A Cellular Sudoku Solver

Daniel Diaz-Pernil, Carlos M. Fernandez-Marquez, Manuel Garcia-Quismondo,
Miguel A. Gutiérrez-Naranjo, Miguel A. Martinez-del-Amor

Research Group on Natural Computing

Department of Computer Science and Artificial Intelligence
University of Sevilla

Avda. Reina Mercedes s/n, 41012, Sevilla, Spain

sbdani@us.es, carfermar@alum.us.es, mangarfer2@alum.us.es,
magutierQus.es, mdelamorQus.es

Summary. Sudoku is a very popular puzzle which consists on placing several numbers in
a squared grid according to some simple rules. In this paper we present an efficient family
of P systems which solve sudoku puzzles of any order verifying a specific property. The
solution is searched by using a simple human-style method. If the sudoku cannot be solved
by using this strategy, the P system detects this drawback and then the computations
stops and returns No. Otherwise, the P system encodes the solution and returns Yes in
the last computation step.

1 Introduction

Sudoku is currently one of the most famous puzzles in the world. The most popular
version consists on a 9 x 9 grid made up of 3 x 3 subgrids, but the general case, an
n? x n? grid with n x n subgrids is considered. Some cells contain numbers, which
can be considered as input data. The goal is to fill in the empty cells, one number
in each, so that each column, row, and subgrid contains the numbers 1 through 9
exactly once (numbers 1 to n? in the general case). If the input data are correct,
the sudoku has one and only one solution.

The creator is believed to be Howard Garns [6]. He is likely to be the inventor
of a puzzle called ”Number Place” that appeared in New York in 1979. The puzzle
was introduced in Japan by the publishing company Nikoli in the paper Monthly
Nikolist in April 1984 as Suji wa dokushin ni kagiru [7], which can be translated
as the numbers must occur only once or the numbers must be single. Later, the
name was abbreviated as sudoku, where su stands for number and doku stands for
alone. Later Wayne Gould from New Zealand discovered the puzzle on a trip to
Japan and wrote a program to generate new puzzles. He convinced The Times of
London to publish Sudoku puzzles in 2004.

In addition to its undoubted success in entertainment, sudoku has important
properties from a mathematical point of view. The first natural question is to won-

78 D. Diaz-Pernil et al.

der about is the number of all possible sudoku grids. The answer to this question is
not an easy matter. A valid sudoku solution is also a Latin square. A Latin square
is an n x n table filled by using numbers from 1 to n in such way that each symbol
occurs exactly once in each row and exactly once in each column. The number of
9 x 9 Latin squares is about 5.525 x 10%7.

Sudoku imposes the additional constraint on subgrids, so from the previ-
ous number we need to remove the Latin squares which do not satisfy the
condition. The number of valid sudoku solution grids for the standard 9 x 9
grid is 6,670,903,752,021,072,936,960. This number is equal to 9! x 722 x 27 x
27,704,267,971, the last factor of which is prime. The result was derived through
logic and brute force computation. The details can be found at [1]. Other impor-
tant property is that it has been proved that the general problem of solving sudoku
puzzles on n? x n? grids of n x n boxes is known to be NP-complete [5].

Nonetheless, the number of possible solution grids is not the object of study
of this paper nor the complexity of finding the solution. In this paper we study
the problem of solving sudoku by using Membrane Computing techniques. In the
first part of the paper, we develop a theoretical study about the use of brute force
algorithms to solve it, based on a well-known solution for the SAT problem. As
we will see below, the number of elementary membranes for a usual 9 x 9 sudoku
exceeds the number of atoms of the observable universe, so we have a good reason
for looking for a different strategy.

In the second part of the paper, we present a family of P systems {II(n)},en
such that IT(n) is a P system with input. Such an input is, of course, the input
for one sudoku puzzle encoded as a multiset. The solution is searched by using a
human-style method based on looking for squares where only one candidate can
be placed. This method is good enough to find the solution for a large amount of
sudokus, but not all the sudokus can be solved by using this method. An origi-
nal control method in the design of the algorithm is that the P system stops if
the sudoku cannot be solved, i.e., instead of going into a non-ending search, the
P system detects the drawback and halts. If the solution can be reached, the P
systems stops, sends out an object Yes to the environment and provides the so-
lution encoded on the skin. Otherwise, if the P system detects that the solution
cannot be reached then it halts and sends No to the environment in the last step
of computation.

