
On String Languages Generated by Spiking

Neural P Systems

Haiming Chen1, Rudolf Freund2, Mihai Ionescu3,
Gheorghe Păun4,5, Mario J. Pérez-Jiménez5

1 Computer Science Laboratory, Institute of Software
Chinese Academy of Sciences
100080 Beijing, China
chm@ios.ac.cn

2 Faculty of Informatics, Technische Universität Wien
Favoritenstraße 9, A-1040 Wien, Austria
rudi@emcc.at

3 Research Group on Mathematical Linguistics
Rovira i Virgili University
Pl. Imperial Tàrraco 1, 43005 Tarragona, Spain
armandmihai.ionescu@urv.net

4 Institute of Mathematics of the Romanian Academy
PO Box 1-764, 014700 Bucharest, Romania

5 Research Group on Natural Computing
Department of Computer Science and AI
University of Sevilla
Avda Reina Mercedes s/n, 41012 Sevilla, Spain
gpaun@us.es, marper@us.es

Summary. We continue the study of spiking neural P systems by considering these
computing devices as binary string generators: the set of spike trains of halting computa-
tions of a given system constitutes the language generated by that system. Although the
work of spiking neural P systems is rather restricted (and this is illustrated by the fact
that very simple languages cannot be generated in this framework), regular languages are
inverse-morphic images of languages of finite spiking neural P systems, and recursively
enumerable languages are projections of inverse-morphic images of languages generated
by spiking neural P systems.

1 Introduction

Spiking neural P systems (in short, SN P systems) were recently introduced in [7],
and then investigated in [12], [13], and [6], thus incorporating ideas from neural
computing by spiking (see, e.g., [4], [8], [9]) in membrane computing [11].

170 H. Chen, R. Freund, M. Ionescu, Gh. Păun, M.J. Pérez-Jiménez

In Section 3 SN P systems will be introduced formally; now, we only mention
that such a system consists of a set of neurons placed in the nodes of a graph and
sending signals (spikes) along synapses (edges of the graph), under the control of
firing rules. There can be a delay between firing and producing a spike. Moreover,
we also use forgetting rules, which remove spikes from neurons. The system works
in a synchronized manner, i.e., in each time unit, each neuron which can use a
rule should do it, but the work of the system is sequential in each neuron: only
(at most) one rule is used, taking into account all spikes present in the neuron
(precise definitions are given in Section 3). One of the neurons is considered to be
the output neuron, and its spikes are also sent to the environment. The moments
of time when a spike is emitted by the output neuron are marked with 1, the other
moments are marked with 0. This binary sequence is called the spike train of the
system – it might be infinite if the computation does not stop.

Several ways to associate sets of numbers with spike trains were investigated
in [7] and [12]: considering the distance between the first 2 spikes or between
the first k spikes of a spike train, or the distances between all consecutive spikes,
taking into account all intervals or only intervals that alternate, etc. Computational
completeness results were obtained in all cases: these devices compute exactly the
sets of natural numbers computed by Turing machines.

Another attractive possibility is to consider the spike trains themselves as the
result of a computation; moreover, we may even consider input neurons and then
an SN P system can work as a transducer; details can be found in [13], where this
case was investigated.

Several normal form theorems were proved in [6] – removing the delay between
firing and spiking, removing the forgetting rules, etc. – but here we work in the
general case, without imposing such restrictions.

In the present paper we address a more standard (i.e., language-theoretic)
question: which is the power of SN P systems as language generators. The way
to associate a language L(Π) with an SN P system Π is obvious: we consider as
successful only the halting computations of Π, and into L(Π) exactly the binary
strings describing the spike trains of the halting computations are taken.

Because the strings are generated symbol by symbol from left to right, and,
moreover, during each time unit of a computation we wait outside the system for
a bit, each string produced in this way has the length equal to the duration of a
computation; hence, there are strong restrictions on the computing power of SN
P systems (as string generators). This observation will be illustrated by several
results below – but the generative capacity of SN P systems is not at all small,
“hard” languages can also be generated, and recursively enumerable languages can
be characterized as projections of inverse-morphic images of languages generated
by SN P systems.

Several natural questions remain to be investigated and some of them are
formulated in the paper (e.g., changing the definition of an SN P system or of
the generated language, looking for characterizations of recursively enumerable
languages starting from fixed spiking neural P systems, etc.).

On String Languages Generated by Spiking Neural P Systems 171

2 Formal Language Theory Prerequisites

We assume the reader to be familiar with basic language and automata theory,
e.g., from [16] and [17], hence, we here introduce only some notations and notions
used later in the paper.

For an alphabet V , V ∗ denotes the set of all finite strings of symbols from V ;
the empty string is denoted by λ, and the set of all non-empty strings over V is
denoted by V +. The length of a string x ∈ V ∗ is denoted by |x|, and |x|a is the
number of occurrences of the symbol a ∈ V in the string x.

Regular expressions over an alphabet V can iteratively be obtained by defining
(1) ∅ and a for every a ∈ V are regular expressions over V , and (2) if E1 and
E2 are regular expressions, then (E1 ∪ E2) – union –, (E1 · E2) – concatenation,
usually only written as (E1E2) –, and (E1)

∗

– Kleene star – are regular expressions,
too. The regular set (language over V) represented by the regular expression E is
denoted by L (E) and obtained by replacing a with the corresponding singleton
set {a} for every a ∈ V . Moreover, for any regular expressions E over V , (E)

+

represents the regular set L (E+) (= L (EE∗)).
For a morphism h : V ∗

1 −→ V ∗

2 and a string y ∈ V ∗

2 we define h−1(y) = {x ∈
V ∗

1 | h(x) = y}; this mapping from V ∗

2 to the power set of V ∗

1 is extended in the
natural way to languages over V2 and is called the inverse morphism associated
with h. A morphism h : V ∗

1 −→ V ∗

1 is called projection if h(a) ∈ {a, λ} for each
a ∈ V1.

If L1, L2 ⊆ V ∗ are two languages, the left and the right quotients of L1 with
respect to L2 are defined by L2\L1 = {w ∈ V ∗ | xw ∈ L1 for some x ∈ L2}, and
L1/L2 = {w ∈ V ∗ | wx ∈ L1 for some x ∈ L2}, respectively. When the language
L2 is a singleton, these operations are called left and right derivatives, and are
denoted by ∂l

x(L) = {x}\L and ∂r
x(L) = L/{x}, respectively.

A Chomsky grammar will be given in the form G = (N,T, S, P), with N
being the nonterminal alphabet, T the terminal alphabet, S ∈ N the axiom, and
P the set of rules. The families of finite, regular, context-free, context-sensitive,
and recursively enumerable languages are denoted by FIN , REG, CF , CS, and
RE, respectively. Below we will also invoke the family MAT , i.e., the family of
languages generated by matrix grammars without appearance checking (see [1] for
details) and the family REC, i.e., the family of recursive languages (languages
whose membership problem is decidable).

In the main results of this paper, i.e., the characterization of recursively enu-
merable languages, we use the notion of a deterministic register machine. Such a
device is a construct M = (m,H, l0, lh, I), where m is the number of registers, H
is the set of instruction labels, l0 is the start label (labeling an ADD instruction),
lh is the halt label (assigned to instruction HALT), and I is the set of instructions
labeled in a one-to-one manner by the labels from H. The instructions are of the
following forms:

• l1 : (ADD(r), l2) (add 1 to register r and then go to the instructions with label
l2),

172 H. Chen, R. Freund, M. Ionescu, Gh. Păun, M.J. Pérez-Jiménez

• l1 : (SUB(r), l2, l3) (if register r is non-empty, then subtract 1 from it and go to
the instruction with label l2, otherwise go to the instruction with label l3),

• lh : HALT (the halt instruction).

