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Multiple regression is one of the most frequently used statistical 
methods in the social and behavioral sciences (Gordon, 2010, pp. 
1-4). In most multiple regression analyses, a point estimate of the 
squared multiple correlation is reported and is often given primary 
emphasis in the interpretation of results. However, a point estimate 
of a squared multiple correlation that has been obtained from 
sample data will contain sampling error of unknown direction and 
magnitude. Consequently, it is important to supplement a squared 
multiple correlation point estimate with a confi dence interval 
for the population squared multiple correlation. The reporting 
of effect sizes and confi dence intervals are now “the minimum 
expectation for all APA journals” (Publication Manual of the 
American Psychological Association, 2010, p. 33).

When planning a multiple regression analysis, it is important to 
obtain a sample size that is large enough to provide an acceptably 

narrow confi dence interval for important population parameters 
such as the squared multiple correlation, denoted here as ρ2. The 
textbook recommendations for planning a multiple regression 
analysis can be very misleading. For example, in a regression 
model with k predictor variables, Harris (1975) recommends a 
sample size of n = 50 + k and Green (1991) recommends a sample 
size of n = 50 + 8k. Most sample size recommendations do not 
distinguish between the sample size required to test H

0
: ρ2 = 0 

with desired power and the sample size required to obtain a (1 – 
α) confi dence interval for ρ2 with desired precision. Bonett and 
Wright (2011) showed that the approximate sample size required to 
obtain a (1 – α) confi dence interval for ρ2, with desired upper and 
lower interval estimates denoted as L̃ and Ũ, can be expressed as 

n = 16 2 Z
2
/ ln e( )

2

+ k + 2
 (1)

where ẽ  = (1 – L̃)/(1 – Ũ) and ρ̃ 2 = (L̃ + Ũ)/2 is a planning value of 
ρ2. Equation 1 clearly shows that the sample size requirement is 
not a multiplicative function of k, as suggested by Green (1991). 
Equation 1 also shows how higher levels of confi dence and greater 
relative precision (smaller values of ẽ ) both play a fundamental 
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Background: Bonett and Wright (2011) proposed a simple and accurate 
sample size planning formula for estimating a squared multiple correlation 
with desired relative precision. Shieh (2013) incorrectly evaluated the 
accuracy of the Bonett-Wright formula. Method: To address a criticism 
of Shieh that the Bonett-Wright formula was not examined under a wider 
range of conditions, the accuracy of the Bonett-Wright sample size 
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size planning formulas for a squared multiple correlation are important 
tools in designing a multiple regression analysis where the primary goal 
is to obtain an acceptably accurate estimate of the squared multiple 
correlation. The computationally intensive and simulation-based methods 
proposed by Shieh are not necessary.
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Determinación del tamaño de muestra para la correlación múltiple: 
respuesta a Shieh (2013). Antecedentes: Bonett y Wright (2011) 
propusieron una fórmula simple y precisa para calcular el tamaño de 
muestra necesario cuando el objetivo es estimar, con una cierta precisión 
relativa, el cuadrado del coefi ciente de correlación múltiple. Shieh 
(2013) incorrectamente evaluó la fórmula de Bonett-Wright. Método: 
para responder a la crítica hecha por Shieh de que la fórmula de Bonett-
Wright no había sido examinada para una amplia gama de condiciones, 
la fórmula es ahora evaluada bajo las condiciones adicionales propuestas 
por Shieh. También se propone una fórmula simple, en dos etapas, para 
calcular el tamaño de muestra necesario y su exactitud es evaluada bajo 
las condiciones propuestas por Shieh. Resultados: el análisis indica que 
la fórmula de Bonett-Wright bajo el criterio de predicción relativa y la 
nueva fórmula de dos etapas bajo el criterio de precisión absoluta son muy 
precisas. Conclusiones: es muy útil tener fórmulas que permitan planifi car 
el tamaño de muestra en el contexto del análisis de regresión múltiple 
cuando el objetivo es estimar el cuadrado del coefi ciente de correlación 
múltiple con una precisión aceptable. Los métodos de cómputo intensivo 
y por simulación propuestos por Shieh no son necesarios.
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role in the sample size requirement. The required sample size 
also depends on the planning value of ρ2. However, the relation 
between the sample size requirement and ρ2 needs to be qualifi ed 
by the fact that larger values of ẽ  are typically more appropriate 
with larger ρ2 values. For instance, assuming ρ2 = .2, the desired 
lower and upper limits might be L̃ = .15 and Ũ = .25 giving ẽ  
= (1 – .15)/(1 – .25) = 1.13. With ρ2 = .9 and desired lower and 
upper limits of .85 and .95 (also a width of .1), the desired relative 
precision is ẽ  = (1 – .85)/(1 – .95) = 3. 