The paper is organized as follows: first we explore a theoretical brute force
algorithm based on a Membrane Computing solution for the SAT problem. After
showing the practical drawback of such a solution, we present our efficient family
of P systems for solving a large amount of sudokus. We illustrate the behavior of
this family with an overview of the computation and, finally, some final remarks
are presented.

A Cellular Sudoku Solver 79

2 A Brute Force Algorithm

A sudoku square of order n consists of n* constants (usually n? copies of the
numbers 1,2,...,n?), arranged into an n? x n? grid which comprises n? subgrids
of size n x n (also called boxes). Such a grid verifies that the entries in each
row, each column and each box are all different. A sudoku problem consists on
a partial assignment of the variables in a Sudoku square. The target is to find a
completion of the assignment which extends the partial assignment and satisfies
the constraints.

The first idea for solving a sudoku problem is to consider it as a constraint
problem. In fact, we are looking for one assignment of numbers to squares which
satisfies a finite amount of restrictions. The set of constraints of a sudoku problem
can be expressed as a logic formula in conjunctive normal form. Following [3], a
sudoku square of order n can be represented as an instance of the SAT problem
with n® propositional variables. For each entry in the n? x n? grid, we will consider
n? variables. Let us use the notation Szy» to refer to variables. Variable sy, is
assigned true if and only if the entry in the row z and column y is number z. In
this way, if the variable sy53 takes the value true, then it means that the number
3 is placed at position (7,5) of the grid. According to this notation, the different
constraints for the sudoku problem can be represented as the following formulae:

e There is at least one number in each entry:
2

= A AV s

rz=1y=1z2=1

e FEach number appears at most once in each row:

n? n? n?-1 n?

=ANN N G Vs

y=12z=1 z=1 i=x+1
e FEach number appears at most once in each column:

n? n?—-1 n?

= /\ AWANANGEA

r=12=1 y=1 i=y+1
e FEach number appears at most one in each box:

n? n—1n—1 n

4= /\ /\ /\ /\ /\ /\ ﬁs(mﬂ) (nj+y)z ﬁs(ni+m)(nj+k)z)

z=11=0 j=0 z=1y=1k=y+1
n? n—ln—-1 n n
= AANANANA
z=11i=0 j=0 z=1y=1

The conjunction of these five formulae @ = 1 A2 A s A s A5 is a for-
mula in conjunctive normal form and each truth assignment which makes it true
represents a right arrangement of n? copies of 1,2, ..., n? according to the sudoku

constraints.

n n

/\ TS(nitx)(nj+y)z ﬁS(ni+k)(anrl)z)
z+11=1

80 D. Diaz-Pernil et al.

Once expressed the sudoku as such a formula, finding a solution to the puzzle
can be considered as the problem of finding a truth assignment which satisfies the
formula. This is exactly the satisfiability (SAT) problem.

Any truth assignment which makes it true represents a right arrangement of
n? copies of 1,2, ...,n? according to the sudoku constraints over an empty sudoku
grid of order n, but we are not interested in finding such solutions. In fact, a sudoku
puzzle should have a certain amount of numbers placed in the right position as
input in such way that there exists a unique possible assignment which represents
the solution to the problem. Given a sudoku puzzle, we will call Input to the set

Imput = {{(z,y, z) : z is placed on the square (z,y) of the grid}

In order to deal with the input, it is enough to add the corresponding values
to the formula @ as follows:

i =®A [\ say

(@.,2)) Elnput

Given a sudoku problem and its associated formula &;,,, finding the solution to
the problem is equivalent to finding a truth assignment which satisfies the formula.

In [2], a family of P systems with active membranes to solve the SAT problem
was presented. It was based on the solution presented in [4]. The main difference
was that the solution from [4] only provides Yes or No as answers to the problem.
The solution in [2] found and stored all the truth assignments which satisfy the
formula, if there exists.

By considering the encoding of a sudoku problem as a CNF formula on one
side and the family of P systems which provides solutions for SAT on the other
side, we have a Membrane Computing solution for all sudoku problems.

This nice theoretical solution has an insurmountable obstacle from a practical
point of view: The number of elementary membranes in one configuration of one P
system from the family reaches 2%V, where N is the number of variables of the CNF
formula. For a sudoku of order n, the number of variables is n%, and so the number
of elementary membranes is 2"°. For a usual sudoku of order 3, 279 elementary
membranes are simultaneously handled. Estimates of the matter content of the
observable universe indicate that it contains on the order of 108° atoms', so the
brute force algorithm is only a fine calculus for Membrane Computing theory.

