the
analysis. For instance, consider we intend to evaluate the
performance of VaMoSAnalizer in hard cases. We could just
use a random feature model of huge size, as it is usually done
in the literature [1, 9, 13]. However, a negative consequence
of using huge feature models to evaluate the performance of
tools is that they frequently fall out of the scope of their
users. Hence, both developers and users would probably be
more interested to know whether their tool may crash with a
computationally–hard model of small or medium size rather
than knowing the execution times of huge random models
out of their scope. Developing a configurable tool support-
ing the generation of computationally–hard feature models
of pre-defined size is also an open challenge.

3. BeTTy FOR FUNCTIONAL TESTING
BeTTy enables the automated generation of test cases for

the automated analysis of feature models using the approach
presented in [11]. A test case is composed of a set of inputs
(a feature model and some other optional parameters) and
an expected output of the analysis operation under test. The
key idea behind BeTTy is that most analysis operations on
feature models can be answered by simply inspecting their
set of products adequately. Figure 3 depicts an example of
how the framework works. The process starts with a trivial
input feature model and its set of products. The model is
then extended progressively by adding to it random relation-
ships and constraints. The set of products is also updated
at each step by using so-called metamorphic relations, that
is, relations between the operators of the model and the set
of products. Once a feature model with the desired prop-

erties is created, it is used as nontrivial input for the tests.
Also, its set of products is automatically inspected to get
the expected output of the analysis operations under tests.
As an example, assume that we run VaMoSAnalizer using
the model generated in Figure 3 as input. We could test the
functionality of a number of operations by simply answering
the following questions:

• Is the model consistent? Suppose that VaMoSAnalizer
returns that the model is consistent, i.e. it represents
at least one product. Looking at the set of products
associated to the model generated by BeTTy we can
easily conclude that the output is correct since the set
of products is not empty. VaMoSAnalizer would pass
the test.

• Is P={A,C,F} a valid product? Assume that our tool
VaMoSAnalizer returns that the product is not valid,
i.e. it is not included in the set of products represented
by the model. Examining the set of products returned
by BeTTy, however, we check that the product is in-
cluded in the set and therefore it is valid. VaMoSAnal-
izer would therefore not pass the test.

• How many different products represent the model? Let
us suppose that VaMoSAnalizer returns that the model
represents 6 different products. We can easily check
that the output is correct by simply counting the set of
products generated by BeTTy. VaMoSAnalizer would
pass the test.

• What is the commonality of feature B? The common-
ality of a feature is the percentage of products in which
that features appears [1]. Suppose that VaMoSAnal-
izer returns 66%. According to BeTTy, feature B is in-
cluded in 4 out of the 6 products of the set which means
that the output is correct. VaMoSAnalizer would pass
the test.

• Does the model contain any dead feature? Suppose
that VaMoSAnalizer returns that feature F is dead.
The set of products returned by BeTTy, however, in-
clude all the features of the model which means that
there are no dead feature in the input model. Again,
VaMoSAnalizer would not pass the test.

Using this technique, BeTTy allows users to test their
analyses applications automatically using complex feature
models representing thousands or even millions of products.
BeTTy has proved to be effective detecting faults in real
tools for the automated analysis of feature models such as
the FaMa Framework [3] and SPLOT [11]. Also, it has
shown to be much more effective than manually-designed
test cases for the analysis of feature models [11, 12]. At
the time of writing this paper, we have used BeTTy to au-
tomatically test up to 18 different analysis operations on
feature models. See Appendix A (Figure 8) for a code ex-
ample showing how to generate a feature model and its set
of products using BeTTy.

4. BeTTy FOR PERFORMANCE TESTING
BeTTy supports the generation of random and computa-

tionally hard input feature models to be used in the per-
formance evaluations of feature model analysis tools. These
features are detailed in the next sections.



B

A

C
B

A

C
P1 = {A,C}

P2 = {A,B,C}

D E

P1 = {A,C}

P2 = {A,B,C,D}

P3 = {A,B,C,E}

P4 = {A,B,C,D,E}

Or

B

A

C

D E

F G

P1 = {A,C,F}

P2 = {A,C,G}

P3 = {A,B,C,D,F}

P4 = {A,B,C,E,F}

P5 = {A,B,C,D,G}

P6 = {A,B,C,E,G}

P7 = {A,B,C,D,E,G}

P8 = {A,B,C,D,E,F}

B

A

C

D E

F G

P1 = {A,C,F}

P2 = {A,C,G}

P3 = {A,B,C,D,F}

P4 = {A,B,C,E,F}

P5 = {A,B,C,D,G}

P6 = {A,B,C,E,G}

P7 = {A,B,C,D,E,G}

P4 = {A,B,C,D,E,F}

Alternative Excludes

Figure 3: BeTTy approach for the generation of a random feature model and its set of products

