
On the Computational Power
of Spiking Neural P Systems

Alberto Leporati, Claudio Zandron,
Claudio Ferretti, Giancarlo Mauri

Dipartimento di Informatica, Sistemistica e Comunicazione
Università degli Studi di Milano – Bicocca
Via Bicocca degli Arcimboldi 8, 20126 Milano, Italy

{leporati,zandron,ferretti,mauri}@disco.unimib.it

Summary. In this paper we study some computational properties of spiking neural P
systems. In particular, we show that by using nondeterminism in a slightly extended
version of spiking neural P systems it is possible to solve in constant time both the
numerical NP–complete problem Subset Sum and the strongly NP–complete problem
3-SAT. Then, we show how to simulate a universal deterministic spiking neural P system
with a deterministic Turing machine, in a time which is polynomial with respect to the
execution time of the simulated system. Surprisingly, it turns out that the simulation
can be performed in polynomial time with respect to the size of the description of the
simulated system only if the regular expressions used in such a system are of a very
restricted type.

1 Introduction

Membrane systems (also called P systems) were introduced in [16] as a new class of
distributed and parallel computing devices, inspired by the structure and function-
ing of living cells. The basic model consists of a hierarchical structure composed by
several membranes, embedded into a main membrane called the skin. Membranes
divide the Euclidean space into regions, that contain some objects (represented
by symbols of an alphabet) and evolution rules. Using these rules, the objects
may evolve and/or move from a region to a neighboring one. Usually, the rules
are applied in a nondeterministic and maximally parallel way; moreover, all the
objects that may evolve are forced to evolve. A computation starts from an initial
configuration of the system and terminates when no evolution rule can be applied.
The result of a computation is the multiset of objects contained into an output
membrane, or emitted from the skin of the system. For a systematic introduction
to P systems we refer the reader to [18], whereas the latest information can be
found in [23].

228 A. Leporati et al.

In an attempt to pass from cell-like to tissue-like architectures, in [13] tissue
P systems were defined, in which cells are placed in the nodes of a (directed)
graph. Since then, this model has been further elaborated, for example, in [4]
and [19], with recent results about both theoretical properties [1] and applications
[14]. This evolution has led to explore also neural-like architectures, yielding to
the introduction of spiking neural P systems (SN P systems, for short) [8], based
on the neurophysiological behavior of neurons sending electrical impulses (spikes)
along axons to other neurons. We recall that this biological background has already
led to several models in the area of neural computation, e.g., see [11, 12, 6].

Similarly to tissue P systems, in SN P systems the cells (neurons) are placed
in the nodes of a directed graph, called the synapse graph. The contents of each
neuron consist of a number of copies of a single object type, called the spike. The
firing rules assigned to a cell allow a neuron to send information to other neurons
in the form of electrical impulses (also called spikes) which are accumulated at the
target cell. The application of the rules depends on the contents of the neuron;
in the general case, applicability is determined by checking the contents of the
neuron against a regular set associated with the rule. As inspired from biology,
after a cell sends out spikes it becomes “closed” (inactive) for a specified period of
time, that reflects the refractory period of biological neurons. During this period,
the neuron does not accept new inputs and cannot “fire” (that is, emit spikes).
Another important feature of biological neurons is that the length of the axon
may cause a time delay before a spike arrives at the target. In SN P systems this
delay is modeled by associating a delay parameter to each rule which occurs in the
system. If no firing rule can be applied in a neuron, there may be the possibility
to apply a forgetting rule, that removes from the neuron a predefined number of
spikes.

In the original model of SN P systems defined in [8], computations occur as
follows. A configuration specifies, for each neuron of the system, the number of
spikes it contains and the number of computation steps after which the neuron
will become “open” (that is, not closed). Starting from an initial configuration, a
positive integer number is given in input to a specified input neuron. The number
is encoded as the interval of time steps elapsed between the insertion of two spikes
into the neuron. To pass from a configuration to another one, for each neuron a
rule is chosen among the set of applicable rules, and is executed. The computation
proceeds in a sequential way into each neuron, and in parallel among different
neurons. Generally, a computation may not halt. However, in any case the output
of the system is considered to be the time elapsed between the arrival of two
spikes in a designated output cell. Defined in this way, SN P systems compute
functions of the kind f : N → N (they can also indirectly compute functions of
the kind f : Nk → N by using a bijection from Nk to N). By ignoring the output
neuron we can define accepting SN P systems, in which the natural number given
in input is accepted if the computation halts, and rejected otherwise. On the other
hand, by ignoring the input neuron (and thus starting from a predefined input
configuration) we can define generative SN P systems.

On the Computational Power of SN P Systems 229

In [8] it was shown that generative SN P systems are universal, that is, can
generate any recursively enumerable set of natural numbers. Moreover, a char-
acterization of semilinear sets was obtained by spiking neural P systems with a
bounded number of spikes in the neurons. These results can also be obtained with
even more restricted forms of spiking P systems; for example, [7] shows that at
least one of these features can be avoided while keeping universality: time delay
(refractory period) greater than 0, forgetting rules, outdegree of the synapse graph
greater than 2, and regular expressions of complex form. Finally, in [20] the be-
havior of spiking neural P systems on infinite strings and the generation of infinite
sequences of 0 and 1 was investigated, whereas in [2] spiking neural P systems
were studied as language generators (over the binary alphabet {0, 1}).

The rest of this paper is organized as follows. In section 2 we give some math-
ematical preliminaries, and we define the standard version of SN P systems (as
found in [9]) as well as a slightly extended version. In section 3 we show how the
NP–complete problems Subset Sum and 3-SAT can be solved in constant time
by exploiting nondeterminism in our extended SN P systems. In section 4 we turn
our attention to deterministic systems, and we show how to simulate them by us-
ing deterministic Turing machines. Section 5 concludes the paper and gives some
directions for future research.