A register machine M accepts a number n in the following way: we start with
number n in a specified register r0 and all other registers being empty (i.e., storing
the number zero), we first apply the instruction with label l0 and we proceed to
apply instructions as indicated by the labels (and made possible by the contents
of the registers); if we reach the halt instruction, then the number n is said to
be accepted by M . The set of all numbers accepted by M is denoted by N(M).
It is known (see, e.g., [10]) that register machines (even with only three registers,
but this detail is not relevant here) accept all sets of numbers which are Turing
computable.

A register machine can also compute any Turing computable function: we intro-
duce the arguments in specified registers r1, . . . , rk, and start with the instruction
with label l0; when we stop (with the instruction with label lh), the value of the
function is placed in another specified register, rt, with all registers different from
rt being empty. In the proof of Theorem 9 we will use also this way of working
with register machines.

In the following sections, when comparing the power of two devices generat-
ing/accepting languages, the empty string λ is ignored.

3 Spiking Neural P Systems

We pass directly to considering the device we investigate in this paper; we refer to
[7], [12] for motivation and more detailed definitions.

A spiking neural P system (abbreviated as SN P system), of degree m ≥ 1, is
a construct of the form

Π = (O, σ1, . . . , σm, syn, i0),

where:

1. O = {a} is the singleton alphabet (a is called spike);
2. σ1, . . . , σm are neurons, of the form

σi = (ni, Ri), 1 ≤ i ≤ m,

where:

a) ni ≥ 0 is the initial number of spikes contained in σi;
b) Ri is a finite set of rules of the following two forms:

(1) E/ac → a; d, where E is a regular expression over a, c ≥ 1, and d ≥ 0;
(2) as → λ, for some s ≥ 1, with the restriction that for each rule E/ac →

a; d of type (1) from Ri, we have as /∈ L(E);

On String Languages Generated by Spiking Neural P Systems 173

3. syn ⊆ {1, 2, . . . ,m}×{1, 2, . . . ,m} with i 6= j for each (i, j) ∈ syn, 1 ≤ i, j ≤ m
(synapses between neurons);

4. i0 ∈ {1, 2, . . . ,m} indicates the output neuron (σi0) of the system.

The rules of type (1) are firing (we also say spiking) rules, and they are applied
as follows. If the neuron σi contains k spikes, and ak ∈ L(E), k ≥ c, then the
rule E/ac → a; d can be applied. The application of this rule means consuming
(removing) c spikes (thus only k − c remain in σi), the neuron is fired, and it
produces a spike after d time units (a global clock is assumed, marking the time
for the whole system, hence the functioning of the system is synchronized). If d = 0,
then the spike is emitted immediately, if d = 1, then the spike is emitted in the next
step, etc. If the rule is used in step t and d ≥ 1, then in steps t, t+1, t+2, . . . , t+d−1
the neuron is closed (this corresponds to the refractory period from neurobiology),
so that it cannot receive new spikes (if a neuron has a synapse to a closed neuron
and tries to send a spike along it, then that particular spike is lost). In the step
t + d, the neuron spikes and becomes again open, so that it can receive spikes
(which can be used starting with the step t + d + 1), but it does not use any rule
at this step (the neuron is busy with sending out the spike it has produced d steps
before and stored up to now inside).

The rules of type (2) are forgetting rules and they are applied as follows: if the
neuron σi contains exactly s spikes, then the rule as → λ from Ri can be used,
meaning that all s spikes are removed from σi.

If a rule E/ac → a; d of type (1) has E = ac, then we will write it in the
simplified form ac → a; d. If for every firing rule E/ac → a; d the regular set L (E)
is finite, the SN P system is called finite.

In each time unit, if a neuron σi can use one of its rules, then a rule from Ri

must be used. Since two firing rules, E1/ac1 → a; d1 and E2/ac2 → a; d2, can have
L(E1)∩L(E2) 6= ∅, it is possible that two or more rules can be applied in a neuron,
and in that case, only one of them is chosen non-deterministically. By definition,
if a firing rule is applicable, then no forgetting rule is applicable, and vice versa.

The initial configuration of the system is described by the numbers
n1, n2, . . . , nm, of spikes present in each neuron, with all neurons being open. Dur-
ing the computation, a configuration is described by both the number of spikes
present in each neuron and by the state of the neuron, more precisely, by the
number of steps to count down until it becomes open (this number is zero if the
neuron is already open). Thus, 〈r1/t1, . . . , rm/tm〉 is the configuration where neu-
ron i = 1, 2, . . . ,m contains ri ≥ 0 spikes and it will be open after ti ≥ 0 steps;
with this notation, the initial configuration is C0 = 〈n1/0, . . . , nm/0〉.

Using the rules as described above, one can define transitions among configu-
rations. A transition between two configurations C1, C2 is denoted by C1 =⇒ C2.
Any sequence of transitions starting in the initial configuration is called a compu-
tation. A computation halts if it reaches a configuration where all neurons are open
and no rule can be used. With any computation (halting or not) we associate a
spike train, the sequence of symbols 0 and 1 describing the behavior of the output
neuron: if the output neuron spikes, then we write 1, otherwise we write 0.

174 H. Chen, R. Freund, M. Ionescu, Gh. Păun, M.J. Pérez-Jiménez

A more precise definition of the notion of a transition can be given, but instead
of cumbersome details we will illustrate this notion with an example in the next
section.

In the spirit of spiking neurons, in [7] and [12] the distance between two consec-
utive spikes which exit the system is considered to be the result of a computation,
with the many variants suggested in the Introduction. Here we go into a different
direction and consider the spike train itself as the result of a computation, thus
associating a language with an SN P system; in order to have a language of finite
strings, we take into consideration only halting computations.

More formally, let Π = (O, σ1, . . . , σm, syn, i0) be an SN P system and let γ
be a halting computation in Π, γ = C0 =⇒ C1 =⇒ . . . =⇒ Ck (C0 is the initial
configuration, and Ci−1 =⇒ Ci is the ith step of γ). Let us denote by bin(γ) the
string b1b2 . . . bk, where bi ∈ {0, 1}, and bi = 1 if and only if the (output neuron of
the) system Π sends a spike into the environment in step i of γ. We denote by B
the binary alphabet {0, 1}, and by COM(Π) the set of all halting computations
of Π. Moreover, we define the language generated by Π by

L(Π) = {bin(γ) | γ ∈ COM(Π)}.

In the next sections we will illustrate these definitions with a series of examples.

The complexity of an SN P system can be described by means of various para-
meters (number of neurons, of rules, of consumed or forgotten spikes, maximum de-
lay, or outdegree/indegree of the synapse graph, etc.), but here we only consider the
basic parameters also used in [7], and we denote by LSNPm(rulek, consp, forgq)
the family of languages L(Π), generated by systems Π with at most m neu-
rons, each neuron having at most k rules, each of the spiking rules consuming
at most p spikes, and each forgetting rule removing at most q spikes. As usual,
a parameter m, k, p, q is replaced with ∗ if it is not bounded. If the underlying
SN P systems are finite, we denote the corresponding families of languages by
LFSNPm(rulek, consp, forgq).