4.1 Generation of random (attributed) feature
models

BeTTy enables the generation of random feature mod-
els. The generation is performed in two steps. First, a fea-
ture tree is generated following the algorithm described by
Thum et al. in [18]. Then, cross-tree constraints (depends
and excludes) are added to the model fulfilling the following
requirements: i) features with parent relations cannot be
part of a constraint, and ii) two features cannot share more
than one constraint. The generation can be highly config-
ured through a number of input parameters such as number
of features, percentage of cross–tree constraints, percentage
of each type of relationship or maximum branching factor
of the models to be generated. Users can optionally use a
seed number to make the generation reproducible in later
experiments. A coding example is provided in Appendix A
(Figure 7).

In addition to classic feature models, BeTTy supports the
random generation of extended feature models, i.e. feature
models with attributes. These types of feature models are
constructed in two steps. First, a classic feature model
is generated as explained previously. Then, attributes are
added to the leave features. The values for the attributes are
added following pre–defined distributions using the library
Apache Math [7]. The number of attributes per features
and the type of distribution are configurable options. The
current version of the tool only supports integer domains.

Figure 4 depicts an attributed feature model generated
using BeTTy. As proposed by Benavides et al. [1], an at-
tribute is defined by a name, a domain and a value. The
piece of code used to generate this model is presented in
Appendix A (Figure 9).

Name: Attribute0

Domain: Integer [14,19]

Value: 16

Name: Attribute1

Domain: Integer [44,70]

Value: 60

Name: Attribute0

Domain: Integer [14,19]

Value: 14

Name: Attribute1

Domain: Integer [44,70]

Value: 50

Name: Attribute0

Domain: Integer [44,70]

Value: 52

Name: Attribute1

Domain: Integer [14,19]

Value: 15

F1

root

F2 F3

F4

Figure 4: Sample attributed FM generated by
BeTTy

4.2 Generation of computationally–hard fea-
ture models

BeTTy integrates the novel evolutionary algorithm for op-

timized feature models described in [9, 13]. This allows users
to generate a feature model maximizing or minimizing cer-
tain properties of the model or their analyses. For instance,
we could search for a feature model with a given number of
features minimizing the height of the tree or maximizing the
execution time required for its analysis. This is done by sim-
ply defining an objective function and using it as an input
of the framework. This function determines the quality of a
feature model with respect to a given optimization criteria.

The most appealing application of our evolutionary ap-
proach is the possibility of generating computationally–hard
feature models. Given a tool and an analysis operation,
BeTTy can generate input models of a predefined size max-
imizing aspects as the execution time or the memory con-
sumption of the tool when performing the operation over
the model. This allows users and developers to know the
behaviour of tools in pessimistic cases providing an idea of
their power in extreme situtations. Experiments using our
evolutionary algorithm on a number of analysis operations
and tools have successfully identified input models causing
much longer executions times and higher memory consump-
tion than random models of identical or even larger size.

As an example, we compared the effectiveness of random
search and BeTTy in generating feature models with up to
1,000 features maximizing the time required by a CSP solver
to check their consistency. The results revealed that the
hardest random model found required 0.2 seconds to be an-
alyzed meanwhile BeTTy was able to find several models
taking between 23.1 and 27.5 minutes to be processed. Not
only that, we found the hardest feature models generated
by BeTTy in the ranges 500-1,000 features were remarkably
harder to process than random models with 10,000 features.
For more details about the evaluation of our approach we
refer the reader to [13]

Appendix A (Figure 10) shows a code example illustrating
how to use BeTTy to generate a feature model maximizing
the execution time required for its analysis.

5. ARCHITECTURE OF BETTY
Figure 5 presents a high level representation of the archi-

tecture of BeTTy. As illustrated, the framework is com-
posed of two main blocks, the core and the extensions. The
BeTTy core contains the set of interfaces and classes used
to extend the framework and to build applications on top of
it. This mainly consists of the following components:

• FaMa feature model metamodel. This is the set of
classes used to represent and manipulate feature mod-
els. BeTTy integrates both, classic and attributed fea-
ture model metamodels located at the core of the FaMa
Tool Suite [3]. This is a powerful implementation of



Figure 5: BeTTy framework architecture

a feature model metamodel highly tested and used in
the feature modelling community.

• FM generation. This component contains support in-
terfaces, methods and classes to facilitate the develop-
ment of feature model generators.