2 Preliminaries

Let us start by recalling the standard definition of a spiking neural P system, taken
from [9]. A spiking neural membrane system (SN P system, for short), of degree
m ≥ 1, is a construct of the form

Π = (O, σ1, σ2, . . . , σm, syn, in, out),

where:

1. O = {a} is the singleton alphabet (a is called spike);
2. σ1, σ2, . . . , σm are neurons, of the form σi = (ni, Ri), with 1 ≤ i ≤ m, where:

a) ni ≥ 0 is the initial number of spikes contained in σi;
b) Ri is a finite set of rules of the following two forms:

(1) E/ac → a; d, where E is a regular expression over a, and c ≥ 1, d ≥ 0
are integer numbers; if E = ac, then it is usually written in the following
simplified form: ac → a; d;

(2) as → λ, for s ≥ 1, with the restriction that for each rule E/ac → a; d of
type (1) from Ri, we have as 6∈ L(E) (where L(E) denotes the regular
language defined by E);

3. syn ⊆ {1, 2, . . . ,m} × {1, 2, . . . ,m}, with (i, i) 6∈ syn for 1 ≤ i ≤ m, is the
directed graph of synapses between neurons;

4. in, out ∈ {1, 2, . . . ,m} indicate the input and the output neurons of Π .

230 A. Leporati et al.

The rules of type (1) are called firing (also spiking) rules, and they are applied
as follows. If the neuron σi contains k ≥ c spikes, and ak ∈ L(E), then the rule
E/ac → a; d ∈ Ri can be applied. The execution of this rule removes c spikes from
σi (thus leaving k − c spikes), and prepares one spike to be delivered to all the
neurons σj such that (i, j) ∈ syn. If d = 0, then the spike is immediately emitted,
otherwhise it is emitted afted d computation steps of the system. (Observe that, as
usually happens in membrane computing, a global clock is assumed, marking the
time for the whole system, hence the functioning of the system is synchronized.)
If the rule is used in step t and d ≥ 1, then in steps t, t+ 1, t+ 2, . . . , t+ d− 1 the
neuron is closed, so that it cannot receive new spikes (if a neuron has a synapse
to a closed neuron and tries to send a spike along it, then that particular spike is
lost), and cannot fire new rules. In the step t+ d, the neuron spikes and becomes
again open, so that it can receive spikes (which can be used starting with the step
t+ d+ 1) and select rules to be fired.

Rules of type (2) are called forgetting rules, and are applied as follows: if the
neuron σi contains exactly s spikes, then the rule as → λ from Ri can be used,
meaning that all s spikes are removed from σi. Note that, by definition, if a firing
rule is applicable, then no forgetting rule is applicable, and vice versa.

In each time unit, if a neuron σi can use one of its rules, then a rule from Ri
must be used. Since two firing rules, E1 : ac1 → a; d1 and E2 : ac1 → a; d2, can
have L(E1) ∩ L(E2) 6= ∅, it is possible that two or more rules can be applied in a
neuron. In such a case, only one of them is chosen nondeterministically. Thus, the
rules are used in the sequential manner in each neuron, but neurons function in
parallel with each other.

The initial configuration of the system is described by the numbers n1, n2, . . .,
nm of spikes present in each neuron, with all neurons being open. During the
computation, a configuration is described by both the number of spikes present
in each neuron and by the state of each neuron, which can be expressed as the
number of steps to count down until it becomes open (this number is zero if
the neuron is already open). A computation in a system as above starts in the
initial configuration. In order to compute a function f : Nk → N, we introduce k
natural numbers n1, n2, . . . , nk in the system by “reading” from the environment
a binary sequence z = 0b10n110n21 . . . 10nk10g, for some b, g ≥ 0; this means that
the input neuron of Π receives a spike in each step corresponding to a digit 1
from the string z. Note that we input exactly k + 1 spikes. The result of the
computation is also encoded in the distance between two spikes: we impose to the
system to output exactly two spikes and halt (sometimes after the second spike)
hence producing a train spike of the form 0b

′
10r10g

′
, for some b′, g′ ≥ 0 and with

r = f(n1, n2, . . . , nk).
If we use an SN P system in the generative mode, then no input neuron is

considered, hence no input is taken from the environment; we start from the initial
configuration, and the distance between the first two spikes of the output neuron
(or other numbers, see the discussion in [9]) is the result of the computation.

On the Computational Power of SN P Systems 231

Dually, we can ignore the output neuron, and if the computation halts, then the
number is accepted.

We define the description size of an SN P system Π as the number of bits which
are necessary to describe it. Since the alphabet O is fixed, no bits are necessary
to define it. In order to represent syn we need at most m2 bits, whereas we can
represent the values of in and out by using logm bits each. Every neuron σi requires
to specify a natural number ni, and a set Ri of rules. Each rule requires to specify
its type (firing or forgetting), which can be done with 1 bit, and in the worst case
it requires to specify a regular expression and two natural numbers. If we denote
by N the maximum natural number that appears in the definition of Π , R the
maximum number of rules which occur in its neurons, and S the maximum size
required by the regular expressions that occur in Π (more on this later), then we
need a maximum of logN +R(1 +S+ 2 logN) bits to describe every neuron of Π .
Hence, to describeΠ we need a total of m2+2 logm+m

(
logN+R(1+S+2 logN)

)

bits. Note that this quantity is polynomial with respect to m, R, S and logN .
Since the regular languages determined by the regular expressions that occur in
the system are unary languages, the strings of such languages can be bijectively
identified by their lengths. Hence, when writing the regular expression E, instead
of writing unions, concatenations and Kleene closures among strings we can do the
same by using the lengths of such strings. In this way we obtain a representation
of E which is exponentially more compact than the usual representation of regular
expressions. As we will see in section 4, this compact representation will yield
some difficulties when we will simulate a deterministic accepting SN P system by
a deterministic Turing machine.