4 An Illustrative Example

We consider a system with a simple architecture, but with an intricate behavior.
This also gives us the opportunity to illustrate the way to graphically represent
an SN P system: as a directed graph, with the neurons as nodes and the synapses
indicated by arrows; an arrow also exits from the output neuron, pointing to the
environment; in each neuron we specify the rules and the spikes present in the
initial configuration.

Figure 1 represents the initial configuration of the system Π1. We have three
neurons, labeled with 1, 2, 3, with neuron 3 being the output one. Each neuron
contains two rules, with neurons 1 and 2 having the same rules (firing rules which
can be chosen in a non-deterministic way, the difference between them being in

On String Languages Generated by Spiking Neural P Systems 175

'

&

$

%

'

&

$

%

'

&

$

%
-

�

@
@

@
@@R@

@
@

@@I �
�

�
��	

-

1 2

3

a

r11 : a → a; 0

r12 : a → a; 1

a

r21 : a → a; 0

r22 : a → a; 1

a2

r31 : a → a; 0

r32 : a2 → λ

Fig. 1. The initial configuration of system Π1

the delay from firing to spiking), and neuron 3 having one firing and one forgetting
rule. In the figure, the rules are labeled, and these labels are useful below.

The evolution of the system Π1 can be analyzed on a transition diagram as that
from Figure 2: because the system is finite, the number of configurations reachable
from the initial configuration is finite, too, hence, we can place them in the nodes
of a graph, and between two nodes/configurations we draw an arrow if and only
if a direct transition is possible between them. In Figure 2 we have also indicated
the rules used in each neuron, with the following conventions: for each rij we have
written only the subscript ij, with 31 being written in italics, in order to indicate
that a spike is sent out of the system at that step; when a neuron i = 1, 2, 3 uses
no rule, we have written i0, and when it spikes (after being closed for one step),
we write is.

The functioning of the system can easily be followed on this diagram, so that
we only briefly describe it. We start with spikes in all neurons. Neurons 1 and 2
behave non-deterministically, choosing one of the two rules. As long as they use
the rules a → a; 0, the computation cycles in the initial configuration: neurons
1 and 2 exchange spikes, while neuron 3 forgets its two spikes. If both neurons
use the second rule the rule a → a; 1, then both neurons fire, but do not spike
immediately, and we reach the configuration 〈0/1, 0/1, 0/0〉. In the next step, both
neurons spike, and we return to the initial configuration. When only one of neurons
1, 2 uses the rule a → a; 0 (and therefore spikes immediately) and the other one
uses the rule a → a; 1 (and fires, but does not spike, hence, is closed and cannot
receive spikes), then only one spike arrives in neuron 3, and in the next step
neuron 3 as well as the neuron having used the rule a → a; 1 now send out a spike.
If neuron 1 has used the rule a → a; 0 and neuron 2 has used the rule a → a; 1, we
reach the configuration 〈2/0, 0/0, 1/0〉; neurons 1 and 2 now cannot apply a rule

176 H. Chen, R. Freund, M. Ionescu, Gh. Păun, M.J. Pérez-Jiménez

〈3/0, 0/0, 1/0〉 〈4/0, 0/0, 0/0〉

〈2/0, 0/1, 0/0〉

〈2/0, 1/0, 2/0〉

+

Nq
-

10,20,31

10

21

32

10 2s
30

10
22

32

〈1/0, 0/1, 1/0〉 〈1/0, 1/0, 1/0〉

?

}

y

11
21

31

11,22,31

11
2s

31

〈0/1, 0/0, 1/0〉 〈0/1, 0/1, 0/0〉

〈1/0, 1/0, 2/0〉

7 �

z

Y
12

2s
31

1s

20
31

12
21
31 12

22
31

? q

y 1s
2s

30

12
22

32

12

21

32

〈0/0, 0/1, 1/0〉

〈2/0, 0/0, 1/0〉

〈3/0, 0/0, 0/0〉

)

�

?

112232

10
2s

31

10

20

31

' $
?

11,21,32

Fig. 2. The transition diagram of system Π1

anymore, thus after one more spiking of neuron 3 we reach the halting configuration
〈3/0, 0/0, 0/0〉. If, conversely, neuron 1 uses the rule a → a; 1 and neuron 2 uses
the rule a → a; 0, then we first get the configuration 〈0/1, 0/0, 1/0〉; in the next
step, neuron 1 sends its spike to neurons 2 and 3, while neuron 3 also spikes, and
“reloads” neuron 1. Then the computation can either run along the cycles depicted
in the central part of the diagram from Figure 2, or it can reach again the initial

On String Languages Generated by Spiking Neural P Systems 177

configuration, or else it can reach the halting configuration 〈4/0, 0/0, 0/0〉 from
the configuration 〈2/0, 1/0, 2/0〉 in two or three steps (as indicated in the bottom
part of the diagram).

The transition diagram of a finite SN P system can be interpreted as the
representation of a non-deterministic finite automaton, with C0 being the initial
state, the halting configurations being final states, and each arrow being marked
with 0 if in that transition the output neuron does not send a spike out, and with 1
if in the respective transition the output neuron spikes; in this way, we can identify
the language generated by the system. In the case of the finite SN P system Π1,
the generated language is the following one:

L(Π1) = L((0∗0(11 ∪ 111)∗110)∗0∗(011 ∪ 0(11 ∪ 111)+(0 ∪ 02)1)).

We here do not present further examples, because many of the results in the
next section are based on effective constructions of SN P systems.

5 The Generative Power of SN P Systems

As already suggested in the Introduction, the power of SN P systems used as
language generators is rather “ex-centric”: “easy” languages cannot be generated,
but on the other hand some “hard” languages can be generated.

We start by pointing out an example of the first type.

Theorem 1. No language of the form Lk,j = {0k, 10j}, for k ≥ 1, j ≥ 0, can be
generated by an SN P system.

Proof. In order to generate a string 10j , in the initial configuration the output
neuron must contain at least one spike. In such a case, no string of the form 0k

can be generated: if k = 1, then we need a forgetting rule ar → λ which can be
applied at the same time with a spiking rule, and this is not possible, by definition
(no forgetting rule can be interchanged with a spiking rule); if k ≥ 2, then in the
first step the output neuron should not use a rule, but this is not allowed by the
way of defining the computations in a synchronized way.

The simplest language of the form above is L1,0 = {0, 1}, which does not belong
to LSNP∗(rule∗, cons∗, forg∗). The same argument works for any language of the
form {0k, 1x}, where x is an arbitrary string over the binary alphabet.

This does not at all mean that languages consisting of two words similar to
those considered above (one word starting with 1 and one with 0) cannot be gener-
ated by our systems. An example is the language {100, 01}, which is generated by
the system Π2 from Figure 3; for the reader’s convenience, the transition diagram
of system Π2 is given in Figure 4.

We remain in the same area, of finite languages, mentioning the following three
results.

178 H. Chen, R. Freund, M. Ionescu, Gh. Păun, M.J. Pérez-Jiménez

'

&

$

%
�
�
�
�

'

&

$

%
-

-

?