• Reader and writers. This component consists of a set
of ready–to–use feature model readers and writers for
different formats. The formats currently supported
by BeTTy are i) Simple XML Feature Model format
(SXFM) [17], ii) Fama XML Format [3], iii) FaMa Tex-
tual Format [3], iv) X3D format [19] for 3D visualisa-
tion of feature models, and v) Dot format for the visual
representation of the models in the graph visualization
tool Graphviz [5].

• Benchmarking. This component contains the inter-
faces and basic classes to facilitate the generation, ex-
ecution and saving of results during the performance
evaluation of analysis tools.

The BeTTy extensions comprise the set of testing and
performance tools developed on top of BeTTy. These mainly
consist of the random feature model generators presented
in Sections 3 and 4. Additionally, it integrates the FaMa
Bechmarking component whose classes abstract FaMa users
from low-level details making performance evaluations with
the tool straightforward.

The BeTTy framework is freely distributed under LGPL
v3 license and can be downloaded from the BeTTy Web site
www.isa.us.es/betty.

6. BETTY ONLINE
Part of the functionality of BeTTy is provided through

a web interface to make our work easily accessible to the
community. In particular, the web application facilitates
the generation of random feature models, both basic and
extended. Figure 6 shows a screenshot of the application.
Users must introduce several mandatory fields such as the
number of models to be generated, the number of features
and the percentage of cross-tree constraints of the mod-
els. Then, they can optionally specify a number of pa-
rameters such as the percentage of cross-tree constraints,

the percentage of relationships of each type (mandatory, op-
tional, alternative and or), the maximum branching factor
or the maximum number of child features in set relation-
ships. Optionally, a user may ask for consistent (a.k.a. sat-
isfiable) models only. The current version of the tool al-
lows users to download the generated models in five differ-
ent formats (see Section 5). The application is accessible at
http://www.isa.us.es/betty/betty-online

7. RELATED TOOLS
We found a good number of approaches using random fea-

ture models to test the performance of their tools [1]. How-
ever, in most of the cases, these were generated using ad–hoc
tools not publicly available. We found that only the SPLOT
website [17] provides a standalone Java application for the
generation of random feature models and their storage in
Simple XML Feature Model format. The tool, not exten-
sible, receives several parameters constraining the size and
properties of the feature model to be generated (i.e. number
of features or percentage of mandatory features).

When compared to related works, BeTTy is the first ex-
tensible framework specifically designed for functional and
performance testing of feature model analysis tools. In ad-
dition to the random generation of feature models, it also
provides extra and novel features including the generation
of products using metamorphic relations, guided generation
of feature models using optimization criteria and support
classes for benchmarking. Also, BeTTy support most pop-
ular feature model formats and is distributed as a jar file
facilitating its interoperability with other tools. To the best
of our knowledge, BeTTy is the first tool enabling the online
generation of random feature models facilitating its usage
and accessibility.

8. CONCLUSIONS AND FUTURE WORK
In this paper, we presented BeTTy, a benchmarking and

testing framework for the automated analysis of feature mod-
els. Regarding functional testing, BeTTy supports the gen-
eration of random feature models and their set of products.
This makes it possible to generate inputs and expected out-
puts for a number of analysis operations on feature mod-
els speeding the detection of faults. Regarding performance
testing, BeTTy supports the random generation of both ba-
sic and attributed feature models to explore the behaviour
of the tools under tests in average cases. More importantly,
BeTTy enables the generation of computationally–hard fea-
ture models to reveal the weaknesses of analysis tools in
extreme situations. As a part of our work, we also present
an innovative web application facilitating the generation of
highly customized random feature models. In short, we have
motivated the need for testing on the analysis of feature
models and we have presented a novel framework address-
ing the challenge.

A number of tasks remain for our future work. We plan
to add new features to our random generator like the gen-
eration of complex cross-tree constraints (those involving
more than two features). Also, we intend to extend our
attributed feature model generator to support real domains
and constraints among attributes. Finally, we would be glad
to integrate BeTTy extensions from the community such as
support for new formats or more complex generators.



Figure 6: BeTTy On-line feature model generator - http://www.isa.us.es/betty/betty-online



ACKNOWLEDGEMENTS
We would like to thank Alejandro Trinidad for his hard work
implementing the attributed generator in BeTTy.
This work has been partially supported by the European
Commission (FEDER) and Spanish Government under CI-
CYT project SETI (TIN2009-07366), and by the Andalusian
Government under ISABEL project (TIC-2533) and THEOS
project (TIC-5906).

9. REFERENCES
[1] D. Benavides, S. Segura, and A. Ruiz-Cortés.

Automated analysis of feature models 20 years later:
A literature review. Information Systems, 35(6):615 –
636, 2010.