In what follows it will be convenient to consider also a slightly extended version
of SN P systems. Precisely, we will allow rules of the type E/ac → ap; d, where
c ≥ 1, p ≥ 0 and d ≥ 0 are integer numbers. The semantics of this kind of rules
is as follows: if the contents of the neuron matches the regular expression E, then
the rule can be applied. When the rule is applied, c spikes are removed from the
contents of the neuron and p spikes are prepared to be delivered to all the neurons
which are directly connected (through an arc of syn) with the current neuron. If
d = 0, then these p spikes are immediately sent, otherwise the neuron becomes
closed for the next d computation steps, after which the p spikes will be sent. As
before, a closed neuron does not receive spikes from other neurons, and does not
apply any rule. If p = 0, then we obtain a forgetting rule as a particular case of
our general rules.

Also in the extended SN P systems it may happen that, given two rules
E1/a

c1 → ap1 ; d1 and E2/a
c2 → ap2 ; d2, if L(E1) ∩ L(E2) 6= ∅ then for some con-

tents of the neuron both the rules can be applied. In such a case, we nondetermin-
istically choose one of them. Note that we do not require that forgetting rules are
applied only when no firing rule can be applied. We say that the system is determin-
istic if, for every neuron that occurs in the system, any two rules E1/a

c1 → ap1 ; d1

and E2/a
c2 → ap2 ; d2 in the neuron are such that L(E1)∩L(E2) = ∅. This means

232 A. Leporati et al.

that, for any possible contents of the neuron, at most one of the rules that occur
in the neuron may be applied.

By using an input neuron and an output neuron, we have SN P systems that
compute functions of the kind f : N→ N, and hence we cover both the generative
and the accepting cases. If out = 0, then it is understood that the output is sent
to the environment (as the number of spikes produced by the system, as the dis-
tance between the first two spikes, etc.). As usual, to use an SN P system in the
generative mode we do not consider the input neuron, and thus no input is taken
from the environment; we start from the initial configuration, and the distance
between the first two spikes of the output neuron (or the number of spikes con-
tained into the output neuron at the end of the computation, as discussed above)
is the result of the computation. Note that generative SN P systems are inherently
nondeterministic, otherwise they would always reproduce the same sequence of
computation steps, and hence the same output. Dually, we can ignore the output
neuron to obtain an accepting SN P system. We input a number in the system as
the distance between two spikes entering the input neuron (or the number of spikes
that occur in the input neuron in the initial configuration) and, if the computation
halts, then the number is accepted.

The description size of an extended SN P system is defined exactly as we did
for standard systems, the only difference being that now we require (at most) three
natural numbers to describe a rule.

3 Solving NP–complete Problems with Extended Spiking
Neural P Systems

In this section we show that nondeterministic SN P systems are very powerful
computing devices, at least in the extended version defined in the previous section:
in fact, they are able to solve NP–complete problems in a constant number of
computation steps.

3.1 Solving the Subset Sum problem

Let us first consider the Subset Sum problem, which can be stated as follows.

Problem 1. Name: Subset Sum.

• Instance: a (multi)set V = {v1, v2, . . . , vn} of positive integer numbers, and
a positive integer number S

• Question: is there a subset B ⊆ V such that
∑
b∈B

b = S?

If we allow to nondeterministically choose among the rules which occur in the
neurons, then the extended SN P system depicted in Figure 1 solves any given
instance of Subset Sum in a constant number of steps. We emphasize the fact

On the Computational Power of SN P Systems 233

Fig. 1. A nondeterministic extended SN P system that solves the Subset Sum problem
in constant time

that such a solution occurs in the semi-uniform setting, that is, for every instance
of Subset Sum we build an SN P system that specifically solves that instance.

Let (V = {v1, v2, . . . , vn}, S) be the instance of Subset Sum to be solved, and
let B ⊆ V . In the initial configuration of the system, the leftmost neurons contain
(from top to bottom) v1, v2, . . . , vn spikes, respectively, whereas the rightmost
neurons contain zero spikes each. In the first step of computation, in each of the
leftmost neurons of the SN P system depicted in Figure 1 it is nondeterministically
chosen whether to include or not the element vi in B; this is accomplished by
nondeterministically choosing among one rule that forgets vi spikes (in such a
case, vi 6∈ B) and one rule that propagates vi spikes to the rightmost neurons. At
the beginning of the second step of computation a certain number N of spikes, that
corresponds to the sum of the vi which have been chosen, occurs in the rightmost
neurons. We have three possible cases:

• N < S: in this case neither the rule aS → a; 0 nor the rule aS+1 → a; 1
(which occur in the neuron at the top and at the bottom of the second layer,
respectively) fire, and thus no spike is emitted to the environment;

• N = S: only the rule aS → a; 0 fires, and emits a single spike to the environ-
mnent. No further spikes are emitted;

• N > S: both the rules aS → a; 0 and aS+1 → a; 1 fire. The first rule im-
mediately sends one spike to the environment, whereas the second rule sends
another spike at the next computation step (due to the delay associated with
the rule).