Shieh (2013) is highly critical of Equation 1, claiming that it 
is insuffi ciently accurate and that only computationally intensive 
simulation-based computer programs should be used to determine 
sample size requirements for the squared multiple correlation 
coeffi cient. Shieh also claimed that Bonett and Wright (2011) did 
not evaluate the accuracy of Equation 1 under a suffi ciently wide 
range of conditions. Although Bonett and Wright evaluated the 
accuracy of Equation 1 for 42 realistic conditions (ρ̃ 2 = .05 to .95, 
ẽ  = 1.05 to 3, k = 2 and 10), Shieh claimed that Equation 1 might be 
inaccurate under other conditions. Shieh examined the accuracy 
of Equation 1 for 27 additional conditions and concluded that 
Equation 1 is “not recommended for precise interval estimation 
of squared multiple correlation coeffi cient in multiple regression 
analysis” (p. 406) and “instead of the simplifi ed formulas, it is 
prudent to consider a more sophisticated approach” (p. 406). 
However, Shieh’s conclusion is based on an erroneous analysis 
of the accuracy of Equation 1. Specifi cally, Shieh incorrectly 
evaluated Equation 1 in terms of absolute precision w̃ = (Ũ – L̃) 
rather than relative precision ẽ  = (1 – L̃)/(1 – Ũ). Bonett and Wright 
emphasized the fact that Equation 1 was derived to approximate 
relative precision. Relative precision and absolute precision are 
two completely different sample size criteria, and a sample size 
approximation for desired relative precision, such as Equation 1, 
will not give the same result as a sample size approximation for 
desired absolute precision.

Bonett and Wright (2011) also proposed a simple method to 
approximate the sample size requirement to estimate ρ2 with 
desired relative precision and specifi ed “assurance”. Assurance 
is the probability that an observed confi dence interval will have 
desired or better precision. Shieh (2013) incorrectly evaluated the 
accuracy of the Bonett-Wright sample size method for specifi ed 
assurance in terms of absolute precision rather than relative 
precision.

In the last few years, the use of open-source R statistical 
functions has increased dramatically in the social and behavioral 
sciences. Researchers can now compute a confi dence interval for 
a squared multiple correlation using a simple R command (see 
Kelley, 2007). With this readily available resource, we can now 
recommend a simple 2-step sample size formula that will closely 
approximate the sample size needed to estimate a squared multiple 
correlation with desired absolute precision. Any future assessment 
of our sample size formulas should examine Equation 1 with 
respect to relative precision, and the proposed 2-step procedure 
should be examined with respect to absolute precision. 

The approximate sample size requirement to estimate ρ2 with 
desired absolute precision w̃ = (Ũ – L̃) can be obtained in two 
computational steps. First, compute the following step-1 sample 
size approximation 

n1 = 16
2 1 2( )

2
Z

2
/w( )

2

+ k + 2
 (2)

Using a result from Bonett and Wright (2000), defi ne a step-2 
sample size approximation as

n2 = n1 k( ) w1 /w( )
2
+ k  (3)

where w
1
 is the width of a confi dence interval for ρ2 based on a 

sample of size n
1
. To obtain w

1
, use the ci.R2 function in the 

“MBESS” R package with the sample size set to n
1
 and the sample 

squared multiple correlation set to its expected value. The expected 
value is approximately 1 + (n – k)(ρ̃2 – 1)/(n – 1). 