[2] D. Benavides, S. Segura, P. Trinidad, and
A. Ruiz-Cortés. A first step towards a framework for
the automated analysis of feature models. In
Managing Variability for Software Product Lines:
Working With Variability Mechanisms, 2006.

[3] FaMa Tool Suite. http://www.isa.us.es/fama/,
accessed November 2011.

[4] J.A. Galindo, D. Benavides, and S. Segura. Debian
packages repositories as software product line models.
towards automated analysis. In Proceeding of the First
International Workshop on Automated Configuration
and Tailoring of Applications (ACOTA), 2010.

[5] Graphviz. . http://www.graphviz.org/, accessed
November 2011.

[6] G. Kapfhammer. The Computer Science Handbook,
chapter Software Testing. CRC Press, 2nd edition,
June, 2004.

[7] Apache Math. Apache math.
http://commons.apache.org/math/, accessed
November 2011.

[8] M. Mendonca, D.D. Cowan, W. Malyk, and
T. Oliveira. Collaborative product configuration:
Formalization and efficient algorithms for dependency
analysis. Journal of Software, 3(2):69–82, 2008.

[9] S. Segura. Functional and Performance Testing of
Feature Model Analysis Tools. Extending the FaMa
Ecosystem. PhD thesis, Dept. of Computer Languages
and Systems, University of Seville, 2011.

[10] S. Segura, D. Benavides, and A. Ruiz-Cortés.
Functional testing of feature model analysis tools: a
test suite. Software, IET, 5(1):70 –82, february 2011.

[11] S. Segura, Robert M. Hierons, D. Benavides, and
A. Ruiz-Cortés. Automated metamorphic testing on
the analyses of feature models. Information and
Software Technology, 53(3):245–258, 2011.

[12] S. Segura, Robert M. Hierons, D. Benavides, and
A. Ruiz-Cortés. Mutation testing on an
object-oriented framework: An experience report.
Information and Software Technology Special Issue on
Mutation Testing, 2011.

[13] S. Segura, JA. Parejo, Robert M. Hierons,
D. Benavides, and A. Ruiz-Cortés. ETHOM: An
evolutionary algorithm for optimized feature models
generation. Tech Report ISA-2011-TR-03 (v. 1.0),
Applied Software Engineering Research Group, 2011.

[14] S. Segura and A. Ruiz-Cortés. Benchmarking on the
automated analyses of feature models: A preliminary

roadmap. In Third International Workshop on
Variability Modelling of Software-intensive Systems,
pages 137–143, Seville, Spain, 2009.

[15] S. She, R. Lotufo, T. Berger, A. Wasowski, and
K. Czarnecki. The variability model of the linux
kernel. In Fourth International Workshop on
Variability Modelling of Software-intensive Systems
(VAMOS’10), Linz, Austria, January 2010.

[16] S. She, R. Lotufo, T. Berger, A. Wasowski, and
K. Czarnecki. Reverse engineering feature models. In
Proceedings of the 27th International Conference on
Software Engineering, pages 461–470, 2011.

[17] S.P.L.O.T.: Software Product Lines Online Tools.
http://www.splot-research.org/, accessed
November 2011.

[18] T. Thüm, D. Batory, and C. Kästner. Reasoning about
edits to feature models. In International Conference
on Software Engineering, pages 254–264, 2009.

[19] P. Trinidad, A. Ruiz-Cortés, D. Benavides, and
S. Segura. Three-dimensional feature diagrams
visualization. In 2nd International Workshop on
Visualisation in Software Product Line Engineering
(ViSPLE 2008), 2008.

[20] E.J. Weyuker. On testing non-testable programs. The
Computer Journal, 25(4):465–470, 1982.

[21] J. White, B. Dougherty, and D. Schmidt. Selecting
highly optimal architectural feature sets with filtered
cartesian flattening. Journal of Systems and Software,
82(8):1268–1284, 2009.



APPENDIX
A. BeTTy CODE EXAMPLES

Figure 7 illustrates how to use BeTTy to generate a random feature model and save it in FaMa Textual Format.

1 // STEP 1: Specify the user’s preferences for the generation (so-called characteristics)
2 GeneratorCharacteristics characteristics = new GeneratorCharacteristics ();
3 characteristics.setNumberOfFeatures (5); // Number of features
4 characteristics.setPercentageCTC (100); // Percentage of cross -tree constraints.
5 // STEP 2: Generate the model with the specific characteristics (FaMa FM metamodel is used)
6 IGenerator generator = new FMGenerator ();
7 FAMAFeatureModel fm = (FAMAFeatureModel) generator.generateFM(characteristics);
8 // STEP 3: Save the model
9 FMWriter writer = new FMWriter ();

10 writer.saveFM(fm , "./model.afm");

Figure 7: Automated generation of a random feature model

Figure 8 despicts a code example showing how to generate a random feature model and its set of products using BeTTy.
The model is saved in FaMa XML format.