234 A. Leporati et al.

Hence, by counting the number of spikes emitted to the environment at the second
and third computation steps we are able to read the solution of the given instance
of Subset Sum: the instance is positive if and only if a single spike is emitted.

The formal definition of the extended (generating) SN P system depicted in
Figure 1 is as follows:

Π = ({a}, σ1, . . . , σn+2, syn, out) ,

where:

• σi = (vi, {avi → λ, avi → avi ; 0}) for all i ∈ {1, 2, . . . , n};
• σn+1 = (0, {aS → a; 0});
• σn+2 = (0, {aS+1 → a; 1);
• syn =

⋃n
i=1{(i, n+ 1), (i, n+ 2)};

• out = 0 indicates that the output is sent to the environment.

However, here we are faced with a problem that we have already encountered
in [10], and that we will encounter again in the rest of the paper. In order to clearly
expose the problem, let us consider the following algorithm that solves Subset
Sum using the well-known Dynamic Programming technique [3]. In particular, the
algorithm returns 1 on positive instances, and 0 on negative instances.

Subset Sum({v1, v2, . . . , vn}, S)

for j ← 0 to S
do M [1, j]← 0

M [1, 0]←M [1, v1]← 1
for i← 2 to n

do for j ← 0 to S
do M [i, j]←M [i− 1, j]

if j ≥ vi and M [i− 1, j − vi] > M [i, j]
then M [i, j]←M [i− 1, j − vi]

return M [n, S]

In order to look for a subset B ⊆ V such that
∑

b∈B b = S, the algorithm uses an
n × (S + 1) matrix M whose entries are from {0, 1}. It fills the matrix by rows,
starting from the first row. Each row is filled from left to right. The entry M [i, j]
is filled with 1 if and only if there exists a subset of {v1, v2, . . . , vi} whose elements
sum up to j. The given instance of Subset Sum is thus a positive instance if and
only if M [n, S] = 1 at the end of the execution.

Since each entry is considered exactly once to determine its value, the time
complexity of the algorithm is proportional to n(S+1) = Θ(nS). This means that
the difficulty of the problem depends on the value of S, as well as on the magnitude
of the values in V . In fact, let K = max{v1, v2, . . . , vn, S}. If K is polynomially
bounded with respect to n, then the above algorithm works in polynomial time.
On the other hand, if K is exponential with respect to n, say K = 2n, then the
above algorithm works in exponential time and space. This behavior is usually

On the Computational Power of SN P Systems 235

referred to in the literature by telling that Subset Sum is a pseudo–polynomial
NP–complete problem.

The fact that in general the running time of the above algorithm is not poly-
nomial can be immediately understood by comparing its time complexity with the
instance size. The usual size for the instances of Subset Sum is Θ(n logK), since
for conciseness every “reasonable” encoding is assumed to represent each element
of V (as well as S) using a string whose length is O(logK). Here all logarithms are
taken with base 2. Stated differently, the size of the instance is usually considered
to be the number of bits which must be used to represent in binary S and all the
integer numbers which occur in V . If we would represent such numbers using the
unary notation, then the size of the instance would be Θ(nK). But in this case we
could write a program which first converts the instance in binary form and then
uses the above algorithm to solve the problem in polynomial time with respect
to the new instance size. We can thus conclude that the difficulty of a numerical
NP–complete problem depends also on the measure of the instance size we adopt.

The problem we mentioned above about the SN P system depicted in Figure
1 is that the rules avi → λ and avi → avi ; 0 which occur in the leftmost neurons,
as well as those that occur in the rightmost neurons, check for the existence of a
number of spikes which is exponential with respect to the usually agreed instance
size of Subset Sum. Moreover, to initialize the system the user has to place a
number of objects which is also exponential. This is not fair, because it means
that the SN P system that solves the NP–complete problem has an exponential
size with respect to the binary string which is used to describe it; an exponential
effort is thus needed to build the system, that easily solves the problem by working
in unary notation (hence in polynomial time with respect to the size of the system,
but not with respect to its description size). This problem is in some aspects similar
to what has been described in [10], concerning traditional P systems that solve
NP–complete problems.

3.2 The 3-SAT problem

In this section we show that SN P systems are also able to solve non-numerical
NP–complete problems. Such problems are inherently strongly NP–complete, that
is, they remain NP–complete even if the numbers eventually contained into the
instance are expressed in unary form. Specifically, we first propose a simple ex-
tended SN P system that solves 3-SAT, and then we show that also standard SN
P systems are able to solve this problem.

We start by recalling some well known definitions, in order to settle the nota-
tion. A boolean variable is a variable which can assume one of two possible truth
values: true and false. As usually done in the literature, we will denote true
by 1 and false by 0. A literal is either a directed or a negated boolean variable.
A clause is a disjunction of literals, whereas a 3-clause is a disjunction of exactly
three literals. Given a set X = {x1, x2, . . . , xn} of boolean variables, an assignment
is a mapping a : X → {0, 1} that associates to each variable a truth value. The

236 A. Leporati et al.

number of all possible assignments to the variables of X is 2n. We say that an
assignment satisfies the clause C if, assigned the truth values to all the variables
which occur in C, the evaluation of C (considered as a boolean formula) gives 1
as a result.

The 3-SAT decision problem is defined as follows.

Problem 2. Name: 3-SAT.

• Instance: a set C = {C1, C2, . . . , Cm} of 3-clauses, built on a finite set {x1, x2,
. . . , xn} of boolean variables;

• Question: is there an assignment of the variables x1, x2, . . . , xn that satisfies
all the clauses in C?

