
A Tool for Using the SBML Format to Represent
P Systems which Model Biological Reaction
Networks

Isabel Nepomuceno, Juan Antonio Nepomuceno,
Francisco José Romero–Campero

Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence
University of Sevilla
Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
E-mail: isabel@lsi.us.es, janepochamorro@gmail.com, fran@us.es

Summary. In this paper we present a software tool to represent P systems modelling
signalling networks of biochemical reactions using SBML (Systems Biology Markup Lan-
guage), a machine-readable format for describing qualitative and quantitative models of
biochemical networks. CLIPS (C Language Integrated Production System), a tool which
provides a complete environment for the construction of rule and/or object based expert
systems, has been used to simulated membrane system. Our tool acts as a translator
from SBML to CLIPS; that is, besides providing an environment for writing SBML code
it also parses this code and generates automatically the CLIPS code that simulates the
membrane system represented in SBML.

1 Introduction

Membrane Computing is an emergent branch of Natural Computing, introduced by
Păun in [9], which considers the different processes taking place into living cells as
computing processes. It is a cross-disciplinary field, involving Formal Languages,
Computer Science, Cellular Biology, etc; since its beginning it has received im-
portant attention from the scientific community and many different variants from
different approaches and different goals have been introduced and studied. Actu-
ally, membrane systems have been considered as a fast Emerging Research Front
in Computer Science by the Institute for Scientific Information, USA, and [8] was
mentioned in [4] as a highly cited paper in October 2003.

Roughly speaking, a P system consists of a cell-like membrane structure which
represents the hierarchical structure of the cell, multisets of objects that are placed
in the compartments of the membrane structure to represent chemical substances
and evolution rules which abstract the chemical reactions and processes that take

220 I. Nepomuceno, J.A. Nepomuceno, F.J. Romero-Campero

place inside the living cell. Usually the rules are applied in a synchronous non-
deterministic maximally parallel manner. However, other semantics have been pro-
posed, such as a bounded parallelism, a probabilistic application of the rules, an
asynchronous evolution of the system, etc. Besides, variants that consider a pop-
ulation of cells (membrane systems) arranged in a graph representing a tissue like
structure have been studied as well.

Most variants of these systems have been proved to be computationally com-
plete, that is, equivalent in power to Turing machines and computationally effi-
cient, that is, able to solve NP-complete problems in polynomial time by trading
time for space; for details we refer to [10].

Summing up, P systems are a kind of rewriting systems that move a step
further by representing the hierarchical structure of the living cell. Due to the
fact that this new model of computation is inspired by the functioning of the cell
it is natural to study and use these systems as a kind of specification language
and framework for the modelling of different cellular processes and natural living
systems. Several variants of membrane systems have already been used to model
biological phenomena (see the volume [2]); recently a continuous variant has been
introduced in [11] and a dynamical probabilistic approach has been studied in
[1]. These recent developments of different variants used to model biological phe-
nomena inside the framework of P systems make necessary information standards
to facilitate the portability/comparison of the different models in order to study
“when and how” one is better than the other.

In this paper we present SBML as a convenient machine-readable format for
describing qualitative and quantitative models of biochemical networks developed
within the framework of P systems. We also provide a software tool intended to be
an environment for writing SBML code and a translator from SBML to executable
code. Up to now we have only developed a translator from a SBLM description of
a model to CLIPS code simulating the model using a P system.

This paper is organized as follows. In the next section we briefly show how P
system have been used to model biological phenomena. In Section 3 we describe
SBML, Systems Biology Markup Language, as a standard specification language
and we discuss some of the characteristics which make it suitable for representing
P systems. Our software tool is presented in Section 4; finally, conclusion and
future work are given in the last section.

2 Modelling Biological Processes in the Framework of P
Systems

Up to now, most of mathematical models of biological processes have been based on
using differential equations. In this framework, the variation of the concentration
of each chemical substance is modelled as a global process. This approach makes
difficult the development of modular and scalable designs. That is, in order to
extend a previous model, one has to start from scratch and rewrite a whole new

Using the SBML Format to Represent P Systems 221

system of differential equations. Moreover, the modelling of the interactions at
a molecular level does not scale to the cellular or tissue level. Using membrane
systems we focus on the membrane structure and on the local interactions between
different chemical substances, which are represented by rules that are applicable
in different regions. This computational approach makes possible the extension of
previous models by simply adding new rules, new objects and also new membranes
without making major changes in the previous models. Furthermore, our approach
is scalable, after having modelled the interactions at a molecular level we can study
the evolution of the system as a whole to reach the cellular level and finally, in
order to get insight into the dynamics at a tissue level we can consider a population
of identical systems that have been previously designed and that can communicate
through the environment or through specific links.