��
a

r11 : a → a; 0

r12 : a → a; 1

a5

r21 : a5/a3 → a; 0

r22 : a3 → λ

r23 : a → λ

r31 : a → a; 0

2
31

Fig. 3. An SN P system (Π2) generating the language {100, 01}

〈0/0, 0/0, 0/0〉

〈0/0, 1/0, 0/0〉 〈0/0, 4/0, 0/0〉

〈0/1, 2/0, 1/0〉〈0/0, 3/0, 1/0〉

〈1/0, 5/0, 0/0〉

�

?

?

S
S

S
S

S
SSw

?

11

21

30

10

22

31

10

23

30

12

21

30

1s

20

31

Fig. 4. The transition diagram of the system Π2

Theorem 2. If L = {x}, x ∈ B+, |x|1 = r ≥ 0, then L ∈ LFSNP2(ruler+1,
cons1, forg0).

Proof. Let us consider a string x = 0n110n2 . . . 0nr10nr+1 , for nj ≥ 0, 1 ≤ j ≤ r+1
(if x = 0n1 , then r = 0). The SN P system from Figure 5 generates the string x.
The output neuron initially contains r spikes. At step 1, the rule ar/a → a;n1

can be applied. One spike is removed and at step n1 + 1 one spike is sent out.
We continue in this way until using the rule a/a → a;nr, i.e., until exhausting
the spikes; the last spike is sent out at step

∑r

i=1
ni + r. The second neuron (not

On String Languages Generated by Spiking Neural P Systems 179

having a synapse with the output one) is meant to make the computation last
exactly |x| steps. Note that |x|− (

∑r

j=1
nj + r) = nr+1, therefore the system halts

after generating nr+1 more occurrences of 0.
In the case r = 0, the system contains no rule in neuron 1, but there is one

rule in neuron 2, that is why we have ruler+1 in the theorem statement.

#
"

!

a

a → a; |x| − 1

'

&

$

%

ar 1 2

ar−j+1/a → a; nj

j = 1, . . . , r

?

Fig. 5. An SN P system generating a singleton language

Actually, modulo a supplementary final occurrence of 1, any finite language
can be generated.

Theorem 3. If L ∈ FIN , L ⊆ B+, then L{1} ∈ LFSNP1(rule∗, cons∗, forg0).

Proof. Let us assume that L = {x1, x2, . . . , xm}, with |xj1| = nj ≥ 2, 1 ≤ j ≤ m;

denote αj =
∑j

i=1
ni, for all 1 ≤ j ≤ m. We write xj1 = 0sj,110sj,21 . . . 10sj,rj 1,

for rj ≥ 1, sj,l ≥ 0, 1 ≤ l ≤ rj .
An SN P system which generates the language L{1} is the following:

Π = ({a}, σ1, ∅, 1),

σ1 = (αm + 1, R1),

R1 = {aαm+1/aαm+1−αj → a; sj,1 | 1 ≤ j ≤ m}

∪ {aαj−t+2/a → a; sj,t | 2 ≤ t < rj − 1, 1 ≤ j ≤ m}

∪ {aαj−rj+2 → a; sj,rj
| 1 ≤ j ≤ m}.

Initially, only a rule aαm+1/aαm+1−αj → a; sj,1 can be used, and in this way
we non-deterministically chose the string xj to generate. After sj,1 steps, for some
1 ≤ j ≤ m, we output a spike, hence, in this way the prefix 0sj,11 of the string xj

is generated. Because αj spikes remain in the neuron, we have to continue with
rules aαj−t+2/a → a; sj,t, for t = 2, and then for the respective t = 3, 4, . . . , rj −1;
in this way we introduce the substrings 0sj,t1 of xj , for all t = 2, 3, . . . , rj − 1.
The last substring, 0sj,rj 1, is introduced by the rule aαj−rj+2 → a; sj,rj

, which
concludes the computation.

We observe that the rules which are used in the generation of a string xj1
cannot be used in the generation of a string xk1 with k 6= j.

180 H. Chen, R. Freund, M. Ionescu, Gh. Păun, M.J. Pérez-Jiménez

Corollary 1. Every language L ∈ FIN , L ⊆ B+, can be written in the form
L = ∂r

1(L′) for some L′ ∈ LFSNP1(rule∗, cons∗, forg0).

A sort of “mirror result” can be obtained, based on the idea used in the proof
of Theorem 2.

Theorem 4. If L ∈ FIN , L ⊆ B+, L = {x1, x2, . . . , xn}, then {0i+3xi | 1 ≤ i ≤
n} ∈ LFSNP∗(rule∗, cons1, forg0).

Proof. For each xi ∈ L, xi = 0ni,110ni,21 . . . 10ni,ri 10ni,ri+1 , there is a system as in
the proof of Theorem 2, consisting of a neuron which outputs spikes in the moments
which correspond to the digits 1 of xi, and a companion neuron which just makes
sure that the computation lasts |xi| steps. We combine such subsystems, each one
taking care of one string xi, into a system as that from Figure 6.

In the bottom of Figure 6 there are the modules (wi, ti) for generating
xi, 1 ≤ i ≤ n, as in Figure 5, except that there is no spike in the neurons wi;
the corresponding sets of rules are denoted by R1, R2, . . . , Rn. If there is an i such
that |xi|1 = 0 (note that in this case we have Ri = ∅), then we set ri = 1 in
the construction from Figure 6. The work of the system is triggered by neuron
1, which selects one of its rules to be applied non-deterministically in step 1: if
the rule a → a; i is applied, then the module for generating xi+1 is activated,
i = 0, 1, , . . . , n − 1. The neurons ci, 1 ≤ i ≤ n, count the time steps, so that at
step i one spike is sent to ci+1 and one to c′i. All these spikes are forgotten, except
the one which arrives in c′i at the same time with the spike emitted by neuron 1,
and these spikes load the necessary number of spikes in the corresponding working
module wi, and also send one spike to the timing neuron ti. As in the proof of
Theorem 2, these two neurons ensure the generation of xi – with i+3 occurrences
of 0 in the left hand, corresponding to the i + 2 steps necessary for the spike of
neuron 1 to reach the working neurons and to the step necessary for passing a
spike from neuron wi to neuron out.

We now pass to investigating the relationships with the family of regular lan-
guages, and we start with a result already proved by the considerations above.

Theorem 5. The family of languages generated by finite SN P systems is strictly
included in the family of regular languages over the binary alphabet.

Proof. The inclusion follows from the fact that for each finite SN P system we can
construct the corresponding transition diagram associated with the computations
of the SN P system and then interpret it as the transition diagram of a finite
automaton (with an arc labeled by 1 when the output neuron spikes and labeled
by 0 when the output neuron does not spike) as already done in the example of
Section 4. The strictness is a consequence of Theorem 1.

However, each regular language, over any alphabet, not only on the bi-
nary one, can be represented in an easy way starting from a language in
LFSNP∗(rule∗, cons∗, forg∗).

On String Languages Generated by Spiking Neural P Systems 181

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�� �

�� �

?

A
A
A
A
AAU

HHHHHHHHHj

S
SSw

�
�

�
�

��=

?

�� �

B
B
B
B
B
BN

�� �

�� �

?

B
B
B
B
BBN

�� �

B
B
B
B
B
BN

�� �

�� �

?

C
C
C
C
CCW

�� �

B
B
B
B
B
BN

�
�
�
�
�
�
�
�

�
�
�
�

?

S
SSw

?

S
SSw

?

S
SSw

�� �
�
�
�
�

?