It is well known [5] that 3-SAT is an NP–complete problem. In what follows
we will equivalently say that an instance of 3-SAT is a boolean formula φn, built
on n free variables and expressed in conjunctive normal form, with each clause
containing exactly three literals. The formula φn is thus the conjunction of the
above clauses. Notice that the number m of possible 3-clauses is polynomially
bounded with respect to n: in fact, since each clause contains exactly three literals,
we can have at most (2n)3 = 8n3 clauses.

Fig. 2. A nondeterministic extended SN P system that solves the 3-SAT problem in
constant time: the module used to build the first two layers (one for each boolean variable)

The extended SN P system that solves 3-SAT is depicted in Figures 2 (the
module used to build the first and the second layer) and 3 (third and fourth layers).
It is composed by four layers of neurons, the first three of which correspond to
the variables, the literals and the clauses of φn, respectively; the fourth layer is
composed by a single neuron, that gathers the spikes produced by the neurons of
the third layer. Every neuron in the first layer is connected with its corresponding
one or two neurons in the second layer, depending upon whether the literal appears
only directed/negated in φn, or both. Similarly, the neurons of the second layer
are connected with those of the third layer according to what literals appear in
each clause. Since we are dealing with 3-SAT, every neuron in the third layer will

On the Computational Power of SN P Systems 237

Fig. 3. A nondeterministic extended SN P system that solves the 3-SAT problem in
constant time: third and fourth layer (clauses and output neuron)

have exactly three input lines coming from the second layer. Finally, every neuron
of the third layer is connected with the output neuron.

During the computation, spikes move from the first to the fourth layer, and
then (eventually) are expelled to the environment. In the initial configuration,
every neuron in the first layer (which is bijectively associated with one of the n
variables of φn) contains two spikes, whereas all the other neurons are empty. In
the first step of the computation, in each neuron of the first layer it is nondeter-
ministically chosen whether to assign 1 or 0 to the corresponding variable, that is,
whether to assign 1 to the directed or to the negated literal. This choice is made
by nondeterministically choosing between two rules: one that sends two spikes to
the next layer, and one that sends a single spike. In the former case, only the neu-
ron that corresponds to the negated literal will fire during the next computation
step; in the latter case, only the neuron that corresponds to the directed literal
will fire. Since literals are directly connected to the clauses in which they appear,
every neuron associated to a clause will receive one spike if and only if at least
one of its literals is satisfied. In such a case, one spike is sent to the neuron of the
fourth layer, that in this way will contain as many spikes as the number of satisfied
clauses. The rule contained in this neuron will fire if and only if there are m spikes,
that is, if and only if all the clauses are verified. We can thus conclude that the
instance φn of 3-SAT is positive if and only if (at least) one spike is emitted to the
environment.

As mentioned above, it is not necessary to use extended SN P systems to solve
3-SAT. In Figure 4 we can see a module which contains only standard rules, whose
behavior is almost equivalent to that of the extended module depicted in Figure 2.
Neuron number 1 initially contains one spike, which is delivered to all the neurons
of the second layer during the first step of computation; note that this neuron is

238 A. Leporati et al.

Fig. 4. A nondeterministic standard SN P system that solves the 3-SAT problem in con-
stant time: the module used to build the first two layers (one for each boolean variable).
Neuron 1 occurs only one time in the system, and is connected with every neuron of the
second layer

not repeated for all modules, but appears only once in the system. All the other
neurons of the system are connected exactly in the same way as the corresponding
neurons of the extended SN P system described above.

During the first step of computation, every neuron labelled with Xi (in the
first layer) nondeterministically chooses whether to immediately emit one spike,
or to emit it after a delay of one time step. In the former case, at the end of
the first computation step both the neurons of the second layer connected with
Xi (corresponding to the directed and to the negated variable, respectively) will
contain two spikes. However, these spikes will be removed in the second neuron by
applying the rule a2 → λ, whereas in the first neuron they will produce a single
spike that will propagate to the third layer after a delay of one time step. Hence,
the nondeterministic choice of immediately emitting a spike from the first to the
second layer corresponds to assigning 1 to variable xi. On the other hand, if the
spike is emitted from neuron Xi only after a delay of one time step, then at the
end of the first computation step both the neurons corresponding to the directed
and to the negated variable will contain one spike. This time, the application of
the rule a→ λ will remove such a spike from the first neuron, whereas the second
neuron will emit one spike towards the third layer. Hence, the choice to emit a
spike from the first to the second layer after one time step corresponds to assigning
0 to the variable xi.

Note that the spikes are emitted from the neurons of the second layer with a
delay of one computation step; this is done in order to keep such neurons closed
during the second computation step, so that the spike (eventually) emitted from
the first layer will get lost. However, if desired, we can avoid using delays in the
second layer by looking at the answer produced by the system during the fourth
computation step, and ignoring what happens afterwards.

On the Computational Power of SN P Systems 239

4 Simulating Deterministic SN P Systems with
Deterministic Turing Machines

Now that we have seen how powerful can be nondeterministic SN P systems, let us
turn to deterministic SN P systems. In this section we consider a slight extension
of the universal SN P system Π defined in [2], and we show that any t steps of
computation of Π can be simulated by a deterministic Turing machine in a time
which is polynomial both with respect to t and with respect to the description
size of Π . With respect to the universal SN P system defined in [2], our extension
allows to send a predefined number q of spikes to adjacent neurons, instead of
sending just one spike. Clearly this modification does not affect universality, and
thus also our extended SN P systems are universal.

As we will see, it is possible to simulate these systems in polynomial time
mainly because the regular expressions used in the simulated SN P system are of a
very restricted form. On the other hand, we will show that if the use of unrestricted
regular expressions is allowed, then it is possible to solve the Subset Sum NP–
complete problem by exploting the implicit mechanism used by SN P systems to
decide whether a rule can be applied or not.