In this sense the most important characteristics of our approach are modularity
and easy extensibility. Beside these features we mention easy understandability and
programmability of the models developed within this framework.

Our work has the paper [11] as a started point. In this paper it was mentioned
the necessity of information standards to facilitate the circulation and study of
different models, like [1], [2], [7], [11], proposed for different biological phenomena.
SBML was pointed as a good candidate to achieve this goal. Usual variants of
P systems are discrete models of computation where in every step the rules are
applied in a maximal way an integer number of times. A continuous P system
evolves applying a maximal set of rules a positive number of times determined by a
certain function, see [11]. In order to implement/simulate continuous P systems on
real computers we need to develop approximation methods which consist basically
in a discretization of the continuous evolution of the systems taking a small interval
of time ∆t. In this manner evolutions of continuous P systems are approximated
by computations of usual P systems working in a bounded parallel manner. For
details we refer to [11].

The model presented in [11] of modelling EGFR signalling cascade using con-
tinuous P systems was implemented using CLIPS. CLIPS is a an expert systems
tool which provides a complete environment for the construction of the rule and/or
object based systems.

3 SBML: Systems Biology Markup Language

Advances in biotechnology are leading to larger, more complex quantitative models
describing systems of biochemical reactions. The complexity of these models is such
that information standards are necessary if these models are to be shared, eval-
uated and developed cooperatively. Lately, membranes systems have been proved
to be a suitable framework to develop local, modular and topological models of
biological processes. These models have been designed using different variants of P
systems and they have been implemented in different P systems simulators written
in different programming languages, like CLIPS, JAVA, PROLOG, etc.

222 I. Nepomuceno, J.A. Nepomuceno, F.J. Romero-Campero

SBML, Systems Biology Markup Language, is a machine-readable format for de-
scribing qualitative and quantitative models of biological systems, see [14]. SBML
provides a standard biochemical network model of representation and it promotes
inter-operability between tools. SBML is based on XML, eXtensible Markup Lan-
guage, which is a standard language for describing markups languages. In general,
markups languages capture particular information in text for using it: for future
processing, for storing it, for exchanging it with other systems, etc. SBML is still
under development. Up to now two levels have been released. Level 1 and 2 cap-
ture fundamental features common to all biochemical network models; the second
level in a richer manner than the first one. Level 3 is about to be available; it
is developed in order to capture several aspects like hierarchical models, spatial
features, kinetic constants, etc.

An SBML document has the following structure:

<?xml version="1.0" encoding="UTF-8"?>
<sbml xmlns="http://www.sbml.org/sbml/level2"

level ="2" version ="1">
<model id = " ">

<listOfFunctionDefinitions>
...

</listOfFunctionDefinitions>
<listOfUnitDefinitions>

...
</listOfUnitDefinitions>
<listOfCompartments>

...
</listOfCompartments>
<listOfSpecies>

...
</listOfSpecies>
<listOfParameters>

...
</listOfParameters>
<listOfRules>

...
<listOfRules>
<listOfReactions>

...
</listOfReactions>
<listOfEvents>

...
</listOfEvents>

</model>
</sbml>

Using the SBML Format to Represent P Systems 223

The outermost portion of an SBML document consists of the definition of
Sbml for SBML Level 2 Version 1. The XML namespace URI for SBML Level 2
is “http://www.sbml.org/sbml/level2” and the character encoding for SBML is
UTF-8.

In the next line an identifier is associated with model and next the different
components are written. All these components are optional and we will only use
listOfParameters, listOfCompartments, listOfSpecies and listOfReactions.

Recall that a continuous P system is a construct, Π = (Σ,µ, w1, . . . , wn,R,K),
where:

1. n ≥ 1 is the degree of the system (number of membranes);
2. Σ = {c1, . . . , cm} is the alphabet of objects;
3. µ is a membrane structure consisting of n membranes labelled with 1, . . . , n.
4. w1, . . . , wn are continuous multisets associated with each membrane of the

membrane structure µ
5. R is a finite set of rules of the form:

u [v]i → u′[v′]i,

where u, v, u′, v′ ∈ Σ∗, and 1 ≤ i ≤ n.
6. K is the rate of application function which associates with each rule and mul-

tiplicity of the objects in µ the rate of application of the rule:

K : R×Mn×m(R+) → R+,

where Mn×m(R+) is the set of matrixes of order n×m over R+.

Next we show how we can specify P systems using SBML.
In the component listOfParameters we collect all the unknown parameters

in our model.
Using the component listOfCompartments we can specify the membrane

structure representing the label of the membrane in the field id and the hier-
archical relationship between the different membranes using the field outside.