-

�
�

�
�

�
�

�
�

�
�

�/

�
�

�
�

�
�
�

-
�� �-

B
BBN

B
BBN

1
a

a → a; i, i = 0, 1, . . . , n − 1

c1

a

a → a; 0 a → a; 0

c2 cn

. . . a → a; 0

c′1

a2 → a; 0

a → λ c′2

a2 → a; 0

a → λ

a2 → a; 0

a → λ
c′n

v1,1

. . .

v1,r1

a → a; 0

a → a; 0

w1

R1 R2 Rn

t1

a → a; |x1|–1

v2,1

. . .

v2,r2

a → a; 0

a → a; 0

w2 t2

a → a; |x2|–1

. . .

vn,1

a → a; 0

. . .

vn,rn

a → a; 0

wn
tn

a → a; |xn|–1

a → a; 0

out

�

Fig. 6. An SN P system generating a finite set, prefixed by zeroes

Theorem 6. For any language L ⊆ V ∗, L ∈ REG, there is a finite SN P system
Π and a morphism h : V ∗ −→ B∗ such that L = h−1(L(Π)).

Proof. Let V = {a1, a2, . . . , ak} and let L ⊆ V ∗ be a regular language. Consider
the morphism h : V ∗ −→ B∗ defined by

h(ai) = 0i+11, 1 ≤ i ≤ k.

The language h(L) is regular. Consider a right-linear grammar G = (N,B, S, P)
such that L(G) = h(L) and having the following properties:

1. N = {A1, A2, . . . , An}, n ≥ 1, and S = An,

182 H. Chen, R. Freund, M. Ionescu, Gh. Păun, M.J. Pérez-Jiménez

2. the rules in P are of the forms Ai → 0s1Aj or Ai → 0s1, for s ∈ {2, 3, . . . , k +
1}, i, j ∈ {1, 2, . . . , n}.

A grammar with these properties can easily be found (the first property is a
matter of renaming the nonterminals, the second property is ensured by the fact
that the strings of h(L) consist of blocks of the form 0s1 for 2 ≤ s ≤ k + 1).

For uniformity, let us assume that there exists a further nonterminal, A0, and
that all terminal rules Ai → 0s1 are replaced by Ai → 0s1A0, hence, all rules have
the generic form Ai → 0s1Aj . It is important to note that we always have at least
two occurrences of 0 in the rules.

We construct the following SN P system:

Π = ({a}, σ1, . . . , σn+3, n + 3),

σ1 = (2, {a2/a → a; 0, a2/a → a; 1, a → λ}),

σ2 = (2, {a2/a → a; 0, a → λ}),

σi = (0, {a → a; 0}), i = 3, 4, . . . , n + 2,

σn+3 = (2n, {an+i/an+i−j → a; s | Ai → 0s1Aj ∈ P}

∪ {aj → a; k + 2 | 1 ≤ j ≤ n}.

For an easier understandability, the system is also given graphically, in Figure 7.
The output neuron already fires in the first step, by a rule a2n/a2n−j → a; s

associated with a rule An → 0s1Aj from P (where An is the axiom of G) and its
spike exits the system in step s + 1. Because s ≥ 2, the neuron n + 3 is closed
at least two steps, hence, no spike can enter from neurons 3, 4, . . . , n + 2 in these
steps (this is true in all subsequent steps of the computation when rules of G are
simulated).

The neurons 1 and 2 are meant to continuously “reload” neuron n + 3 with
n spikes, through the intermediate “multiplier neurons” 3, 4, . . . , n + 2: as long as
neuron 1 uses the rule a2/a → a; 0, neurons 1 and 2 send to each other a spike,
returning to the initial state, while neuron 2 also sends a spike to all neurons
3, 4, . . . , n + 2. In each step, neuron 1 can however use the rule a2/a → a; 1.
Simultaneously, neuron 2 spikes, but its spike does not enter neuron 1. In the next
step, neuron 2 uses its forgetting rule a → λ, and receives one spike from neuron
1. This spike is forgotten in the next step, and the work of neurons 1 and 2 ends.
In this way, also the reloading of neuron n + 3 stops.

Let us now return to the work of neuron n + 3 and assume that we have n + i
spikes in it, for some 1 ≤ i ≤ n (initially, i = n). The only rule which can be used
is an+i/an+i−j → a; s, for Ai → 0s1Aj ∈ P . There remain j spikes; if the neuron
receives n spikes from neurons 3, 4, . . . , n + 2 in step s + 1 (the spikes sent earlier
are lost), then the output neuron ends the step s + 1 with n + j spikes inside. If
j ≥ 1, then the simulation of rules in G can be repeated.

If in the moment when a rule an+i/an+i−0 → a; s is applied (i.e., a rule Ai →
0s1A0 is simulated) the output neuron does not receive further spikes from neurons
3, 4, . . . , n + 2, which means that neurons 1, 2 have finished their work, then no

On String Languages Generated by Spiking Neural P Systems 183

'

&

$

%

a2n

an+i/an+i−j → a; s

for Ai → 0s1Aj ∈ P

aj → a; k + 2

for 1 ≤ j ≤ n

�
�
�
�
�
�
�
�
�
�
�
�. . .a → a; 0 a → a; 0 a → a; 0

? ? ?

'

&

$

%

'

&

$

%

-

�

�
�

�
�

�
�

�
�

��+

�

C
C
C
C
C
CCW

a2

a2/a → a; 0

a2/a → a; 1

a → λ

a2

a2/a → a; 0

a → λ

1
2

3 4 n+2

n+3

-

Fig. 7. The SN P system from the proof of Theorem 6

spike remains in the system and the computation halts. The generated string is
one from L(G) = h(L).

If the work of neurons 1 and 2 stops prematurely, i.e., in neuron n+3 we apply
a rule an+i/an+i−j → a; s and no spike comes from neurons 3, 4, . . . , n + 2 in step
s + 1, then the rule aj → a; k + 2 is immediately applied, and the computation
stops after producing the string 0k+21, as a suffix of the generated string.

Similarly, if after using a rule an+i/an+i−0 → a; s we still receive spikes from
neurons 3, 4, . . . , n + 2, then in the next step the rule an → a; k + 2 is used, and
again the string 0k+21 is introduced, possibly repeated several times before the
computation halts.

Therefore, h(L) ⊆ L(Π) and L(Π) − h(L) ⊆ B∗{0k+21}+. Because a string
containing a substring 0k+2 is not in h(V ∗) and because h is injective, we have
h−1(L(Π)) = L.

184 H. Chen, R. Freund, M. Ionescu, Gh. Păun, M.J. Pérez-Jiménez

As expected, the power of SN P systems goes far beyond the regular languages.
We first illustrate this assertion with an example, namely, the system Π3 from
Figure 8, for which we have L(Π3) = {0n+41n+4 | n ≥ 0}; observe that due to the
rule a(aa)+/a2 → a; 0 in neuron 10 this SN P system is not finite.

'

&

$

%

'
&
$
%
'
&
$
%

'

&

$

%

'

&

$

%

�
�
�
�
�
�
�
�
�
�
�
�

'

&

$

%

'

&

$

%
-

�

�
�

�
�

�
��

�
�

�
�

�
�

�
�

��+

A
A
A
A
A
AU

�
�
�
�
�
��

B
B
B
B
B
BN

�?

J
J

J
J

JĴ

?

S
S

S
SSw

?