Theorem 1. Consider a deterministic accepting SN P system Π, of degree m ≥ 1,
in which:

• P and Q are the maximum numbers of spikes that appear in the left and in the
right side of the rules, respectively;

• D is the maximum delay that appears in the rules;
• all the regular expressions are of the following forms: ai, with i ≤ 3, or a(aa)+.

Then, t steps of computation of Π can be simulated by a deterministic Turing
machine in a polynomial time with respect to t and to the description size of Π.

Proof. Consider a deterministic accepting SN P system

Π = ({a}, σ1, . . . , σm, syn, in)

having the characteristics mentioned in the statement of the theorem. We build a
deterministic Turing machine M with multiple tapes, such that t steps of compu-
tation of Π can be simulated by M in a number of steps which is polynomial with
respect to t and to the description size of Π .

To simulate Π with M , we basically need to keep track of the state (number
of spikes and number of steps after which the neuron will become open) of each
neuron. In general, the simulation of a single open neuron proceeds by first looking
for the (unique) rule that can fire, among all the rules of the neuron. Once such rule
has been found, we remove all the spikes consumed by the rule and we communicate
(after a specified number of steps) the produced spikes to all adjacent neurons,
provided that they are open.

In order to formalize this simulation we consider a deterministic Turing machine
M with m + 1 tapes: m tapes are used to simulate the activity of each neuron,

240 A. Leporati et al.

while the remaining tape is used to store the description of Π . In the i-th tape,
used to simulate neuron σi, we write the triplet Ni = (ni, oi, ti), where:

• ni indicates the number of spikes contained into neuron σi;
• oi stores the number of spikes produced by the last rule that fired, and that

are ready to be sent to adjacent neurons (zero if the neuron is open, but no
rule can be applied);

• ti denotes the number of steps during which the neuron will remain closed (zero
if the neuron is open).

With a little abuse of notation, in what follows we will refer to neuron σi by
the triplet Ni (that contains the dynamical information about the state of σi) and
by its set of rules Ri.

We simulate each step of computation of Π in two macro substeps: in the first
substep we simulate the firing phase (i.e., the consumption of spikes) of each open
neuron; then, in the second substep we simulate the spiking phase (i.e., the receipt
of spikes) from adjacent neurons.

The simulation of a step of Π can be illustrated using the following algorithm,
given in pseudocode:

Simulate-Computation-Step(N,R)

// Remark: N = (N1, N2, . . . , Nm), where Ni = (ni, oi, ti) ∀ i ∈ {1, . . . ,m}
// R = (R1, R2, . . . , Rm), where Ri is the set or rules of neuron σi

// Firing phase
for each neuron Ni

do if ti = 0 // if the neuron is open then fire
then (p; q; t) = Select-Rule-to-Apply(Ni, Ri)

ni ← ni − p // remove the spikes used to fire
oi ← q // prepare the buffer for emitting spikes
ti ← d // set closing time

else ti ← ti − 1 // else decrease closing time

// Spiking phase
for each neuron Ni

do if ti = 0 // if the neuron is open then spike
then for each neuron Nj

if (i, j) ∈ syn and tj = 0 // if σj is connected to
// σi and is open

then nj ← nj + oi // send the spikes
oi ← 0 // once spiked, clear the buffer

Select-Rule-to-Apply(Ni, Ri)

// Remark: Ni = (ni, oi, ti)
// Ri = {ri,1, ri,2, . . . , ri,k}, where ri,h = Ei,h/a

pi,h → aqi,h ; di,h

On the Computational Power of SN P Systems 241

// for all h ∈ {1, 2, . . . , k}
// Select the rule to be applied in neuron Ni
for each rule ri,h ∈ Ri

if ni ∈ L(Ei,h) and ni ≥ pi,h // if the rule is applicable
then return (pi,h; qi,h; di,h) // set the parameters to be used

// in the simulation
return (0; 0; 0) // if no rule can be applied, set to 0 all parameters

The time complexity of this algorithm can be determined as follows.
The first (firing) phase requires to check for each neuron if it is open and, in

such a case, to select a rule and simulate it. Let Zi denote the time required to
select the rule to be applied in neuron σi, and let Z be the maximum of all Zi.
We will return later to this value, due to its importance in the time complexity
of the overall simulation. Once the rule to be applied has been selected, we need
to update the number of spikes in the neuron. Thus, we first subtract a certain
number p of spikes (at most P) from ni. The time required by this operation
depends on the number of binary digits which are needed to represent p and ni.
In general, the largest among the two numbers will be the latter. In fact assume
that, at the first step of computation, ni is initialized with a certain number w of
spikes; moreover, assume that the neuron does not consume any spike until the
current step, and that all the other neurons send to σi the maximum possible
amount of spikes (P) per computation step in all the previous steps. Then, after
t steps of computation, the neuron σi will contain w + tQm spikes. This means
that the above subtraction requires a time which is O(log(w+ tQm)), where w, m
and Q are polynomial with respect to the description size. The time required to
prepare the buffer for the emission of spikes is O(logQ), while the time required
to set the closure time is O(logD). Thus, the time required to simulate the firing
of a single neuron is O(Z + log(w + tQm) + logQ+ logD), and for m neurons is
O(m (Z + log(w + tQm) + logQ+ logD)).