<listOfCompartments>
<compartment id= " " outside= " " >

...
<\listOfCompartments>

The alphabet and initial multisets of the system are represented in the compo-
nent listOfSpecies. For each object in the alphabet we associate a species with
an identifier id and in the fields initialAmount and compartment we represent
the initial multiplicity and the membrane where the object is placed in the initial
configuration.

<listOfSpecies>
<species id = " " compartment = " " initialAmount = " ">

...
<\listOfSpecies>

224 I. Nepomuceno, J.A. Nepomuceno, F.J. Romero-Campero

At level 3 we can choose a specification which allows us to work with the kind
of reactions in which we are interesting. We have been working with [3], a proposal
of specification of level 3 which contains reactions with kinetic constants.

Rules that are used in [11] are of the following form:

u[v]M −→ u′[v′]M , KL,

with KL the kinetic constant. We need to express the reactants and the kinetic
constant associated to the reactions. Following [3] the corresponding reaction of
the SBML document which describes it would be:

<reaction id=R1 reversible="true">
<listOfReactants>

<speciesReference id="u-membrane_father_of_M"
speciesType="u">

<speciesReference id="v-M" speciesType="s">
</listOfReactants>
<listOfProducts>

<speciesReference id="u’-membrane_father_of_M"
speciesType="u’">

<speciesReference id="v’-M" speciesType="v’">
</listOfProducts>
<kineticLaw>

<math xmlns="http://www-w3.org/...">
<apply>

<times/>
<cn> KL </cn>
<ci> u </ci>
<ci> v </ci>

</apply>
</kineticLaw>

</reaction>

The main goal of SBML is to provide a good description of biological processes,
especially biochemical networks, so machines can read them.

4 A Tool for Working with P Systems Modelling Biological
Processes

In this paper we present a modular tool with two different objectives. In the
first place, we create a tool with a friendly interface and a P system as engine
made in CLIPS. The engine simulates a concrete P system model in the way we
explained previously and this engine is a changeable component, that is, the P
system implemented in CLIPS is changeable with other P system implemented

Using the SBML Format to Represent P Systems 225

in CLIPS or in other language. It has a restriction: if other language is used, the
input format of this engine must be in the same format as the input format in
CLIPS. In the second place, the tool have a parser module whose objective is to
be able to add rules to the concrete model that we like to simulate (the next step
is to allow to modify the complete model with its rules), that is to say, changing
the engine. In this parser module there exists the possibility to export our model
to a file which contains this model in the SBML format with the objective to use
it in other tool that accepts the SBML format.

The tool is built as an architecture model of software development used in
interactive systems. The application, following the MVC (Model-View-Controller)
architecture, is composed of three different components. In the first one, Model
Component, we have the engine of simulator of the EGFR signalling cascade using
continuous membrane systems made in CLIPS, see [11], the translator of models
(from CLIPS to SBML and from SBML to CLIPS), functional qualities and type
abstract data. The second component, View, has the user guide interface respon-
sible to showing the results. Finally, the third component, Controller, establishes
the relation between the engine CLIPS and the Java class by means of a dll li-
brary. Figure 1 represents the hierarchical structure and the relation between the
different components designed in this application.

Logical View

Controller Component

Parser

Abstract Type Data
 Engine of Simulator

GUI Component

Model Component

Fig. 1. Hierarchical structure and relations among the different components of the appli-
cation. We underline the package (sets of classes) parser, which contains all functionalities
to identify the SBML format and transforms it in an input file of the model. The engine
simulator package contains several CLIPS files. The controller package contains libraries
to communicate among CLIPS and Java.

226 I. Nepomuceno, J.A. Nepomuceno, F.J. Romero-Campero

The model presented to simulate the EGFR signalling cascade using continuous
membrane system has been implementing by means of CLIPS. It is a productive
development and expert system tool which provides a complete environment for
the construction of rules and/or object based expert system. The engine of the
simulator in CLIPS works independently of the rest of Java package of this tool,
that is, the CLIPS package is changeable with other model implemented in CLIPS.
In this way we can expand our model and use yet this tool, for example, to model
the PI3K phosphorylation.

In the Model Component, see Figure 1, there is the parser package1. A parser
is a program that takes a set of sentences as an input and finds its syntactic
structure according to a given grammar; then, the parser transforms this syntactic
structure in other kind of structure text. This parser is independent of the model
implemented by CLIPS (in this case the EGFR signaling cascade), that is, we can
use this parser package for any type of topological and modular model working in
the engine of CLIPS simulator. We have implemented three kinds of parsers. The
first one, ParserClispToJava, takes a list of reactions written in SBML syntax and
identifies the markup language to translate it, and then it builds a list of reactions
as a list of rules implemented in Java. This data type is converted in the syntax
used in a input file of a list of reactions that understand the model implemented in
CLIPS. The second parser, ParserSbmlToJava, is the opposite to the one above;
it translates a list of reactions written in a syntax used in the CLIPS engine to a
list of rules implemented in Java and this is translated to a SBML model. Finally,
we have implemented a third parser, ParserEasyRules, to translate a simple rule
written in the style of membrane computing 2, easier to write for the user, and
parses this in SBML or CLIPS format. See Figure 2 for details.