3 A New Solution

In this section we present a family of P systems P = {II(n) : n € N} such that
II(n) solves sudokus of order n. The P system II(n) receives as input the initial
data placed in a sudoku puzzle. It is designed to solve sudokus which satisfy a
property which will be described below. If the sudoku satisfies the property, the

! http://en.wikipedia.org/wiki/Observable_universe

A Cellular Sudoku Solver 81

P system computes the solution, it sends an object Yes to the environment in the
last step of computation and encodes the solution to the sudoku as a multiset in
the skin of the halting configuration. Otherwise, the P system detects that the
property is not satisfied and halts by sending an object No to the environment in
the last step of computation.

The property is the following: In all partial solutions of the sudoku, there exists
at least one square (i,7) with a unique candidate.

We will call partial solution of a sudoku to a sudoku grid where some new
numbers have been placed and all of them are in the right position. A number p is
a unique candidate for the square (i,7) if for all ¢ € {1,...,n2}, p # ¢, ¢ has been
previously placed in the same row, the same column or the same box of (i, 7). For
example, if we consider the sudoku of order 2 of Figure 1, number 4 is a unique
candidate for the square (1,2), since 1 is in the same row, 2 is in the same column
and 3 is in the same box.

41 42 43 44
1] 2
31 32 33 34
3
21 22 23 24
1
11 12 13 14

Fig. 1. A sudoku problem of order 2

Many sudokus satisfy this property. It is in the base of many human strategies
for solving sudokus. Nonetheless, sometimes it is not enough to solve the sudoku
and more sophisticated methods are necessary.

3.1 A Family of P Systems

Next, we present a family II = {II(n)},en for solving any sudoku of order n
verifying the property stated above. Each P system IT(n) only depends only on
the order n of the sudoku and it does not increase the number of membranes along
the computation. The used rules are of the following types:

o Enzymatic rules: [~in u — v].. The multiset u evolves to the multiset v in

the membrane with label e. The rule is applied if in the same membrane the
objects from the set cat are present (catalysts) and none of the objects from the
set in are present (inhibitors). The catalysts and the inhibitor are not modified
by the application of the rules and cat, in and v can be empty.

e Dissolution rules: [u]. — o. The multiset u causes membrane e to dissolve and
produces the object o.

82 D. Diaz-Pernil et al.

o Send-out rules: [a]. — []ca. The object a is sent out of the membrane with
label e.

As usual, all the rules are applied in parallel and in a maximal manner. In
one step, one object of a membrane can be used by only one rule (chosen in a
non deterministic way), but any object which can evolve by one rule of any form,
should evolve. If a membrane is dissolved, its content is left free in the surrounding
region. If there are objects in this membrane which evolve by means of enzymatic
rules and a membrane h is dissolved at the same time, then we suppose that first
the enzymatic rules are used and then the dissolution is produced. Of course, this
process takes only one step. We will also use priorities among sets of rules.

The input will be provided as a set of objects z;;,, by denoting that the number
n is placed at the square with row ¢ and column j. The initial configuration will
also contain information about the box corresponding to each square. In such a
way, objects box;;, with i,j € {1,... ,n?} are place in the initial configuration and
k is the box corresponding to the square (i, j), i.e., if i =an+ f and j =yn+4¢
with a,y € {0,...,n — 1} and 38,0 € {1,...,n} then k = an + v+ 1.

The initial configuration also contains the objects fiz, Cjz, bre, Sqi; with
i,j,k,x € {1,...,n%}. The occurrence of fi, in the configuration denotes that
the number x is not placed in any square of the row i yet and then, the number x
can be eventually placed in such a row in the future. Analogously, c;, denotes that
x is not placed in the column j and by, that the object is not placed in any square
of the box k. The objects sg;; are witnesses of the existence of the corresponding
square. Finally, n? copies of each object 7;; with 4,7 € {1,...,n?} are also placed
in the initial configuration.

The idea of the design is to develop a sequence of two stages: The checking
stage and the reset stage. In the checking stage, the P system looks for squares
with a unique candidate. If such squares are found, the candidates are placed in
them. After the stage all the auxiliary objects are recalculated in the reset stage
and then we start again the checking stage. This checking-reset cycle ends when
all the squares are filled and the sudoku is solved or if in a checking stage no new
squares with unique candidates are found.