The second phase, the spiking, requires to check for each neuron σi if it is open
and, in such a case, to check for any other neuron σj if it is connected to σi. If
it is connected, then we need to add to nj the number of spikes emitted by σi.
In the worst case, each neuron is connected to all other neurons, and all neurons
deliver Q spikes to every other neuron. This means that for each neuron σi (that
is, m times) we have to check whether it is open; this operation requires O(logD)
steps. If σi is open, then for every other neuron σj we have to:

• check if neurons σi and σj are connected: the time needed to execute this
operation is proportional to m2 (here we assume that the Turing machine is
able to move only to the next or to the previous cell during a computation
step);

• check if neuron σj is open: the time needed is O(logD);
• if both the previous conditions hold, then add the spikes emitted by σi to nj .

This sum involves numbers of at most O(log(w + tQm)) bits.

242 A. Leporati et al.

Thus, a step of the spiking phase requires O
(
(m logD) ·m · (m2 + logD+ log(w+

tQm))
)

= O
(
(m2 logD)(m2 + logD + log(w + tQm))

)
steps.

The total time required to simulate t steps of Π is thus t times the time needed
to perform the two phases, that is, t ·

(
O(m (Z + log(w+ tQm) + logQ+ logD)) +

O
(
(m2 logD)(m2 + logD + log(w + tQm))

))
.

To show that this time is polynomial with respect to the description size of the
system Π , we need to explicit the time Z required to select which rule has to be
applied in neuron σi. We stress the fact that, since the system Π is deterministic,
at each computation step there is at most one rule in σi which can fire. In order
to select such a rule, we need to check whether there are enough spikes in the
neuron (and clearly this can be done in polynomial time), as well as to check if
ni ∈ L(Ei). In general, this last operation cannot be done in polynomial time,
as it will be proved in the next proposition. Nonetheless, in [9] it is shown that
universality can be obtained by using SN P systems where the regular expressions
associated with each rule are of very simple forms: ai, with i ≤ 3, or a(aa)+.
Considering such systems, it is easy to see that the time required to check if the
contents of σi is in the regular set defined by the regular expression can be done
in polynomial time, since in the former case it suffices to check if the number is
equal to i (time proportional to logni), whereas in the latter case it suffices to
check the last bit of ni.

Thus, the time required to select the rule to apply depends on the number of
rules in each neuron. That is, Zi = O(|Ri|) = O(r), where r = max1≤i≤m |Ri| is
the maximum number of rules which can be contained in a neuron.

As a consequence, the total time required to simulate t steps of Π is t·
(
O(m (r+

log(w+ tQm) + logQ+ logD)) +O
(
(m2 logD)(m2 + logD+O(log(w+ tQm))

))
.

We conclude this section by stressing that the above simulation could be per-
formed in polynomial time because the regular expressions used in the rules are of
a very restricted form. Indeed, there is a large amount of computational power hid-
den into the implicit mechanism that SN P systems use to decide whether a given
rule can be applied or not, as proved in the following proposition. The difficulty
of checking whether the contents of a neuron is into the regular set determined by
the regular expression E of the rule is induced by the fact that we are dealing with
unary languages. As told above, in these languages a string is uniquely determined
by its length. Hence, a compact representation of the string is obtained by writing
(in binary) its length, rather than by writing the string itself. This is an expo-
nentially smaller representation, and consequently all the problems defined upon
this representation become harder, as it happens for all “succint” representations
(see [15], chapter 20). Concerning the succint version of the membership problem
(is a given string into the language generated by E?) we can prove the following
proposition.

Proposition 1. Let Π be an SN P system having a single neuron, that contains
the rule E : ac → a; d, where c ≥ 1 and d ≥ 0 are natural numbers, and E is
any regular expression (for a unary language defined on the alphabet {a}). If E

On the Computational Power of SN P Systems 243

is described in a succint form, then deciding whether this rule can be applied is at
least NP–complete.

Proof. Let us show a polynomial time reduction from Subset Sum to this problem.
Let (V = {v1, v2, . . . , vn}, S) be an instance of Subset Sum. If we put K =
max{v1, v2, . . . , vn, S}, then the instance size is Θ(nK), as discussed in section
3.1. Consider the regular expression E = E1 ◦E2 ◦ . . .◦En, where Ei = (λ∪{avi}),
with λ the symbol that represents the empty word. Since we are dealing with unary
languages in succint form, every string of L(E) can be uniquely determined by its
length, and thus we can write L(Ei) = {0, vi}. L(E) is just obtained by performing
a language theoretic concatenation among the languages L(Ei): L(E) = L(E1) ◦
L(E2) ◦ . . . ◦ L(En). Clearly, the regular expression E can be represented using a
string whose length is polynomial with respect to the size of the given instance of
Subset Sum. It is immediately verified that L(E) contains 2n elements, bijectively
associated with the subsets of V . Moreover, aS ∈ L(E) if and only if there exists
a set B ⊆ V such that

∑
b∈B b = S. Hence, checking whether aS is in L(E) or not

is equivalent to solve the Subset Sum problem on the given instance (V, S).

5 Conclusions and Directions for Future Research

In this paper we have started to study the computational power of spiking neural
P systems. In particular, by slightly extending the original definition given in [8]
and [9] we have shown that by exploiting nondeterminism it is possible to solve
NP–complete problems such as Subset Sum and 3-SAT.

Concerning deterministic systems, we have shown that the universal deter-
ministic SN P systems defined in [8, 9] can be simulated by deterministic Turing
machines with a polynomial slowdown. Surprisingly, this was possible only be-
cause the universal P systems described in [8, 9] use regular expressions of a very
restricted form. In fact, it was shown that if we allow the use of general regular
expressions then we can exploit the mechanism used by SN P systems to decide
whether the contents of a neuron matches a regular expression to solve the NP–
complete problem Subset Sum.