The View Component includes all classes that contain the GUI (Guide User
Interface). This is the part of the program which allows the user to interact with
the application. The Swing Java Package is used in the construction of this GUI.

Finally the Controller Component contains the management-reception of events
generated between the GUI and the simulator engine. In this moment this inter-
action is made only in the direction from the GUI to the engine, that is, we can
transform the format of the input list of rules of the model implemented and
run the engine CLIPS. The second direction, the presentation of the results (the
evolution of a number of key proteins in the EGFR signalling cascade) is under
development.

In figure 3 we present the interface of the application and we explain how to
use it.
1 A package is a group of classes whit a similar functionality.
2 This easy syntax to write a reaction is:

u[v]memb → u′[v′]membKineticlaw

Using the SBML Format to Represent P Systems 227

Logical View

ParserClispToJava

+LoadRulesToJava()

ParserSbmlToJava

+LoadRulesToJava()

ParserEasyRules

+LoadRulesToJava()

Rule

-Kinetic : int

-list of reactants : String

-List of products : String

JavaToClisp

+Translate to Java()

JavaToSbml

+Translate to SBML()

Fig. 2. Parser package: the set of classes. ParserSBMLtoJAVA identifies and recognizes
the structure of the sentences according to a given grammar presented in the SBML Level
3 and build an input file in format to be read by the engine. ParserClispToJava makes
the same in the inverse direction.

5 Conclusions and Future Work

In the following version of this tool there will be presented the evolution of a
number of key proteins on the signalling network in a integrated way. We plan
to use the Scientific Graphics Toolkit (written by Donald W. Denbo from the
NOAA/PMEL/EPIC group) for creating interactive graphics applications.

In the present version of our software, we can interact in two directions: export-
ing the CLIPS model to SBML for reusing it in others tools, and importing new
rules in the SBML format to add them to CLIPS model. In a following version we
will permit not only to import rules, but also biological models or new P systems
model completely.

References

1. D. Besozzi, G. Mauri, D. Pescini, C. Zandron: Analysis and simulation of dynamics
in probabilistic P systems. Submitted, 2005.

2. G. Ciobanu, Gh. Păun, M.J. Pérez-Jiménez, eds.: Applications of Membrane Com-
puting. Springer-Verlag, Berlin, 2005.

3. A. Finney: Systems Biology Markup Language (SBML) Level 3 Proposal:
Multi-component Species Features, 2004. Available via the World Wide Web at:
http://www.sbml.org/workshops/ninth/supplementary/multi-component-species.pdf

4. ISI web page: http://esi-topics.com/erf/october2003.html
5. JAVA web page: http://java.sun.com
6. I.A. Nepomuceno-Chamorro: A Java simulator for membrane computing. J.UCS, 10,

5 (2004), 620–629.

228 I. Nepomuceno, J.A. Nepomuceno, F.J. Romero-Campero

Fig. 3. The main screen of the program. One can see de barmenu that allows to handle
the tool. The main screen is divided into two basic panels: “Edit”, where one can use the
SBML format to add rules to the model or export it to SBML, and “Execution”, which
shows an execution of the simulator (in a following version of the program, this will show
us the output file as we have said before).

7. T.Y. Nishida: Simulations of photosynthesis by a K-subset transforming system with
membranes. Fundamenta Informaticae, 49, 1 (2002), 101–113.

8. A. Păun, Gh. Păun: The power of communication: P systems with symport/antiport.
New Generation Computing, 20, 13 (2002), 295–305.

9. Gh. Păun: Computing with membranes. Journal of Computer Sciences and Systems
Sciences. 61, 1 (2000), 108–143.

10. Gh. Păun: Membrane Computing. An Introduction. Springer-Verlag, Berlin, 2002.
11. M.J. Pérez-Jiménez, F.J. Romero-Campero: Modelling EGFR signalling cascade us-

ing continuous membrane systems. Third Workshop on Computational Methods in
Systems Biology, Edinburgh, 2005.

12. PSim, Java tool developed by Group for Models of Natural Computing (MNC),
University of Verona, Italy

13. The P systems web page: http://psystems.disco.unimib.it/
14. The SBML web page: http://sbml.org/index.psp