To illustrate the computation of Equations 2 and 3, suppose 
a researcher is planning a multiple regression analysis with k = 
4 predictor variables and wants to compute a 95% confi dence 
interval for ρ2. The researcher believes that the population squared 
multiple correlation is about .4 and would like the width of the 
95% confi dence interval to be about .3. Applying Equation 2 gives 
n

1 
= 16(.4)(.6)2(1.96/.3)2 + 6 = 104.3, which would be rounded up 

to 105. If the population squared multiple correlation is .4, then 
the expected value of the estimated squared multiple correlation 
would be about 1 + (105 – 4)(.4 –1)/(105 – 1) = .417 in a sample of 
size 105. In R, enter the command 

ci.R2(R2=.417, N=105, K=4, conf.level=.95, 
Random.Predictors=T)

which displays a lower limit of .246 and an upper limit of .539 
corresponding to a width of w

1
 = .293. Computing Equation 3 

gives a step-2 approximation of n
2
 = (105 – 4)

 

.293

.3

2

 
+4 = 100.3, 

which would be rounded up to 101. It is interesting to note that 
Equations 2 and 3 also can be used to approximate the sample size 
required to estimate η2 in a fi xed-x regression model or in an 
ANOVA with desired absolute precision by setting Random.
Predictors=F in the ci.R2 function. 

Unlike Equation 1, where ρ̃ 2 can be replaced with its one-sided 
upper prediction limit to approximate the specifi ed “assurance” 
(see Bonett & Wright, 2011), Equation 2 is maximized at ρ̃ 2 = 1/3. 
To approximate the specifi ed assurance with absolute precision, 
two-sided prediction limits for ρ̃ 2 are needed and ρ̃ 2 is replaced 
with the value within the prediction limits that is closest to 1/3. 
Bonett and Wright (2011) gave a simple approximation for the 
upper one-sided prediction limit, but we now recommend using an 
exact one-sided prediction limit that can be easily obtained using 
the ci.R2 function. 

Accuracy of sample size formulas

Shieh (2013) claimed that the evaluation of Equation 1 
performed by Bonett and Wright (2011) under 42 conditions 
was not suffi ciently detailed, and he examined Equation 1 under 
27 additional conditions. Unfortunately, Shieh inappropriately 
evaluated the accuracy of Equation 1 in terms of absolute 
precision rather than relative precision. We will examine Equation 
1 in terms of relative precision and Equation 3 in terms of relative 
precision for 24 of the 27 conditions proposed by Shieh. Shieh 
defi ned relative precision as ẽ  = (1 – ρ̃ 2 + w̃ /2)/(1 – ρ̃ 2 – w̃ /2) 
where w̃ is the desired absolute precision. However, in three of the 
27 conditions ẽ  is undefi ned because 1 – ρ̃ 2 – w̃ /2 is non-positive. 
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In two conditions where Shieh had used ρ̃ 2 = .9, we used ρ̃ 2 = .85 
(for w̃ = .2) or ρ̃ 2 = .75 (for w̃ = .4) so that 1 – ρ̃ 2 – w̃ /2 would be a 
positive value. The accuracy of Equation 1 under 24 conditions not 
considered by Bonett and Wright is summarized in Table 1. Note 
that the expected relative precision (denoted as ê in Table 1) for 
the sample size approximation given by Equation 1 is very close to 
the desired relative precision (ẽ ) in all 24 conditions. The accuracy 
of Equation 1 described in Table 1 is very similar to the results 
reported by Bonett and Wright for 42 other conditions. Note also 
that the expected absolute precision (denoted as ŵ in Table 1) for 
the sample size approximation given by Equation 3 is very close to 
the desired absolute precision (w̃) in all 24 conditions. 

Discussion

As can be seen in Table 1, Equations 1 and 3 are remarkably 
accurate. In fact, they are more accurate than necessary because 
these sample size formulas require a planning value for the 
population squared multiple correlation and researchers are usually 
unable to accurately specify this value. A minor misspecifi cation 
of ρ̃ 2 will result in a far greater sample size planning error than 
the approximation errors in Equations 1 and 3. For example, with 

a planning value of ρ̃ 2 = .1 and a desired confi dence interval width 
of w̃ = .2, the required sample size is about 135, but with a planning 
value of ρ̃ 2 = .2, the sample size requirement jumps to 202. When 
planning a multiple regression analysis, we recommend that 
researchers compute Equations 1 and 2 using several different 
plausible values of ρ̃ 2 and use the largest sample size value. 