Further research is needed to fully understand the power of accepting SN P
systems. In particular, by encoding their inputs as the distance between subsequent
spikes we are limiting ourselves to use numbers expressed in unary notation. A
more compact way to encode a k-bit natural number n would be to send a sequence
of spikes during a prefixed sequence of k computation steps: the presence of a spike
indicates a 1, its absence indicates a 0. It is not currently known whether in this
way SN P systems can still solve numerical NP–complete problems such as Subset
Sum, or whether a subsystem that converts integer numbers from binary to unary
notation can be designed, as it was made in [10] for traditional P systems.

244 A. Leporati et al.

Acknowledgments

We gratefully thank Gheorghe Păun for introducing the authors to the stimulating
subject of spiking neural P systems, and for asking us a “Milano theorem” (in the
spirit of [22]) about their computational power, during the Fifth Brainstorming
Week on Membrane Computing, held in Seville from January 29th to February 2nd,
2007. Moreover, we are really indebted with him for suggesting us the standard
nondeterministic SN P system that solves 3-SAT, exposed in section 3.

References

1. A. Alhazov, R. Freund, M. Oswald: Cell/symbol complexity of tissue P systems with
symport/antiport rules. Intern. J. Found. Computer Sci., 17, 1 (2006), 3–26.

2. H. Chen, R. Freund, M. Ionescu, Gh. Păun, M.J. Pérez-Jiménez: On string lan-
guages generated by spiking neural P systems. In: M.A. Gutiérrez-Naranjo, Gh. Păun,
A. Riscos-Núñez, F.J. Romero-Campero, eds., Fourth Brainstorming Week on Mem-
brane Computing, Vol. I RGCN Report 02/2006, Research Group on Natural Com-
puting, Sevilla University, Fénix Editora, 169–194.

3. T.H. Cormen, C.H. Leiserson, R.L. Rivest: Introduction to Algorithms. MIT Press,
Boston, 1990.

4. R. Freund, Gh. Păun, M.J. Pérez-Jiménez: Tissue-like P systems with channel states.
Theoretical Computer Science, 330 (2004), 101–116.

5. M.R. Garey, D.S. Johnson: Computers and Intractability. A Guide to the Theory on
NP–Completeness. W. H. Freeman and Company, 1979.

6. W. Gerstner, W. Kistler: Spiking Neuron Models. Single Neurons, Populations, Plas-
ticity. Cambridge University Press, 2002.

7. O.H. Ibarra, A. Păun, Gh. Păun, A. Rodŕıguez-Patón, P. Sośık, S. Woodworth:
Normal forms for spiking neural P systems. Theoretical Computer Science, 372, 2-3
(2007), 196–217.

8. M. Ionescu, Gh. Păun, T. Yokomori: Spiking neural P systems. Fundamenta Infor-
maticae, 71, 2-3 (2006), 279–308.

9. M. Ionescu, A. Păun, Gh. Păun, M.J. Pérez-Jiménez: Computing with spiking neural
P systems: traces and small universal systems. In C. Mao, T. Yokomori, eds., DNA
Computing, 12th International Meeting on DNA Computing, DNA12, Seoul, Korea,
June 5-9, 2006, Revised Selected Papers. LNCS 4287, Springer, 2006, 1–16.

10. A. Leporati, C. Zandron, M.A. Gutiérrez-Naranjo: P systems with input in binary
form. International Journal of Foundations of Computer Science, 17, 1 (2006), 127–
146.

11. W. Maass: Computing with spikes. Special Issue on Foundations of Information Pro-
cessing of TELEMATIK, 8, 1 (2002), 32–36.

12. W. Maass, C. Bishop (eds.). Pulsed Neural Networks, MIT Press, Cambridge (MA),
1999.

13. C. Mart́ın-Vide, J. Pazos, Gh. Păun, A. Rodŕıguez-Patón: A new class of symbolic
abstract neural nets: Tissue P systems. In Proceedings of COCOON 2002, Singapore,
LNCS 2387, Springer-Verlag, Berlin, 290–299.

14. M. Oswald: Independent agents in a globalized world modelled by tissue P systems.
Conf. Artificial Life and Robotics, 2006.

On the Computational Power of SN P Systems 245

15. C.H. Papadimitriou: Computational Complexity, Addison-Wesley, 1994.
16. Gh. Păun: Computing with membranes. Journal of Computer and System Sciences,

61 (2000), 108–143. See also Turku Centre for Computer Science — TUCS Report
No. 208, 1998. Available at: http://www.tucs.fi/Publications/techreports/TR208.php

17. Gh. Păun: Computing with membranes. An Introduction. Bulletin of the EATCS,
67 (2/1999), 139–152.

18. Gh. Păun: Membrane Computing. An Introduction. Springer–Verlag, Berlin, 2002.
19. Gh. Păun, Y. Sakakibara, T. Yokomori: P systems on graphs of restricted forms.

Publicationes Mathematicae Debrecen, 60 (2002), 635–660.
20. Gh. Păun, M.J. Pérez-Jiménez, G. Rozenberg: Infinite spike trains in spiking neural

P systems. Submitted for publication.
21. G. Păun, G. Rozenberg: A guide to membrane computing. Theoretical Computer

Science, 287, 1 (2002), 73–100.
22. C. Zandron, C. Ferretti, G. Mauri: Solving NP–complete problems using P systems

with active membranes. In I. Antoniou, C.S. Calude, M.J. Dinneen, eds., Unconven-
tional Models of Computation, Springer-Verlag, London, 2000, 289–301.

23. The P systems Web page: http://psystems.disco.unimib.it/