Formally, the P system of order n with input that solves the sudokus with the
property claimed above is a construct

H(’I’L) = <Fa Hau7w€7w87i0aRl7R25Rg7 gl)RgaR47 .. 7R117R%27R%2>

with the priorities Ry > Ry > R > Ry > ... Ry1 > R}, with ¢ € {a,r7,m} and
z € {1,2} where

o The alphabet I' = {s;ju, Zija, b0Tijk, $Gij, fizs Cjzs bk, Gij, 5 4,5, k,x €
{1,...,n2} YU {ko, k1, w}
The set of labels H = {e, s}
The membrane structure p = [[]¢ s

e The initial multisets w. = {k1} U {baxijk,sqij,fim,cjx,bkz,r?; s,k €
{1,...,n%}} and w, = 0.

A Cellular Sudoku Solver 83
e iy = e, i.e., the input membrane is e.

We also consider the following sets of rules?
Rl = [Zijm - Sijxp]e for ivjax € {17 e anz}'

Each input object z;, produces an object s;;; and one object p. In any
configuration we will have as many objects p as numbers are correctly placed on
the sudoku. After applying these rules, we have as many objects p as numbers are
placed as input.

[fzz —)\}e

Sijx
Ry=1{ ¢ sz’)‘]e for i,7,k,x € {1,...,n%}.
[bkz — >\]e
Sijx bOIijk
The object s;;, represents that the number « is placed in the square (4, j).
When such an object is generated the objects fis, ¢j, and by, must disappear.

Ry = [~dmyj, — Ne
k1

RS = [ﬁdaij ? e for i, j,z € {1,...,n2}.

5= [ndri; — Ae
k1
R4 = [—\d—\rijsqij —>k 54ij ’I"Z—z d]e for i,j S {1, e ,nQ}.
1

Before starting with the checking stage, we ensure that the markers (m;j;)
and counters (a;; and r;;) are reset. First, we remove all the copies of a;;, m;;
and ;. In the next step we add n? copies of each object r;; to membrane e.

R5 = [kl — kO]e

The reset stage ends when object k1 (used as catalyst in the previous sets of
rules) evolves to ko.

Rg = [—\mijx Tij ——————— Mijz aij]e for 1,5, € {1, . ,7’1,2}.
fiz Cju bra DO jk

The checking stage starts with the set Rs. We know that if objects fiz ¢ju bia
are present in membrane e in one configuration, then the number z is a candidate
to be placed in the square (i, j), since x has not been placed yet in the row i, the
column j or the box k. The question is to know if = is the unique candidate. This
is checked by rules from set Rg. Before applying these rules, we have checked
that for all square (4,) we have n? copies of r;; in membrane e and zero copies
of a;j. If fiz ¢jz i are present in the membrane (they act as catalyst), then the

2 We write — before the object a if @ acts as an inhibitor.

84 D. Diaz-Pernil et al.

corresponding rule is applied. The application of the rule removes one copy of r;;
and produces one copy of a;;. The occurrence of m;j;, ensures that the rule is
applied once.

2
_ —1 o
Ry = [sijqr aij fiz Cjz Oa DT SijePWe 1, J,x,q € {1,...,n?}.

n
g 0T ik
If there exists only one a;; and n* — 1 copies of r;; (and the square (i,j) is

empty) then the square (i, 7) has a unique candidate. The rules delete the objects
fiz Cjz b and introduce the objects s;5,, p and w. The object s;;, corresponds
to a number and a square in the solution of the sudoku, p denotes that a new
number has been placed in the solution (when p reaches m? copies, the cycle
reset-checking stops) and w is a witness of the application of the rule.

Rg = [w ko — kg]e
_ [w— Ae
Ry = { kol — No

If an object w has been produced, it means that at least one of the rules
from the set Ry has been applied. In other words, a new number has been placed
on the solution of the sudoku and the reset-checking cycle must go on. In this
case, objects w and kg are consumed by the rule from Rg and a new object kq is
produced. If ky has not been consumed by the rule from Rg, then no new number
has been placed on the sudoku. This means that it does not make sense going on
with the reset-checking cycle, since the next checking stage will have the same
configuration that this one. In order to prevent an infinite sequence of cycles,
object kg dissolves membrane e and the remaining objects w (if any) are removed.