Z
Z

Z
ZZ~

�
�

�	

-

1

a2

a2/a → a; 0

a2/a → a; 1

a → λ

2

a2

a2/a → a; 0

a → λ

3

a2

a2 → a; 0

a → λ

4

a → a; 0

5 6

a → a; 0 a → a; 0

7

a → a; 0 a → a; 0

a a

8

9

a → a; 0

a3 → λ

a2 → λ

10

a2

a(aa)+/a2 → a; 0

a → a; 0

Fig. 8. An SN P system generating a non-regular language

The reader can check that in n ≥ 0 steps when neuron 1 uses the rule a2/a →
a; 0 the output neuron accumulates 2n + 6 spikes. When neuron 1 uses the rule

On String Languages Generated by Spiking Neural P Systems 185

a2/a → a; 1, one more spike will arrive in neuron 10 (in step n+4). In this way, the
number of spikes present in neuron 10 becomes odd, and the rule a(aa)+/a2 → a; 0
can be repeatedly used until only one spike remains; this last spike is used by the
rule a → a; 0, thus n + 4 occurrences of 1 are produced.

�
�
�
�

�
�
�
��

�
�
��

�
�
�

'

&

$

%

'

&

$

%

'

&

$

%

'

&

$

%

?S
S

S
SSo

HHHHHHY

�

6

�
�
�
�
�
�
�
�
�
��

A
A

A
A

A
AK 6

HHHHHHHHY

@
@@I

Π

6 10 out

a2 → a; 0

a → a; 0

a → a; 0

a → a; 0

-

Fig. 9. A halting module (as used in the proof of Theorem 7)

Much more complex languages can be generated. First, the previous construc-
tion can be extended to non-context-free languages consisting of strings of the
form 0n11n20n3 with a precise relation between n1, n2, n3. Then, languages with
non-semilinear blocks in their strings can be generated.

Theorem 7. LSNP22(rule3, cons3, forg3) − MAT 6= ∅.

Proof. In Figure 14 from [7] one considers an SN P system Π (with 18 neurons,
of the complexity described by rule3, cons3, forg3) which produces all spike trains
of the form 0k102

n

10w, for any n ≥ 2, and some k ≥ 1 and an infinite binary
sequence w. To this system from [7] we add a halting module as that suggested
in Figure 9, which waits until receiving two spikes from the output neuron of Π,
then sends three spikes to neurons 6 and 10 of Π; these neurons play an important
rôle in iterating the work of Π, but they cannot handle more than two spikes. In
this way, the work of Π is blocked after producing two spikes. (The same effect
is obtained if we send three spikes to all neurons of Π, except the output one, so
the reader should not mind which is the precise role of neurons 6 and 10 in Π.)

186 H. Chen, R. Freund, M. Ionescu, Gh. Păun, M.J. Pérez-Jiménez

Thus, the obtained system, let us denote it by Π ′, will halt after sending out two
spikes, hence, it generates a language L(Π ′) included in {0}∗{102

n

1 | n ≥ 2}{0}∗

such that
(({0}∗{1})\L(Π ′))/({1}{0}∗) = {02

n

| n ≥ 1}.

The family MAT is closed under right and left quotients by regular languages [1]
and all one-letter matrix languages are regular [5], therefore L(Π ′) /∈ MAT .

The strong restriction that in order to produce a string of length n we have
to work exactly n steps (and the fact that the workspace used during these steps
cannot increase exponentially) directly implies the fact that languages generated
by SN P systems are recursive. Indeed, their membership problem can be solved
in the following easy way: consider a string x and a system Π; start from the
initial configuration of Π and construct the computation tree with |x| + 1 levels,
then check whether there is a path in this tree which corresponds to a halting
computation and which produces the string x. Therefore, we have the following
result.

Theorem 8. LSNP∗(rule∗, cons∗, forg∗) ⊂ REC.

We do not know whether this result can be improved to the inclusion

LSNP∗(rule∗, cons∗, forg∗) ⊂ CS.

However, a characterization of recursively enumerable languages is possible in
terms of languages generated by SN P systems.

Theorem 9. For every alphabet V = {a1, a2, . . . , ak} there are a morphism h1 :
(V ∪ {b, c})∗ −→ B∗ and a projection h2 : (V ∪ {b, c})∗ −→ V ∗ such that for
each language L ⊆ V ∗, L ∈ RE, there is an SN P system Π such that L =
h2(h

−1

1 (L(Π))).

Proof. The two morphisms are defined as follows:

h1(ai) = 10i1, for i = 1, 2, . . . , k,

h1(b) = 0,

h1(c) = 01,

h2(ai) = ai, for i = 1, 2, . . . , k,

h2(b) = h2(c) = λ.

For a string x ∈ V ∗, let us denote by valk(x) the value in base k + 1 of x (we
use base k +1 in order to consider the symbols a1, . . . , ak as digits 1, 2, . . . , k, thus
avoiding the digit 0 in the left hand of the string). We extend this notation in
the natural way to sets of strings. Now consider a language L ⊆ V ∗. Obviously,
L ∈ RE if and only if valk(L) is a recursively enumerable set of numbers. In turn,
a set of numbers is recursively enumerable if and only if it can be accepted by a

On String Languages Generated by Spiking Neural P Systems 187

deterministic register machine. Let M be such a register machine, i.e., N(M) =
valk(L).

We construct an SN P system Π performing the following operations (c0 and
c1 are two distinguished neurons of Π, the first one being empty and the second
one having three spikes in the initial configuration):

1. Output a spike in the first time unit.
2. For some 1 ≤ i ≤ k, output no spike for i steps, but introduce the number i in

neuron c0; in the construction below, a number n is represented in a neuron
by storing there 3n spikes, i.e., the previous task means introducing 3i spikes
in neuron c0.

3. When this operation is finished, output a spike (hence, up to now we have
produced a string 10i1).

4. Multiply the number stored in neuron c1 (initially, we here have number 0) by
k + 1, then add the number from neuron c0; specifically, if neuron c0 holds 3i
spikes and neuron c1 holds 3m spikes, m ≥ 0, we end this step with 3(m(k +
1) + i) spikes in neuron c1 and no spike in neuron c0. In the meantime, the
system outputs no spike (hence, the string was continued with a number of
occurrences of 0; this number depends on the duration of the operation above,
but it is greater than 1). When the operation is completed, output two spikes
in a row (hence, the string is continued with 11).

5. Repeat from step 2, or, non-deterministically, stop the increase of spikes from
neuron c1 and pass to the next step.

6. After the last increase of the number of spikes from neuron c1 we have got
valk(x) for a string x ∈ V + such that the string produced by the system up
to now is of the form 10i110j1110i210j211 . . . 110im10jm , for 1 ≤ il ≤ k and
jl ≥ 1, for all 1 ≤ l ≤ m, i.e., h1(x) = 10i1110i21 . . . 10im1. We now start
to simulate the work of the register machine M in recognizing the number
valk(x). During this process, we output no spike, but we output one if (and
only if) the machine M halts, i.e., when it accepts the input number, which
means that x ∈ L. After emitting this last spike, the system halts. Therefore,
the previous string 10i110j1110i210j211 . . . 110im10jm is continued with a suffix
of the form 0s1 for some s ≥ 1.

From the previous description of the work of Π, it is clear that we stop, after
producing a string of the form y = 10i110j1110i210j211 . . . 110im10jm0s1 as above,
if and only if x ∈ L. Moreover, it is obvious that x = h2(h

−1

1 (y)): we have h−1

1 (y) =
ai1b

j1−1cai2b
j2−1c . . . aim

bjm+s−1c (this is the only way to cover correctly the string
x with blocks of the forms of h1(ai), h1(b), h1(c)); the projection h2 simply removes
the auxiliary symbols b, c.