1 // STEP 1: Specify the user’s preferences for the generation (characteristics)
2 GeneratorCharacteristics characteristics = new GeneratorCharacteristics ();
3 characteristics.setNumberOfFeatures (30); // Number of features.
4 characteristics.setPercentageCTC (10); // Percentage of constraints.
5 // Max number of products of the feature model to be generated.
6 characteristics.setMaxProducts (10000);
7 // STEP 2: Generate the model with the specific characteristics (FaMa FM metamodel is used)
8 IGenerator generator = new MetamorphicFMGenerator(new FMGenerator ());
9 FAMAFeatureModel fm = (FAMAFeatureModel) generator.generateFM(characteristics);

10 System.out.println("Number of products of the feature model generated: " + generator.
getNumberOfProducts ());

11 // STEP 3: Save the model and the products
12 FMWriter writer = new FMWriter ();
13 writer.saveFM(fm , "./model.xml");

Figure 8: Automated generation of a random feature model and its set of products

Figure 9 illustrates the use of BeTTy for the generation of a random attributed feature model. The model is saved in FaMa
Textual Format.

1 // STEP 1: Specify the user’s preferences for the generation (so-called characteristics)
2 GeneratorCharacteristics characteristics = new AttributedCharacteristic ();
3 characteristics.setNumberOfFeatures (5); // Number of features
4 characteristics.setPercentageCTC (30); // Percentage of cross -tree constraints.
5 // STEP 1.1: Add attributes to the model(5 attributes per feature)
6 Random random = new Random ();
7 for (int i = 0; i < 2; i++) {
8 int domainMax = random.nextInt (100);
9 int domainMin = random.nextInt(domainMax);

10 characteristics.getAttrubitedModelList ().add(new AttributedModel("Attribute" +
11 i, AttributedModel.TYPE_INTEGER , new Range(domainMin ,domainMax), new

IntegerUniformDistributionFunction(domainMin , domainMax)));
12 }
13 // STEP 2: Generate the model with the specific characteristics (FaMa Attributed FM is used)
14 IGenerator generator = new AttributedFMGenerator(new FMGenerator ());
15 FAMAAttributedFeatureModel afm = (FAMAAttributedFeatureModel) generator.generateFM(characteristics

);
16 //STEP 3: Save the model
17 FMWriter writer = new FMWriter ();
18 writer.saveFM(afm , "./ attributedModel.afm");

Figure 9: Automated generation of a random attributed feature model



Figure 10 shows how to use BeTTy to generate a feature model maximizing the execution time invested by FaMa when
retrieving the set of products represented by the model. The optimization criteria (i.e. execution time) is provided to the
generator as an input fitness function (shown in Figure 11)

1 // STEP 1: Specify the user’s preferences for the generation (characteristics)
2 GeneratorCharacteristics ch = new GeneratorCharacteristics ();
3 ch.setNumberOfFeatures (100);
4 ch.setPercentageCTC (30);
5 // STEP 2: Create a fitness function (i.e execution time in FaMa for is void question .)
6 IFitnessFunction fitnessFunction = new TimeFitness ();
7 // STEP 3: Search for a feature model minimizing the branching factor ratio.
8 EvolutionaryFMGenerator generator = new EvolutionaryFMGenerator ();
9 generator.setFitnessFunction(fitnessFunction); // Set fitness function

10 FAMAFeatureModel fm = (FAMAFeatureModel) generator.generateFM(ch);
11 // STEP 4: Save the model
12 FMWriter writer = new FMWriter ();
13 writer.saveFM(fm , "./model.xml");

Figure 10: Automated generation of a feature model maximizing the analysis time in FaMa

1 public class TimeFitness implements IFitnessFunction {
2 public double fitness(FAMAFeatureModel fm) {
3 double stime=System.currentTimeMillis ();
4 QuestionTrader qt = new QuestionTrader ();
5 qt.setSelectedReasoner("JaCoP"); // We use JaCoP Reasoner
6 ProductsQuestion pq = (ProductsQuestion) qt.createQuestion("Products");
7 qt.setVariabilityModel(fm);
8 qt.ask(pq);
9 return System.currentTimeMillis ()-stime;

10 }
11 }

Figure 11: Fitness function for maximizing the execution time in FaMa