RlO = [pnﬁ]e — Yes

The copies of p denote the number of squares correctly filled. When it reach
n8 copies, the membrane e is dissolved.

_ [A=A
Rll = { []fg _>k1]e

This set of rules marks the end of the checking stage. The inhibitor d is
removed and the catalyst k; is produced so rules from Rs can be triggered and
the reset stage starts again.

Notice that membrane e is dissolved anyway. If the sudoku is not completed,
but no more numbers can be placed, then the rule [kg]e — No is applied
and the object No appears in membrane s. Otherwise, if the sudoku is com-
pleted, [p”ﬁ]e — Yes is applied and Yes appears in membrane s. In the last step
of computation, the corresponding object Yes or No is sent out to the environment.

A Cellular Sudoku Solver 85

1 _ J [Yes]s — []sYes
Ry = { o], — []. No

Also in the last step, the auxiliary objects are removed from membrane s

[p—As [mija — Al ai; — Al

p2. =) e = A [d— Al [rij — Als

12 [Cjz — /\] [bozijr — s [ka — Als
[bkm [qu' - A]s

4 An Overview of the Computation

We will give some hints on the computation by following the computation of
the example of order two showed in Figure 1. We start with a sudoku prob-
lem with 4 numbers placed. Such an input is encoded in the multiset Input =
2311 #2322 7213 2141. The initial configuration Cjy has two membranes [[].]s. Mem-
brane s is empty and membrane e contains the input plus the objects k; and
fiz Cjz by 5Gi5 DOT 454, rfj for i,5,k,x € {1,...,4}.

From this configuration Cp, rules from sets R;, R% , Rs and Rg can be applied.
Due to priority, rules from R; are applied and we obtain configuration C;. The
objects z;j, are removed and replaced by the corresponding s;;,. Four copies of
object p also appear. This means that four numbers are correctly placed in the
sudoku.

Rules from R; will nor be applied any more, since no rule pro-
duces objects z;j,. From C; rules of set R, are applied and the objects
f31 c11 b31 f32 co2 b3a foz c13 b13 f11 €41 bo1 are removed from membrane e and we
obtain configuration Cj.

Next, rules from R} are applied (obtaining C3) and then we apply rules from
R, (obtaining Cy). This is the first time that we reset the system, so Cy is identical
to Cy, but with new objects d.

Since membrane e contains objects d, none of the rules from sets R3 nor from
R4 are applicable. The next application of the rule corresponds to Rs. The object
k1 evolves to ko and the checking stage begins. The new configuration C contains
ko. Since no object m;;, has been created yet, for each triplet (7, j,) such that the
number x can be placed in the square (i, j), one of the rules from Rg is triggered,
reaching configuration Cs. The application of one of these rules removes one copy
of the corresponding 7;; and produces one copy of a;;. Each rule only can be
triggered once due to object m;j;,. After the application of these rules, the number
of objects a;; denotes the number of possible candidates to be placed in the square
(,7). In the next step, two rules from R; are triggered and the objects s124 and
s414 are produced and configuration C7 is reached. After the application of rules
from Rg, the number of objects a;; for squares (1,2) and (4,1) was exactly one.
This means that for these squares, the candidate is unique. The current partial
solution for the sudoku is shown in Figure 2.

86 D. Diaz-Pernil et al.

4

41 42 43 44
1] 2

31 32 33 34
3

21 22 23 24

4 1
11 12 13 14

Fig. 2. Partial solution at configuration C

The application of rules from R; has produced two copies of the object w in the
configuration Cg. One of these copies, along with kg produces ki (Configuration
C9). In the next step the remaining w is deleted (Configuration Cig). The checking
stage finishes with the application of the rule from Rig. Object d is removed and
the configuration C4; is reached.

The object d is a strong inhibitor. Since it has disappeared, rules from R3 can
be applied and the reset stage starts again. We go on with this new reset stage and
the application of three rules from R; produces the objects ss01, S403 and si1o.
This means that three new numbers can be placed on the sudoku (see Figure 3).

4| 3

41 42 43 44
1|2

31 32 33 34
3|1

21 22 23 24
214 1

11 12 13 14

Fig. 3. Partial solution at configuration Ci¢

The checking-reset cycle goes on and in Chy, the objects si33 and sq4o are
added. In 032, 5431, S334 and S244 are added, and ﬁnally in C’407 the ObjeCtS 52392
and s343 are generated. Figure 4 shows the solution of the sudoku according to the
objects s;j; in membrane e.