Now, it remains to construct the system Π.
Instead of constructing it in all details, we rely on the fact that a register

machine can be simulated by an SN P system, as already shown in [7] – for the sake
of completeness and because of some minor changes in the construction, we below
recall the details of this simulation. Then, we also suppose that the multiplication

188 H. Chen, R. Freund, M. Ionescu, Gh. Păun, M.J. Pérez-Jiménez

by k + 1 of the contents of neuron c1 followed by adding a number between 1
and l is done by a register machine (with the numbers stored in neurons c0, c1

introduced in two specified registers); we denote this machine by M0. Thus, in our
construction, also for this operation we can rely on the general way of simulating
a register machine by an SN P system. All other modules of the construction
(introducing a number of spikes in neuron c0, sending out spikes, choosing non-
deterministically to end the string to generate and switching to the checking phase,
etc.) are explicitly presented below.

A delicate problem which appears here is the fact that the simulations of both
machines M0 and M have to use the same neuron c1, but the correct work of the
system (the fact that the instructions of M0 are not mixed with those of M) will
be explained below.

The overall appearance of Π is given in Figure 10, where M0 indicates
the subsystem corresponding to the simulation of the register machine M0 =
(m0,H0, l0,0, lh,0, I0) and M indicates the subsystem which simulates the regis-
ter machine M = (m,H, l0, lh, I). Of course, we assume H0 ∩ H = ∅.

We start with spikes in neurons 6, 7, 8, and 18 (besides the three spikes from
neuron c1), hence, we spike in the first step. As long as neurons 6, 7 do not receive
a spike from neuron 8, they spike and send a spike to each other and three spikes
to neuron c0.

If neuron 8 starts by using some rule a → a; i − 1, 1 ≤ i ≤ k, then after i − 1
steps a spike is sent from neuron 8 to all neurons 6, 7 (which stop working), 4, 5
(which load two spikes in neuron l0,0, thus starting the simulation of the register
machine M0), and 17; from here, the spike goes to the output neuron 18, which
spikes exactly in the moment when the simulation of M0 starts.

Now, the subsystem corresponding to the register machine M0 works a number
of steps (at least one); after a while the computation in M0 stops, by activating
the neuron lh,0 (this neuron will get two spikes in the end of the computation and
will spike; see below). This neuron sends a spike to both neurons 9 and 10.

Neuron 9 is the one which non-deterministically chooses to continue the string
(the case of using the rule a → a; 0) or to stop growing the string and to pass to
checking whether it is in our language (the case of using the rule a → a; 1). If both
neurons 9 and 10 spike immediately, then neuron 14 fires, but neuron 15 forgets
the two spikes.

Neuron 14 sends a spike to the output neuron and one to neuron 16. In the
next step, besides sending a spike outside, the system returns neurons 6, 7, 8, and
18 to the initial state (having one spike). This means that a sequence of two spikes
are sent out, and the process continues by introducing another substring 0i1 in
the string produced by the system.

When neuron 9 uses the rule a → a; 1, the spikes of neurons 10 and 9 arrive,
in this order, in neuron 15, which spikes and sends the spikes to neuron 13. This
neuron waits for the two spikes, and, after having both of them, spikes and thus
sends two spikes to l0, the initial label of the register machine M . We start sim-
ulating the work of this machine, checking whether or not the number stored in

On String Languages Generated by Spiking Neural P Systems 189

'
&
$
%
�� �

#
"

!- -

?

�
�
�
�

'
&
$
%

'
&
$
%

�

@
@

@
@@R

�
�

�
�	B

B
B

B
B

B
B

B
BM

@
@

@@I

Q
Q

Q
Q

Q
Q

Q
QQk

�

�

�
�
�
��� ��
�
�
��
�
�
��
�
�
�6

�
�
�
�
�
�
�
�
�
�
���

�
�
��

C
C
C
C
C
CO

6

#
"

!

#
"

!
�
�
�
�

?

?

A
A
A
A
A
A
A
A
A
A
A
A
A
A
AU

�
�

�
�/

'
&
$
%

C
C
C
C
C
CCW

J
J

J
J

J
JĴ

�
�
�
�

�
�
���

'

&

$

%
�
�
�
�

6

�
�
�
��

C
C
C
C
C
C
C
C
CO

�
�
�
�
�
�
�
�

6

C
C
C
C
C
C
C
C
C
C
C
C
C
CCO

?

@
@

@@R

c0

1

2

3

4

5

6

7

8

9

l0,0 lh,0

10

1314

15

16

17 18

a → a; 0

a → a; 0

a → a; 0

a → a; 0

a → a; 0

a → a; 0

a → a; 0

a → a; 0

a

a → a; 0

a2 → λ

a

a → a; 0

a2 → λ

a
a → a; i − 1

i = 1, 2, . . . , k

a

a → a; 0

a2 → a; 0

a → λ

a → a; 0

a2 → λ

a2 → a; 0

a → a; 0

a → a; 1

�
�
�
�

�� �

�
�
�
��

C
C
C
C
C
C
CO

a → a; 0

a → a; 0

11

12

'

&

$

%
�
�
�
�

�
�
�
�

C
C
C
C
CO

�

�
�
�
�

c1

M

M0

lh

l0

�

Fig. 10. The structure of the SN P system from the proof of Theorem 9

neuron c1 belongs to valk(L). In the affirmative case, neuron lh is activated, it

190 H. Chen, R. Freund, M. Ionescu, Gh. Păun, M.J. Pérez-Jiménez

'
&
$
%
'
&

$
%

�
�
�
�
�
�
�
�
�
�
�
�

'
&
$
%

?

�
�

�
��=

Z
Z

Z
Z

Z~

?

@
@

@
@R

�
�

�
��	?

HHHHHHHHj

l1

l′1 l′′1 l′′′1

l2 r

a2 → a; 0

a → λ

a → a; 0 a → a; 0 a → a; 0

a2 → a; 0

a → λ

Fig. 11. Module ADD (simulating l1 : (ADD(r), l2))

sends a spike to the output neuron of the system, and the computation stops. If
the number stored in neuron c1 is not accepted, then the computation continues
forever, hence, the system does not produce a string.

In order to complete the proof we have to show how the two register machines
are simulated, using the common neuron c1 but without mixing the computations.
To this aim, we consider the modules ADD and SUB from Figures 11 and 12.
Neurons are associated with each label of the machine (they fire if they have
two spikes inside and forget a single spike), with each register (with 3t spikes
representing the number t from the register), and there also are additional neurons
with primed labels – it is important to note that all these additional neurons have
distinct labels.