Equations 1 and 2 are suffi ciently accurate for classroom 
discussions of sample size requirements for multiple correlation. 
These sample size formulas have many pedagogical advantages 
over the popular rules of thumb – specifi cally, Equations 1 and 2 
clearly describe how the sample size requirement depends on the 
desired level confi dence, the desired precision, and the planning 
value of the population squared multiple correlation. Equations 1 
or 2 also could be used in the classroom to easily illustrate how the 
sample size requirement changes for different levels of confi dence 
and different levels of precision. In addition, Equation 2 might be 
preferred in classroom discussions because it does not require the 
computation of ln(ẽ ). Another advantage of Equation 2 is that ρ̃ 2 can 
be set to 1/3 to give a conservatively large sample size requirement 
in applications where the researcher has little prior knowledge 
regarding a plausible value of the squared multiple correlation.

Many of the conditions examined by Shieh (2103) correspond 
to confi dence intervals that are uselessly wide. Although Table 1 
includes these wide interval conditions to assess the accuracy of 
Equations 1 and 3 under diverse conditions, researchers should 
specify desired lower and upper limits that will provide an 
accurate description of ρ2. For instance, the conditions in Table 1 
where L̃ = 0 would not be useful in practice because the lower limit 
suggests that the predictor variables are completely unrelated to 
the response variables, but the upper limit suggests that there is a 
potentially important relation between the predictor variables and 
the response variables. As can be seen in Table 1 for the w̃ = .2 
conditions, large sample sizes are needed to accurately estimate ρ2 
for values of ρ2 that are most common in the social and behavioral 
sciences. Most of the w̃ = .4 conditions may not be useful in practice 
because multiple courses of action could be implied within such a 
wide range of values (see Mathews, 2010, p. 3). When planning a 
study to estimate ρ2, the confi dence interval should be suffi ciently 
narrow to provide an unambiguous assessment of the strength 
of the relation between the predictor variables and the response 
variable. 

Many published estimates ρ2 of have used sample sizes, 
perhaps based on misleading rules of thumb, that were too small 
to produce an informatively narrow confi dence interval for ρ2. The 
results summarized in Bonett and Wright (2011) and in Table 1 
suggest that Equations 1 and 3 are very simple and useful sample 
size planning tools that can assist researchers in designing multiple 
regression studies that will provide informative confi dence 
intervals for ρ2. The computationally intensive simulation-based 
sample size approaches recommended by Shieh (2013), which are 
unnecessarily complicated, are “black box” procedures that lack 
the pedagogical benefi ts of Equations 1 and 2. 

Table 1
Accuracy of sample size formulas

L̃ Ũ ē w̃ n n
2

ê ŵ

0
.10
.20
.30
.40
.50
.60
.70
.75
0

.05

.15

.25

.35

.45

.55

.65
0

.10

.20

.30

.40

.50

.55

.20

.30

.40

.50

.60

.70

.80

.90

.95

.30

.35

.45

.65

.65

.75

.85

.95

.40

.50

.60

.70

.80

.90

.95

1.25
1.29
1.33
1.40
1.50
1.67
2.00
3.00
5.00
1.43
1.46
1.54
1.67
1.86
2.20
3.00
7.00
1.67
1.80
2.00
2.33
3.00
5.00
9.00

0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.4
0.4
0.4
0.4
0.4
0.4
0.4

131
202
230
225
194
149
097
048
028
080
093
105
102
088
067
043
020
055
061
059
050
038
024
017

135
202
229
225
197
154
104
060
040
080
091
104
102
090
072
050
032
053
060
059
053
043
032
027

1.27
1.29
1.33
1.40
1.50
1.66
1.93
2.88
4.23
1.45
1.47
1.55
1.66
1.83
2.15
2.87
5.94
1.69
1.79
1.97
2.28
2.85
4.38
6.80

0.200
0.200
0.200
0.200
0.200
0.199
0.200
0.196
0.197
0.299
0.302
0.299
0.300
0.300
0.299
0.302
0.291
0.400
0.399
0.400
0.399
0.400
0.397
0.392

Note: n is the sample size approximation for desired relative precision, n
2
 is the sample 

size approximation for desired absolute precision, ê is the relative precision that would be 
expected with a sample of size n (from Equation 1), and ŵ is the absolute precision that 
would be expected with a sample of size n

2
 (from Equation 3)
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