The P system follows with the computation and in C4o there are 16 copies
of objects p in membrane e. The rule from R;¢ is triggered, the membrane e is
dissolved and all the objects go to membrane s. In the next step, one objects
Yes is sent out and the remaining objects (but s;;,) are deleted, so the final
configuration has an object Yes in the environment and one membrane where the
solution is encoded.

A Cellular Sudoku Solver 87

4131 2
411 422 434 443
313 321 332 344
212 “4 233 241

Fig. 4. Solution at configuration Cyo

As pointed above, it is possible that for some sudokus there no exist squares
with unique candidates. In such cases, when the checking stage is reached, no rule
from R7 is applied and no object w is produced. Since we do not have objects
w, the rule from Rg is not applied, and according to priority, the dissolution rule
from Ry is applied. An object No is sent to membrane s, the reset-checking cycle
is stopped. In the next step an object No is sent out and the computation ends.

Notice that we have chosen an example of order 2 for illustrating the process,
but the computation is similar for a sudoku problem of any order.

5 Final Remarks

P systems have showed many times to be versatile enough to represent many
different situations, from real life or from more abstract scenarios. In parallel with
a very expressive representation system, Membrane Computing also provides a
friendly set of tools for dealing with the information. Besides the computational
power of the expressiveness, the research in a new computational model also needs
to face a problem of efficiency. In this paper we provide a first theoretical solution
for the problem of finding a solution to a sudoku problem. It is based on an
appropriate representation of the problem as a formula and a well-established
solution of the SAT problem. The solution works from a theoretical point of view,
but it does not make sense form a practical one.

In the second part of the paper, we have designed a solution for solving sudoku
problems in an effective way. It solves all the sudokus which verifies a very common
property, by following a strategy close to human-style solutions. One of the main
original contributions of the design is the checking to avoid infinite loops. The
implemented strategy is enough to find the solution to many sudoku problems,
but it is not enough to solve all of them. The next step is to go on with the
research and tackle these hard sudoku problems. Beyond these efforts it is the
horizon of a better understanding of the cellular processes and making more and
more efficient cellular designs.

88

D. Diaz-Pernil et al.

Acknowledgements

The authors acknowledge the support of the projects TIN2008-04487-E and TIN-

20

09-13192 of the Ministerio de Ciencia e Innovacién of Spain and the support of

the Project of Excellence with Investigador de Reconocida Valia of the Junta de
Andalucia, grant P08-TIC-04200.

References

o

. B. Felhenhauer, F. Jarvis. Enumerating possible sudoku grids. Univ. Sheffield and
Univ. Dresden, 2005. http://www.shef.ac.uk/~pmlafj/sudoku/sudoku.pdf

M.A. Gutiérrez—Naranjo, M.A. Martinez—del-Amor, 1. Pérez—Hurtado, M.J. Pérez—
Jiménez. Solving the N — Queens Puzzle with P systems. In Seventh Brainstorm-
ing Week on Membrane Computing, Vol. I, R. Gutiérrez-Escudero, M.A. Gutiérrez-
Naranjo, Gh. Paun, Ignacio Pérez-Hurtado, A. Riscos Nunez, (eds.) Fénix Editora
(2009) 199-210.

I. Lynce, J.Ouaknine. Sudoku as a SAT Problem. Proceedings of the 9 th Interna-
tional Symposium on Artificial Intelligence and Mathematics, AIMATH 2006, Fort
Lauderdale (2006).
http://anytime.cs.umass.edu/aimath06/proceedings/P34.pdf

M.J. Pérez-Jiménez, A. Romero-Jiménez, F. Sancho-Caparrinini. A polynomial com-
plexity class in P systems using membrane division. In E. Csuhaj-Varji, C. Kintala,
D. Wotschke, G. Vaszil (Eds.). Proceedings of the 5th Workshop on Descriptional
Complexity of Formal Systems, DCFS 2003, Computer and Automaton Research
Institute of the Hungarian Academy of Sciences (2003) 284-294.

T. Yato and T. Seta. Complexity and Completeness of Finding Another Solution and
Its Application to Puzzles. IEICE Trans. Fundamentals, E86-A (5) (2003) 1052-1060.
http://www.dellmagazines.com

http://www.nikoli.co. jp/puzzles/