The simulation of an ADD instruction is easy, we just add three spikes to
the respective neuron; no rule is needed in the neuron. The instructions SUB of
machine M0 are simulated by modules as in the left side of Figure 12 and those of
M by modules as in the right hand of the figure. The difference is that the rules
for M0 fire for a content of the neuron described by the regular expression (a3)+a
while the rules for M fire for a content of the neuron described by the regular
expression (a3)+a2 (that is why the module for M has two additional neurons,
g′1, g

′

2). This ensures the fact that the rules of M0 are not used instead of those of
M or vice versa. It is also important to note that the neurons corresponding to
the labels of the register machines need two spikes to fire, hence, the unique spike
sent by neuron c1 (and by other neurons involved in subtraction instructions) to

On String Languages Generated by Spiking Neural P Systems 191

'
&

$
%
�
�
�
�

�
�
�
�

'
&
$
%

'
&
$
%

'
&
$
%

�
�

�
��/

A
A
A
A
A
AU

Q
Q

Q
QQs

?
�

�
�/

HHHHHj
J
Ĵ

l1
a2 → a; 0

a → λ

r

(a3)+a/a4 → a; 0

a → a; 1

l′1

l′′1

a → a; 0

a → a; 1

l2
a2 → a; 0

a → λ

a2 → a; 0

a → λ

l3

'
&

$
%
�
�
�
�

�
�
�
�

'
&
$
%

'
&
$
%

?
�

�
�/

S
Sw

HHHHHHj

�
�
�
�
�
�
�
�

'
&
$
%

�

S
SSw

?

�
��	

A
A
A
AU

HHHHj

l1
a2 → a; 0

a → λ

a → a; 0 a → a; 0

a → a; 0

a → a; 1

g′

1
g′

2

r

(a3)+a2/a5 → a; 0

a2 → a; 1

l′′1

l′1

l2
a2 → a; 0

a → λ

a2 → a; 0

a → λ

l3

Fig. 12. Module SUB (simulating l1 : (SUB(r), l2, l3))

other neurons than the correct ones identified by the instruction are immediately
forgotten.

With these explanations, maybe also following the description of the modules
ADD and SUB from [7], the reader can check that the system Π works as requested.

The previous theorem given a characterization of recursively enumerable lan-
guages, because the family RE is closed under direct and inverse morphisms.

Corollary 2. The family LSNP∗(rule∗, cons∗, forg∗) is incomparable with all
families of languages FL such that FIN ⊆ FL ⊂ RE (even if we consider only
languages over the binary alphabet) which are closed under direct and inverse mor-
phisms.

The system Π constructed in the proof of Theorem 9 depends on the language
L, while the morphisms h1, h2 only depend on the alphabet V . Can this property
be reversed, taking the system Π depending only on the alphabet V and the mor-
phisms (or other stronger string mappings, such as a gsm mapping) depending on
the language? A possible strategy of addressing this question is to use a charac-
terization of RE languages starting from fixed languages, such as the twin-shuffle
language [2] or the copy languages [3].

192 H. Chen, R. Freund, M. Ionescu, Gh. Păun, M.J. Pérez-Jiménez

6 Final Remarks

We have considered the natural question of using spiking neural P systems as lan-
guage generators, and we have investigated their power with respect to families in
the Chomsky hierarchy. Several topics remain to be investigated, mainly, concern-
ing possible changes in the definition of SN P systems, starting with considering
different types of rules. For instance, what about using forgetting rules of the form
E/ar → λ, with E being a regular expression like in firing rules? Another exten-
sion is to have rules of the form E/ac → ap; d, with p ≥ 1 (at least in the output
neuron): when we output i spikes in one moment, we can record a symbol bi in
the generated string, and in this way we produce strings over arbitrary alphabets,
not only on the binary one.

Another variant of interest is to consider a sort of rough-set-like rule, of the form
(s, S)/ac → ap; d, with 0 ≤ s ≤ c ≤ S ≤ ∞. The meaning is that if the number
of spikes from the neuron is k and s ≤ k ≤ S, then the rule fires and c spikes are
consumed. This reminds the lower and the upper approximations of sets in rough
sets theory [14], [15] and it is also well motivated from the neurobiology point of
view (it reminds the sigmoid function of neuron exciting). It is interesting to note
that all rules of the form an/ac → a; d are of this type: just take (n, n)/ac → a; d.
Thus, all examples and results until Theorem 6, including this theorem, are valid
also for SN P systems with rough-set-like rules. Are there such systems able to
generate non-regular languages? This is a question worth to be considered.

It is also of interest to see whether or not languages from other families can be
represented starting from languages generated by specific classes of SN P systems
and using various operations with languages (as we have done here with the regular
languages – Theorem 6, and with recursively enumerable languages – Theorem 9).
For instance, are there such representations – maybe using other operations and/or
restricted/extended variants of SN P systems – for other families of languages from
the Chomsky hierarchy, such as CF and CS?

Acknowledgements

The work of the first author was supported by the National Natural Science Foun-
dation of China under Grants numbers 60573013 and 60421001. The work of the
last two authors was supported by Project TIN2005-09345-C04-01 of the Ministry
of Education and Science of Spain, cofinanced by FEDER funds.

References

1. J. Dassow, Gh. Păun: Regulated Rewriting in Formal Language Theory. Springer-
Verlag, Berlin, 1989.

2. J. Engelfriet, G. Rozenberg: Fixed point languages, equality languages, and rep-
resentations of recursively enumerable languages. Journal of the ACM, 27 (1980),
499–518.

On String Languages Generated by Spiking Neural P Systems 193

3. R. Freund: Bidirectional sticker systems and representations of RE languages by copy
languages. In Computing with Bio-Molecules. Theory and Experiments (Gh. Păun,
ed.), Springer-Verlag, Singapore, 1998, 182–199.

4. W. Gerstner, W. Kistler: Spiking Neuron Models. Single Neurons, Populations, Plas-

ticity. Cambridge Univ. Press, 2002.
5. D. Hauschild, M. Jantzen: Petri nets algorithms in the theory of matrix grammars.

Acta Informatica, 31 (1994), 719–728.
6. O.H. Ibarra, A. Păun, Gh. Păun, A. Rodŕıguez-Patón, P. Sośık, S. Woodworth: Nor-

mal forms for spiking neural P systems. Submitted, 2006.
7. M. Ionescu, Gh. Păun, T. Yokomori: Spiking neural P systems. Fundamenta Infor-

maticae, 71, 2-3 (2006), 279–308.
8. W. Maass: Computing with spikes. Special Issue on Foundations of Information

Processing of TELEMATIK, 8, 1 (2002), 32–36.
9. W. Maass, C. Bishop, eds.: Pulsed Neural Networks, MIT Press, Cambridge, 1999.

10. M. Minsky: Computation – Finite and Infinite Machines. Prentice Hall, Englewood
Cliffs, NJ, 1967.

11. Gh. Păun: Membrane Computing – An Introduction. Springer-Verlag, Berlin, 2002.
12. Gh. Păun, M.J. Pérez-Jiménez, G. Rozenberg: Spike trains in spiking neural P sys-

tems. Intern. J. Found. Computer Sci., to appear (also available at [18]).
13. Gh. Păun, M.J. Pérez-Jiménez, G. Rozenberg: Infinite spike trains in spiking neural

P systems. Submitted, 2006.
14. Z. Pawlak: Rough Sets. Theoretical Aspects of Reasoning About Data. Kluwer, Dor-

drecht, 1991.
15. Z. Pawlak: A treatise on rough sets. In Transactions on Rough Sets (J.F. Peters, A.

Skowron, eds.), LNCS 3700, Springer-Verlag, Berlin, 2005, 1–17.
16. G. Rozenberg, A. Salomaa, eds.: Handbook of Formal Languages, 3 volumes. Springer-

Verlag, Berlin, 1997.
17. A. Salomaa: Formal Languages. Academic Press, New York, 1973.
18. The P Systems Web Page: http://psystems.disco.unimib.it.

